首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new technique has been developed for distinguishing RNA/DNA or DNA/DNA duplex regions from single-stranded DNA in the electron microscope by thickness enhancement of the single-stranded DNA. This enhancement is achieved by reacting the single-stranded DNA with Escherichia coli DNA binding protein and monovalent antibody prepared from anti-E. coli DNA binding protein γ-globulin. A general application of this technique is the mapping of coding regions after hybridization with complementary RNA, which can vary in size from 100 to several thousand nucleotides. As an example, the coding sequences for the four yeast ribosomal RNAs were located in heteroduplex molecules constructed between DNA of a λ-yeast hybrid carrying a single rDNA repeat unit and DNA of λimm434.  相似文献   

2.
3.
Y H Wang  M T Howard  J D Griffith 《Biochemistry》1991,30(22):5443-5449
Tracts of four to six adenines phased with the DNA helix produce a sequence-directed bending of the helix axis. Here, using gel electrophoresis and electron microscopy (EM), we have asked whether a similar motif will induce bending in a duplex RNA helix. Single-stranded RNAs were transcribed either from short synthetic DNA templates or from Crithidia fasciculata kinetoplast bent DNA, and the complementary single-stranded RNAs were annealed to produce duplex RNA molecules containing blocks of four to six adenines. Electrophoresis on polyacrylamide gels revealed no retardation of the RNAs containing phased blocks of adenines relative to duplex RNAs lacking such blocks. Examination by EM showed most of the molecules to be straight or only slightly bent. Thus, in contrast to DNA duplexes, phased adenine tracts do not induce sequence-directed bending in double-stranded RNA. Analysis of the distribution of molecule shapes for the highly bent C. fasciculata DNA showed that the adenine blocks do not act cooperatively to induce DNA bending and that the molecules must equilibrate between a spectrum of bent shapes.  相似文献   

4.
5.
6.
Detection of sequence heterology by use of the N. Crassa nucleases   总被引:1,自引:0,他引:1  
We have used the single-strand specific nucleases of Neurospora crassa to detect sequence divergencies between two similar DNA molecules: restriction endonuc lease EcoRI produced linears from Simian Virus 40 and a variant of human origin, DAR. Enzyme treatment of the heteroduplex DNA resulted in specific cleavage into two fragments of one-third and two-thirds genome length. These two viral DNAs therefore have at least one region of heterology located about 0.35 map units from the EcoRI site. Due to the known specificities of the N.crassa nucleases, this technique is applicable to detect mutations in RNA or DNA genomes.  相似文献   

7.
8.
9.
The crude RNA dependent DNA polymerase of seven different C-type viruses (AMV, Kirsten-MSV produced by NRK or NIH3T3 cells, Moloney-MuLV, Kirsten-MuLV, the murine myeloma associated virus (MuMAV) from FLOPC-1 and MOPC-21) was analyzed for their ability to utilize four different synthetic RNADNA hybrids or three different DNADNA duplexes as templates. The polymerases from AMV and murine sarcoma or leukemia viruses were distinctly different in their template stimulated activities and the two MuMAV polymerases were different from all of the other enzymes. MuMAV RDDPs were not stimulated by any of the synthetic RNADNA hybrid templates to the same level as the enzymes of the other C-type viruses and their ability to distinguish between templates was also different.  相似文献   

10.
DNA polymerase activities in cell-free lysates of unfertilized eggs, larvae and immature ovaries of Xenopuslaevis were compared to purified E.coli DNA polymerase I using several natural and synthetic templates. The templates were tested as the native and denatured forms of normal and DNase I treated molecules. Although the Xenopus polymerases tended to prefer DNase I treated Xenopus DNA over the other templates tested, so did the E.coli polymerase I. In general, the template preferences of the polymerases studied depended in complex ways on both the form and the species of origin of the template.  相似文献   

11.
The effect of depurination of polynucleotide templates on the fidelity of DNA synthesis in vitro has been determined. The fidelity of DNA synthesis with Escherichia coli DNA polymerase I, avian myeloblastosis virus DNA polymerase and human placenta DNA polymerase-β is decreased as a result of depurination of the poly[d(A-T)], poly[d(G-C)]and poly[d(A)]templates. The error rate with poly[d(A-T)]increased from 117,500 to 12100 using E. coli Pol I, and from 14100 to 11500 using the myeloblastosis virus DNA polymerase. Depurination of poly[d(A)]increased the error rate from 121,000 to 16500 using E. coli Pol I, and from 119,300 to 16100 using the DNA polymerase-β from human placenta. Depurination of poly[d(G-C)]resulted in an increase in the error rate with E. coli Pol I from 19200 to 12200, and with the virus DNA polymerase from 12400 to 11300. This misincorporation is shown to be directly proportional to the extent of depurination. Deletion experiments and alkaline sucrose gradient analyses suggest that the incorporation of complementary and non-complementary nucleotides is dependent on polymerization, and occurs in the same newly synthesized product. Kinetic studies and nearest-neighbor analyses indicate that the incorporation of non-complementary nucleotides occurs randomly as single-base substitutions. The nearest-neighbor studies also suggest that any of the four deoxynucleotides can be incorporated opposite apurinic sites. The number of each nucleotide incorporated relative to the number of apurinic sites was determined to be 1490 for dGTP, 1115 for dCTP, 12·5 for dATP and 11·7 for dTTP with both the poly[d(A-T)] and poly[d(A)] templates. The frequencies of misincorporation relative to the number of apurinic sites with the poly[d(G-C)]template were 1230 for dATP, 1120 for dTTP, 12·4 for dGTP and 11·8 for dCTP. Hydrolysis at the apurinic sites by alkali treatment reversed the effects of depurination on fidelity. The error rates with the depurinated templates were reduced to within 2% of those obtained prior to depurination, providing additional evidence that the misincorporation after depurination results from apurinic sites on the template. These results suggest a possible relationship between depurination of DNA and errors in DNA replication and/or repair.  相似文献   

12.
Treatment of the eukaryotic organism Tetrahymena pyriformis with low concentrations of Ethidium Bromide causes accumulation of a protein-nucleic acid complex consisting of a DNA polymerase, a RNA polymerase, a deoxyribo-nuclease and a RNA linked DNA fragment. The length of the RNA is about 30 nucleotides, while the DNA part is around 200 nucleotides long. Degradations with ribonucleases and deoxyribonucleases strongly indicate that the RNA exists in a non-hybrid structure with a homogenous base composition and that the DNA is single-stranded. The complex is purified 1100 fold from whole cells and sodium dodecyl sulphate acrylamide gel electrophoresis gives 9 defined bands. The polynucleotide in the isolated complex accounts for only 10?4 of the total cellular DNA.As the complex contains some of the enzymes essential for discontinous DNA replication, in addition to a RNA linked Okazaki fragment, it is concluded that a highly purified replication complex has been isolated.  相似文献   

13.
E. coli cells grown to phosphate starvation incorporate 32PO4 unequally into the α position of the four ribonucleotide triphosphates during a short period of labeling. A method for determining the relative specific activities of nucleotides in RNA molecules synthesized under these conditions and correcting sequence data is described.  相似文献   

14.
15.
We report the construction of recombinant plasmids containing part of the mitochondrial DNA of Drosophilamelanogaster. Of the four fragments of this DNA generated by the restriction endonuclease HindIII, two were successfully cloned into the HindIII site of the plasmid pCM2. Unexpectedly the other two fragments could not be isolated by cloning into the HindIII site of either pCM2 or pBR322. Part of a third fragment, containing the gene for the large ribosomal RNA, was incorporated into the PstI site of pBR322. We show that this recombinant plasmid contains sequences complementary to an abundant RNA species which is present in Drosophila embryos and which binds to oligo-dT-cellulose.  相似文献   

16.
Conditions for the production of a complementary DNA sequence for use in studies of ribosomal RNA are described. E. coli DNA polymerase I is used to transcribe highly purified 28S ribosomal RNA from rat liver. The reaction is sensitive to the tertiary structure of the rRNA template-primer. The complementary DNA hybridizes to its rRNA template with a Rot12 of 0.02. The hybrid formed between 28S ribosomal RNA and complementary DNA has a Tm of 73°C. The probe reacts with total rat nuclear RNA with a Rot12 of 1.0.  相似文献   

17.
An investigation of metabolically stable, chromatin-associated RNA in HeLa cells has revealed that three small RNA species, 193, 171 and 127 nucleotides in length, are covalently linked to double-stranded chromosomal DNA through phosphodiester bonds. These DNA-linked RNAs appear to be members of the small nuclear RNA species that have been identified in a wide variety of eukaryotic cells, and they are tentatively identified as species C, D and G′, in the nomenclature system currently employed for HeLa cell small nuclear RNAs. These DNA-linked RNAs do not appear to be involved in priming DNA replication, since they are of relatively high metabolic stability (t12 = 19 hours in HeLa cells with a 21·5-hour cell generation time) and since their covalently contiguous DNA stretches are not enriched in newly replicated material. They lack saturated pyrimidine bases (level of detection = 0·15 mol %) and are therefore not “chromosomal RNA”, as defined by its proponents. The covalent linkage of these small RNA species with chromosomal DNA was discovered by virtue of the fact that when highly purified HeLa cell chromatin is dissociated by chaotropic solutes, these RNAs are released in association with small pieces of double-stranded DNA (approx. 475 nucleotide pairs). These DNA-RNA complexes can then be purified by removing the bulk, high molecular weight DNA by ultra-centrifugation. The resulting DNA-RNA complexes are shown to be covalently joined by several criteria, including equilibrium density-gradient centrifugation in either Cs2SO4/dimethylsulfoxide or aqueous Cs2SO4/formaldehyde after thermal denaturation (90 °C in 50% formamide, which is 55 deg. C above the melting temperature of this DNA), by the chromat ographicbehavior of the complexes on hydroxylapatite before and after thermal denaturation, and by the demonstration of alkali-resistant ribonucleotides flanking the 3′ hydroxyl termini of the DNA, the latter criterion providing evidence for 3′ to 5′ DNA-RNA phosphodiester bonds. Reconstruction experiments involving addition of the purified RNAs to nuclei or chromatin demonstrate that the covalent DNA-RNA linkages do not arise by ligation events during cell fractionation. Further experiments indicate the existence of a dynamic equilibrium of these small nuclear RNA species between chromosomal and nucleoplasmic loci in vivo, and other considerations suggest that this equilibrium may be cell cycle-dependent. The DNA adjacent to these covalently linked RNAs has the same melting temperature as total HeLa chromosomal DNA and its reassociation kinetics reveal the presence of both repeated and non-repeated sequences, implying that the DNA-linked RNAs are widely distributed throughout the HeLa cell genome. It is proposed that these DNA-linked RNAs are involved in the tertiary structure of chromatin, particularly in relation to the cell cycle.  相似文献   

18.
19.
On a variety of single-stranded DNA templates, the overall rate of in vitro DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase is increased about fourfold by addition of the T4 gene 4462 and 45 proteins. Several different methods suggest that this stimulation reflects an increase in the average DNA polymerase “sticking distance”, or processivity, from 800 to about 3000 nucleotides per initiation event. Both the 4462 protein complex and the 45 protein must be present to obtain this effect, and either ATP or dATP hydrolysis is required. Rapid-mixing experiments indicate that the polymerase stimulation is maximized within a few seconds after addition of these “polymerase accessory proteins.”  相似文献   

20.
DNA polymerase from Escherichia coli (Pol I) and from avian myeloblastosis virus (AMV polymerase) were compared for the manner in which they catalyze the polymerization of deoxynucleotides upon a variety of synthetic and natural templates. It was found that the rates of nucleotide incorporation with different natural RNAs were similar. Both polymerases have an associated RNA endonuclease which hydrolyses RNA templates containing double-stranded regions. This activity depends on the presence of the complementary deoxynucleoside triphosphates, and/or polymerization. Both enzymes copy natural DNA, which has been sonicated and treated with E. coli exonuclease III, at the same rate. However, avian myeloblastosis virus DNA polymerase, which has no associated DNA exonuclease activity, is unable to copy double-stranded DNA and copies DNAase-treated DNA only 10% as well as Pol I. Pol I copied all the homopolymers investigated at a greater rate than AMV polymerase with the exception of poly(C) · oligo(dG). However, the initial rate of chain elongation, as measured by gel electrophoresis, was the same for the two polymerases, approximately 300 nucleotides incorporated per minute. Template saturation experiments show a stoichiometric relationship between template and enzyme at optimal rates of nucleotide incorporation which suggests that all enzyme molecules are potential catalysts. Enzyme saturation experiments indicate that not all enzyme molecules are “effectively” bound to a template. Fewer AMV polymerase than Pol I molecules are functionally bound to a particular template. From these data, it is concluded that the two polymerases elongate DNA chains in a similar way and that the manner in which the polymerases bind to a particular template accounts for the discrepancies found in their turnover numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号