首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
中国沿海蛾螺科5属10种28S rRNA基因的系统学分析   总被引:1,自引:0,他引:1  
目前已报道在我国分布的蛾螺科种类有13个属,约31个种,系统学和分类地位仍存在较大的争议.本研究利用核糖体大亚基28S rRNA的部分序列对我国辽宁、山东、福建沿海蛾螺科5属10个种的系统发生进行了分析.通过PCR获得了大约1400 bp的片段,测序之后,通过遗传分析软件对序列进行了比对分析,以骨螺科的脉红螺作为外群,利用Neighbor-Joining (NJ)法和Minimum Evolution (ME)法建立了系统树.结果显示,所研究的蛾螺科5属10个种可以被分为5个亚群:第一大分支为香螺亚群,包括Neptunea属的香螺、新英格兰蛾螺、Neptunea eulimata Dall、和一个未知种以及Siphonalia属的略胀管蛾螺;第二个分支为侧平肩螺亚群;第三个分支为荻曷莺突坪6曷菅侨海坏谒母龇种止芏曷菅群;第五个分支为方斑东风螺亚群.由系统学分析可知,香螺是较为进化的种;未知种为香螺属内的种;略胀管蛾螺与Neptunea属的种类亲缘关系较近,序列相似系数为0.9%-1.4%,已经达到了属内水平,建议将略胀管蛾螺归为Neptunea属.  相似文献   

2.
Species of the order Mysida (Crustacea, Peracarida) are shrimp-like animals that occur in vast numbers in coastal regions of the world. The order Mysida comprises 1,053 species and 165 genera. The present study covers 25 species of the well-defined Mysidae, the most speciose family within the order Mysida. 18S rRNA sequence analysis confirms that the subfamily Siriellinae is monophyletic. On the other hand the subfamily Gastrosaccinae is paraphyletic and the subfamily Mysinae, represented in this study by the tribes Mysini and Leptomysini, consistently resolves into three independent clades, and hence is clearly not monophyletic. The tribe Mysini is not monophyletic either, and forms two clades of which one appears to be closely related to the Leptomysini. Our results are concordant with a number of morphological differences urging a taxonomic revision of the Mysidae.  相似文献   

3.
【目的】小毛瓢虫属Scymnus Kugelann昆虫主要捕食蚜虫、蚧虫等害虫,是一类经济上重要的天敌昆虫。目前针对小毛瓢虫属的系统发育研究尚属空白,亚属之间的系统演化关系尚不明确,为了建立合理的分类系统,亟需对小毛瓢虫属的亲缘关系进行研究和探讨。【方法】以华南农业大学馆藏的小毛瓢虫属5亚属共44种为研究对象,采用PCR技术对12S, 16S和28S rRNA基因的部分序列进行扩增;运用MEGA 7.0分析了小毛瓢虫属内12S, 16S和28S rRNA基因的碱基组成,基于K2P模型计算了小毛瓢虫属44种的种间遗传距离;采用最大似然法(maximum-likelihood, ML)和贝叶斯推断法(Bayesian-inference, BI)构建该属的系统发育树。【结果】扩增获得小毛瓢虫属44种的12S rRNA基因序列平均长度为356 bp, 16S rRNA基因序列平均长度为351 bp, 28S rRNA基因序列平均长度为315 bp;序列分析表明,12S rRNA基因的A, T, G和C平均含量分别为38.8%, 43.5%, 11.9%和5.8%, 16S rRNA基因的A, T, G和C平均含量分别为37.6%, 40.3%, 14.4%和7.7%, 28S rRNA基因的A, T, G和C平均含量分别为26.7%, 18.3%, 31.4%和23.5%;基于联合序列分析的种间遗传距离为0.004~0.276,平均遗传距离为0.115。系统发育分析结果表明,小毛瓢虫属为单系起源,而小毛瓢虫亚属Scymnus(Scymnus) Kugelann、毛瓢虫亚属Scymnus(Neopullus) Sasaji、小瓢虫亚属Scymnus(Pullus) Mulsant和拟小瓢虫亚属Scymnus(Parapullus) Yang均为并系起源。【结论】基于12S, 16S和28S rRNA基因序列的小毛瓢虫属系统发育分析显示传统的形态学分类体系与基于分子数据分析的结果部分不一致,这表明应该对该属内各亚属的鉴别特征进行全面检视,筛选并确立各亚属的形态指标,同时也表明该属内的亚属分类单元需重新厘定。  相似文献   

4.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

5.
The phylogenetic position of the Tardigrada remains uncertain. This is due to the limited information available, and the uncertainty of whether some characters are homologous or analogous with other taxa. Based on some morphological characters, current discussion centres on whether the taxon branches from the annelid-arthropod lineage, or lies within the arthropod complex. The molecular data presented here from an analysis of the 18S rRNA gene sequences are used to test the validity of these two hypotheses. Phylogenetic inference by the maximum parsimony and distance (neighbour-joining) methods suggests that the Tardigrada is a sister group of the major protostome eucoelomate assemblage that emerged before the arthropods, annelids, molluscs, and sipunculids evolved. The tardigrade clade also appears as an independent lineage separate from the nematode clade, thus supporting the current idea that tardigrades do not have a close aschelminth relationship. The molecular data also imply that several morphological features, considered significant in determining the phylogenetic relationships of tardigrades, are not synapomorphic characters.  相似文献   

6.
The series Staphyliniformia is one of the mega‐diverse groups of Coleoptera, but the relationships among the main families are still poorly understood. In this paper we address the interrelationships of staphyliniform groups, with special emphasis on Hydrophiloidea and Hydraenidae, based on partial sequences of the ribosomal genes 18S rDNA and 28S rDNA. Sequence data were analysed with parsimony and Bayesian posterior probabilities, in an attempt to overcome the likely effect of some branches longer than the 95% cumulative probability of the estimated normal distribution of the path lengths of the species. The inter‐family relationships in the trees obtained with both methods were in general poorly supported, although most of the results based on the sequence data are in good agreement with morphological studies. In none of our analyses a close relationship between Hydraenidae and Hydrophiloidea was supported, contrary to the traditional view but in agreement with recent morphological investigations. Hydraenidae form a clade with Ptiliidae and Scydmaenidae in the tree obtained with Bayesian probabilities, but are placed as basal group of Staphyliniformia (with Silphidae as subordinate group) in the parsimony tree. Based on the analysed data with a limited set of outgroups Scarabaeoidea are nested within Staphyliniformia. However, this needs further support. Hydrophiloidea s.str., Sphaeridiinae, Histeroidea (Histeridae + Sphaeritidae), and all staphylinoid families included are confirmed as monophyletic, with the exception of Hydraenidae in the parsimony tree. Spercheidae are not a basal group within Hydrophiloidea, as has been previously suggested, but included in a polytomy with other Hydrophilidae in the Bayesian analyses, or its sistergroup (with the inclusion of Epimetopidae) in the parsimony tree. Helophorus is placed at the base of Hydrophiloidea in the parsimony tree. The monophyly of Hydrophiloidea s.l. (including the histeroid families) and Staphylinoidea could not be confirmed by the analysed data. Some results, such as a placement of Silphidae as subordinate group of Hydraenidae (parsimony tree), or a sistergroup relationship between Ptiliidae and Scydmaenidae, appear unlikely from a morphological point of view.  相似文献   

7.
Phylogenetic relationships within the group of molting protostomes were reconstructed by comparing the sets of 18S and 28S rRNA gene sequences considered either separately or in combination. The reliability of reconstructions was estimated from the bootstrap indices for major phylogenetic tree nodes and from the degree of congruence of phylogenetic trees obtained by different methods. By either criterion, the phylogenetic trees reconstructed on the basis of both 18 and 28S rRNA gene sequences were better than those based on the 18S or 28S sequences alone. The results of reconstruction are consistent with the phylogenetic hypothesis classifying protostomes into two major clades: molting Ecdysozoa (Priapulida + Kinorhyncha, Nematoda + Nematomorpha, Onychophora + Tardigrada, Myriapoda + Chelicerata, and Crustacea + Hexapoda) and nonmolting Lophotrochozoa (Plathelminthes, Nemertini, Annelida, Mollusca, Echiura, and Sipuncula). Nematomorphs (Nematomorpha) do not belong to the clade Cephalorhyncha (Priapulida + Kinorhyncha). It is concluded that combined data on the 18S and 28S rRNA gene sequences provide a more reliable basis for phylogenetic inferences.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 590–601.Original Russian Text Copyright © 2005 by Petrov, Vladychenskaya.  相似文献   

8.
双壳纲贝类18S rRNA基因序列变异及系统发生   总被引:2,自引:0,他引:2  
孟学平  申欣  程汉良  赵娜娜 《生态学报》2011,31(5):1393-1403
双壳纲贝类栖息于环境多变的海域,是一个形态学和生态学都具有多样性的类群,清晰而可靠的进化关系对于养殖与相关种类的管理具重要意义。然而,目前对双壳类宏观分子系统学研究的报道较少。研究用18S rRNA基因(18S)分析了双壳类3个亚纲贝类的系统发育关系。从GenBank下载帘蛤目、海螂目、贻贝目、胡桃蛤目、蚶目、珍珠贝目6个目94个种类的18S全/部分序列107个,通过ClustalX软件进行序列比对, 用MEGA4.1软件和PHyML软件计算遗传距离, 构建系统发育树, 研究了双壳类18S变异规律及其在系统发生研究中的应用。结果显示18S有插入/缺失序列, 存在长度多态性。序列比对显示有5段约30 70bp的保守区, 4段约130 550bp的高变区。碱基组成平均为T:24.4%, C:23.6%, A:24.5%, G:27.5%。G+C含量为51.1%。在1796个比对位点中, 变异位点占31.7%, 简约信息位点占24.0%。目内科间遗传距离为0.003 0.043, 目间遗传距离为0.026 0.093。NJ树和ML树显示贻贝目、珍珠贝目、胡桃蛤目、蚶目和海螂目的缝栖蛤科先分别聚为支持率很高(BPN=94 100)的单系支, 后聚为一大支(BPN=100)。蛤蜊科与帘蛤目的其他科分离形成一置信度很高的单系支(BPN=93)。帘蛤科种类聚为置信度较低(BPN=60)的一支。海螂目、帘蛤目的种类没能完全聚到所属支系, 彼此嵌套,缝栖蛤科的种类从海螂目中分离出来。18S资料揭示帘蛤目的蛤蜊科、海螂目的缝栖蛤科已经进化为独立的支系。  相似文献   

9.
Many scuticociliates are facultative parasites of aquatic organisms and are among the most problematic ciliate taxa regarding their systematic relationships. The main reason is that most species, especially taxa in the order Thigmotrichida have similar morphology and have not been studied yet using molecular methods. In the present work, two scuticociliate genera, represented by two rare parasitic species, Philasterides armatalis (order Philasterida) and Boveria subcylindrica (order Thigmotrichida), were studied, and phylogenetic trees concerning these two genera were constructed based on their 18 S rRNA gene sequences. The results indicate that: 1) Philasterides forms a sister group with Philaster, supporting the classification that these two genera belong to the family Philasteridae; 2) it is confirmed that the nominal species, Philasterides dicentrarchi Dragesco et al., 1995 should be a junior synonym of Miamiensis avidus as revealed by both previous investigations and the data revealed in the present work; and 3) the poorly known form B. subcylindrica, the only member in the order Thigmotrichida, of which molecular data are available so far, always clusters with Cyclidium glaucoma, a highly specialized scuticociliate, indicating a sister relationship between the orders Thigmotrichida and Pleuronematida.  相似文献   

10.
Cochliopodium is a very distinctive genus of discoid amoebae covered by a dorsal tectum of carbohydrate microscales. Its phylogenetic position is unclear, since although sharing many features with naked "gymnamoebae", the tectum sets it apart. We sequenced 18S ribosomal RNA genes from three Cochliopodium species (minus, spiniferum and Cochliopodium sp., a new species resembling C. minutum). Phylogenetic analysis shows Cochliopodium as robustly holophyletic and within Amoebozoa, in full accord with morphological data. Cochliopodium is always one of the basal branches within Amoebozoa but its precise position is unstable. In Bayesian analysis it is sister to holophyletic Glycostylida, but distance trees mostly place it between Dermamoeba and a possibly artifactual long-branch cluster including Thecamoeba. These positions are poorly supported and basal amoebozoan branching ill-resolved, making it unclear whether Discosea (Glycostylida, Himatismenida, Dermamoebida) is holophyletic; however, Thecamoeba seems not specifically related to Dermamoeba. We also sequenced the small-subunit rRNA gene of Vannella persistens, which constantly grouped with other Vannella species, and two Hartmannella strains. Our trees suggest that Vexilliferidae, Variosea and Hartmannella are polyphyletic, confirming the existence of two very distinct Hartmannella clades: that comprising H. cantabrigiensis and another divergent species is sister to Glaeseria, whilst Hartmannella vermiformis branches more deeply.  相似文献   

11.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

12.
Cui AM  Huang Y 《遗传》2012,34(5):597-608
为了构建稳健的直翅目主要类群间的系统发生关系并探讨16S rRNA基因序列在构建直翅目昆虫不同分类阶元系统发生关系时的可行性、功效以及性能,文章测定了直翅目4总科9科18种昆虫的16S rRNA基因全序列,联合已知该基因全序列的其他40种昆虫,构建了直翅目主要类群之间的系统发生关系,并分析了16SrRNA基因全序列的系统发生性能和功效。结果表明,直翅目昆虫的16S rRNA基因全长平均为1 310 bp;除生活方式特化的蚤蝼总科和蝼蛄总科的地位无法确定外,直翅目其他主要类群系统发生关系比较稳定;蝗总科下除了斑翅蝗科和槌角蝗科外,剑角蝗科、斑腿蝗科、网翅蝗科都不是单系群,且用不同的方法构建的系统发生树中聚类情况完全一致,各科间遗传距离差异不大,建议将其合为一科;锥头蝗科、瘤锥蝗科和癞蝗科间的遗传距离差异也不大;在构建系统发生树时,16S rRNA基因环区的信息量要比茎区的大;16S rRNA基因可以构建可靠的直翅目属与种水平和目与亚目高级阶元的系统发生关系,但对科和总科阶元缺乏足够的分辨力。  相似文献   

13.
Adult trematodes of the genus Gonocerca Manter, 1925, are parasites of marine fishes. Identification of the phylogenetic positions and a revision of the taxonomic status of the subfamily Gonocercinae Skrjabin et Guschanskaja, 1955 (Derogenidae) are the main purposes of this research article. Four Gonocerca species were used in the study, including the type-species G. phycidis Manter, 1925. Molecular phylogenetic analysis, based on partial sequences of 28S rRNA gene, revealed that Gonocerca spp. are phylogenetically distant from other hemiuroid trematodes, including Derogenes varicus (Müller, 1784), representative of the type-genus of the family Derogenidae. The taxonomic rank of Gonocercinae should be raised to the family level. The generic composition of the family Gonocercidae Skrjabin et Guschanskaja, 1955 stat. nov., requires further clarification as the molecular data do not support the inclusion of the genus Hemipera Nicoll, 1913, in this family.  相似文献   

14.
基于18S基因序列的姬小蜂分子系统发育   总被引:4,自引:0,他引:4  
本文基于18S rDNA部分序列,用MP和Baysian方法研究了姬小蜂科的系统发育,对姬小蜂科的单系性及其与其它小蜂科间的关系进行了讨论。姬小蜂亚科、灿姬小蜂亚科和啮姬小蜂亚科形成三个独立的支系,研究结果支持它们各自的单系性,但本结果没有明确姬小蜂科的单系性。研究结果同时还支持瑟姬小蜂族、扁股姬小蜂族和狭面姬小蜂族三个族的地位,但不支持姬小蜂族的地位。姬小蜂科的单系性及其与其它小蜂间的关系还需更多的形态学数据和更多的基因序列来进一步研究[动物学报52 (2) : 288 -301 , 2006]。  相似文献   

15.
为探讨柳蚕Actias selene Hübner与鳞翅目昆虫的系统发育关系,本研究利用PCR扩增获得了柳蚕核糖体18S rRNA和线粒体16S rRNA基因的部分序列,长度分别为391bp和428bp。并采用邻近距离法(NJ)、最大简约法(MP)、类平均聚类法(UPGMA)构建系统进化树。结果表明,柳蚕线粒体16SrRNA基因序列与大蚕蛾科昆虫的16SrRNA基因序列均表现出偏好于碱基AT的倾向。柳蚕与所研究的其它蚕类的遗传距离介于0.016至0.140之间,其中与温带柞蚕Antheraea roylii的遗传距离最小,与野桑蚕Bombyx mandarina的遗传距离最大。而基于鳞翅目昆虫18S rRNA基因部分序列的进化分析显示,柳蚕与柞蚕Antheraea pernyi之间的遗传距离最小(0.010),与蓖麻蚕Samia ricini的遗传距离最大(0.017)。  相似文献   

16.
李姝  王琦  李玉 《菌物学报》2013,32(4):764-770
为探讨不同地域的鳞钙皮菌Didymium squamulosum种内分子亲缘关系,通过PCR扩增鳞钙皮菌子实体及原质团DNA,得到SSU、ITS1-5.8S-ITS2 rRNA基因区域,并以SSU、5.8S rRNA基因片段构建NJ亲缘关系树。  相似文献   

17.
Malygin AA  Karpova GG 《FEBS letters》2010,584(21):4396-4400
After resolving the crystal structure of the prokaryotic ribosome, mapping the proteins in the eukaryotic ribosome is a challenging task. We applied RNase H digestion to split the human 40S ribosomal subunit into head and body parts. Mass spectrometry of the proteins in the 40S subunit head revealed the presence of eukaryote-specific ribosomal protein S28e. Recombinant S28e was capable of specific binding to the 3′ major domain of the 18S rRNA (Ka = 8.0 ± 0.5 × 109 M−1). We conclude that S28e has a binding site on the 18S rRNA within the 40S subunit head.

Structured summary

MINT-8044084: S8 (uniprotkb:P62241) and S19 (uniprotkb:P39019) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044095: S8 (uniprotkb:P62241), S19 (uniprotkb:P39019) and S13 (uniprotkb:P62277) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044024: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S21 (uniprotkb:P63220), S20 (uniprotkb:P60866), S26 (uniprotkb:P62854), S25 (uniprotkb:P62851), S12 (uniprotkb:P25398), S17 (uniprotkb:P08708), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263), S16 (uniprotkb:P62249) and S11 (uniprotkb:P62280) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044065: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263) and S16 (uniprotkb:P62249) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)  相似文献   

18.
Jondelius  Ulf 《Hydrobiologia》1998,383(1-3):147-154
Partial 18S rDNA sequences from 29 flatworms and 2 outgroup taxa were used in a cladistic analysis of the Platyhelminthes. Support for the clades in the resulting single most parsimonious tree was estimated through bootstrap analysis, jack-knife analysis and decay indices. The Acoelomorpha (Acoela and Nemertodermatida) were absent from the most parsimonious tree. The Acoela and the Fecampiidae form a strongly supported clade, the sister group of which may be the Tricladida. There is some support for monophyly of the rhabdocoel taxon Dalyellioida, previously regarded as paraphyletic. The sister group of the Neodermata remains unresolved. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Different hypotheses have been proposed on the phylogenetic relationships of branchiobdellidans and aphanoneurans among the Annelida based on the anatomical and embryological characters. The 18S ribosomal RNA gene sequences have been analyzed from representatives of the three major taxa of the Annelida plus the branchiobdellidans and aphanoneurans to assess their phylogenetic relationships to each other. In this preliminary study, all of the phylogenetic analyses show the branchiobdellidans as a sister group to the leeches, rather than the oligochaetes. The position of the aphanoneurans is stable as an independent taxon that evolved after the polychaetes branched from the evolutionary stem, but before the ancestral oligochaetes emerged.  相似文献   

20.
AIMS: To examine the diversity of protozoa in the rumen contents of cow. METHODS AND RESULTS: Protozoa that inhabit the rumen were detected by PCR using protozoan-specific primers. Libraries of protozoan rDNA sequences were constructed from rumen fluid, solid tissues and epithelium. Twenty-three clones isolated from rumen fluid fell into two genera identified as Entodinium (69.6% of clones) and Epidinium (31.4% of clones). Of the clones isolated from rumen fluid, a moderate number were unidentifiable (30.4%). CONCLUSIONS: The predominant protozoan genus identified in the whole rumen belonged to the Entodinium group (81.1%). Protozoa were not detected in the rumen epithelium. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that rumen fluid and solid tissues contain different protozoan populations that may play specific roles in rumen function. Quantitative PCR techniques and a more specific set of phylogenetic probes that distinguish between protozoan species are needed to determine the significance of newly identified groups and to determine the distribution of identified protozoan clusters in rumen microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号