首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Passive calcium influx is one of the theories to explain the cathodal galvanotaxis of cells that utilize the electric field to guide their motion. When exposed to an electric field, the intracellular fluid becomes polarized, leading to positive charge accumulation on the cathodal side and negative charge accumulation on the anodal side. The negative charge on the anodal side attracts extracellular calcium ions, increasing the anodal calcium concentration, which is supposed to decrease the mobile properties of this side. Unfortunately, this model does not capture the Ca2+ dynamics after its presentation to the intracellular fluid. The ions cannot permanently accumulate on the anodal side because that would build a potential drop across the cytoplasm leading to an ionic current, which would carry positive ions (not only Ca2+) from the anodal to the cathodal part through the cytoplasm. If the cytoplasmic conductance for Ca2+ is low enough compared to the membrane conductance, the theory could correctly predict the actual behavior. If the ions move through the cytoplasm at a faster rate, compensating for the passive influx, this theory may fail. This paper contains a discussion of the regimes of validity for this theory.  相似文献   

2.
Application of direct electric potentials across immobilized Volvox globator colonies produced patterns in the ambient solution that were observable by dark field microscopy by the use of polystyrene spheres in the medium. Two large elliptical swirls occurred immediately adjacent to the colony nearest the anode. A clear area developed outwards from the cathodal side of the colony. Since similar patterns were obtained with live, dead, and deflagellated colonies, it was assumed that the phenomena were purely physical. The electric potential induced an electroosmosis in the glass stimulation chamber. Live or dead colonies, immobilized by being secured with a glass coverslip, experienced an anodal movement of water and associated polystyrene spheres. The electroosmosis gave rise to solution patterns which were shown not to be the result of hydrostatic pressure (turbulence) or thermal convection currents. When anion-exchange beads were substituted for colonies in the stimulation chamber, application of the electric potential produced a smooth laminar flow around the positively charged beads. Cation-exchange beads, on the other hand, produced 2 large anodal swirl patterns. Clearly, the colony surface behaved like a weakly charged cation exchanger. Other investigators have determined that the cell walls of pond water plants and algae are negatively charged and have ion-exchange abilities. The negatively charged Volvox cell wall caused an electroosmosis in the colony, in the cathodal direction. Previous explanations for the galvanotaxis of Volvox are not adequate because they do not take into account the negatively charged cell wall.  相似文献   

3.
Electrophoresis and diffusion in the plane of the cell membrane.   总被引:6,自引:2,他引:4       下载免费PDF全文
Electrophoretic and diffusional movements of concanavalin A (Con A) receptors and acetylcholine (ACh) receptors in the plane of the plasma membrane of mononucleate, spherical Xenopus myoblasts were studied by microfluorimetry and iontophoresis. We found that (a) a uniform electric field of 10 V/cm applied along the cell surface produces a partial accumulation of both types of receptors toward the cathodal pole of the cell within 30 min: (b) post-field relaxation of the culture results in the complete recovery of the uniform distribution of the Con A receptors within 10 min; and (c) in contrast to the Con A receptor in general, accumulation of ACh receptors by the electric field results in the formation of stable, localized receptor aggregates. Theoretical analyses were carried out for the distribution of charged membrane receptors at equilibrium between electrophoresis and diffusion, and for the rate of back diffusion after the removal of the field. These analyses indicated that, at 22 degrees C, the average electrophoretic mobility of the electrophoretically mobile population of the Con A receptors is about 1.9 X 10(-3) micron/s per V/cm, while their average diffusion coefficient is 5.1 X 10(-9) cm2/s.  相似文献   

4.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   

5.
The electro-osmotic velocity is the velocity of a fluid near an interface produced by an electric field parallel to a surface. The velocity adjacent to fixed phospholipid bilayer membranes was measured by observing the velocity of small vesicles suspended in the fluid. The charge densities of the bilayers ranged from 0 to 1 electronic charge per lipid and experiments were performed at temperatures above and below the transition temperature of the phospholipid bilayer in 1, 10 and 100 mM NaCl solutions. The Helmholtz-Smoluchowski equation correctly predicted the electro-osmotic velocity from the known value of zeta potential of the phospholipid bilayer.  相似文献   

6.
The effects of different orientations of a Cadwell round magnetic coil (MC) were compared with each other and with surface electrical stimulation of motor cortex in monkeys anesthetized with pentobarbital or urethane. Recordings were made from within the lateral corticospinal tract, either from axonal populations or with a microelectrode from individual axons. A lateral-sagittally orientated MC directly excited corticospinal neurons at lower stimulus intensity than was required for indirect, i.e., transsynaptic excitation via inputs to corticospinal neurons. By contrast, in 2 out of 3 macaques tested, a vertex-tangential orientation could excite corticospinal neurons indirectly at lower intensities than were required for direct excitation; at higher intensities, direct excitation also occurred.The site of direct corticospinal excitation by a lateral-sagitally oriented MC was inferred by comparing the response variability and latency to MC and surface electrical stimuli. Cathodal stimuli elicited more variable corticospinal population responses and later individual axonal responses than were obtained with anodal stimuli. The variability in response is attributed to interaction between nearby, on-going synaptic bombardment and the stimulus, implying that surface cathodal stimuli directly activate corticospinal neurons at the spike trigger zone (presumably the initial segment). By contrast, the consistency and reduced latency of the corticospinal responses to surface anodal stimuli are attributed to the direct excitation of corticospinal fibers within the white matter. When the stimulus intensity is clearly above threshold, surface anodal and cathodal stimuli can activate corticospinal neurons both directly and indirectly.Direct corticospinal excitation by the MC can resemble the effects of either surface anodal or surface cathodal stimuli. We conclude that the MC can activate corticospinal neurons at the spike trigger zone or their fibers deeper in white matter. The findings in the monkey are used to interpret the effects of different MC orientations in the human.  相似文献   

7.
The surfaces of nine clinical isolates of Porphyromonas gingivalis, Prevotella intermedia, Actinobacillus actinomycetemcomitans, and Peptostreptococcus micros and that of laboratory strain P. gingivalis W83 were studied by using contact angle measurements, X-ray photoelectron spectroscopy, infrared spectroscopy, microelectrophoresis of whole cells, and transmission electron microscopy of whole and sectioned cells. P. intermedia strains were hydrophilic, as judged from their small water contact angles, and had highly negative zeta potentials, consistent with the presence of a prominent ruthenium red (RR)-staining layer and fibrillar appendages which are probably partly carbohydrate. The two clinical isolates of P. gingivalis were also hydrophilic and highly negatively charged despite the presence of prominent fibrils, which usually yield less negative zeta potentials. This finding suggests that the RR-staining layer dominates the suspension characteristics of P. gingivalis and P. intermedia strains. P. gingivalis W83 had no demonstrable fibrils and a morphologically distinct RR-staining layer, and it was more hydrophobic than the two clinical isolates of P. gingivalis. P. micros isolates were hydrophobic and much less negatively charged than the other species. The A. actinomycetemcomitans strains displayed long, prominent fibrils and a very thin RR-staining layer, which resulted in high hydrophobicity but distinctly different zeta potentials for the two. Physicochemical data on microbial cell surfaces usually have clear and predictable relationships with each other. For the strains in this study that did not follow these relationships, their aberrant behavior could be explained as due to a masking effect caused by specific surface architecture. We conclude that this combined analysis provides a detailed image of subgingival bacterial surface architecture.  相似文献   

8.
The surfaces of nine clinical isolates of Porphyromonas gingivalis, Prevotella intermedia, Actinobacillus actinomycetemcomitans, and Peptostreptococcus micros and that of laboratory strain P. gingivalis W83 were studied by using contact angle measurements, X-ray photoelectron spectroscopy, infrared spectroscopy, microelectrophoresis of whole cells, and transmission electron microscopy of whole and sectioned cells. P. intermedia strains were hydrophilic, as judged from their small water contact angles, and had highly negative zeta potentials, consistent with the presence of a prominent ruthenium red (RR)-staining layer and fibrillar appendages which are probably partly carbohydrate. The two clinical isolates of P. gingivalis were also hydrophilic and highly negatively charged despite the presence of prominent fibrils, which usually yield less negative zeta potentials. This finding suggests that the RR-staining layer dominates the suspension characteristics of P. gingivalis and P. intermedia strains. P. gingivalis W83 had no demonstrable fibrils and a morphologically distinct RR-staining layer, and it was more hydrophobic than the two clinical isolates of P. gingivalis. P. micros isolates were hydrophobic and much less negatively charged than the other species. The A. actinomycetemcomitans strains displayed long, prominent fibrils and a very thin RR-staining layer, which resulted in high hydrophobicity but distinctly different zeta potentials for the two. Physicochemical data on microbial cell surfaces usually have clear and predictable relationships with each other. For the strains in this study that did not follow these relationships, their aberrant behavior could be explained as due to a masking effect caused by specific surface architecture. We conclude that this combined analysis provides a detailed image of subgingival bacterial surface architecture.  相似文献   

9.
Directional cellular locomotion is thought to involve localized intracellular calcium changes and the lateral transport of cell surface molecules. We have examined the roles of both calcium and cell surface glycoprotein redistribution in the directional migration of two murine fibroblastic cell lines, NIH 3T3 and SV101. These cell types exhibit persistent, cathode directed motility when exposed to direct current electric fields. Using time lapse phase contrast microscopy and image analysis, we have determined that electric field-directed locomotion in each cell type is a calcium independent process. Both exhibit cathode directed motility in the absence of extracellular calcium, and electric fields cause no detectable elevations or gradients of cytosolic free calcium. We find evidence suggesting that galvanotaxis in these cells involves the lateral redistribution of plasma membrane glycoproteins. Electric fields cause the lateral migration of plasma membrane concanavalin A receptors toward the cathode in both NIH 3T3 and SV101 fibroblasts. Exposure of directionally migrating cells to Con A inhibits the normal change of cell direction following a reversal of electric field polarity. Additionally, when cells are plated on Con A- coated substrata so that Con A receptors mediate cell-substratum adhesion, cathode-directed locomotion and a cathodal accumulation of Con A receptors are observed. Immunofluorescent labeling of the fibronectin receptor in NIH 3T3 fibroblasts suggests the recruitment of integrins from large clusters to form a more diffuse distribution toward the cathode in field-treated cells. Our results indicate that the mechanism of electric field directed locomotion in NIH 3T3 and SV101 fibroblasts involves the lateral redistribution of plasma membrane glycoproteins involved in cell-substratum adhesion.  相似文献   

10.
《The Journal of cell biology》1990,111(6):3097-3116
The mouse mAb, mAb 327, that recognizes specifically both pp60v-src and pp60c-src in a wide variety of cells, has been used to determine precisely the various locations of pp60c-src in NIH c-src overexpresser cells, using the technique of immunofluorescence microscopy. In interphase cells, the protein exhibits two main distributions: one that appears uniform and in association with the cell surface and the other that is patchy and juxtanuclear and coincides with the centrosomes. The juxtanuclear aggregation of pp60c-src-containing patches depends on microtubules and does not seem to occur within the Golgi apparatus and the rough ER. At the G2-to-M-phase transition, a drastic change in the localization patterns of pp60c-src takes place. We also report experiments in which the NIH c-src overexpresser cells were exposed to Con A for various times to induce a redistribution of the cell surface Con A receptors. We show that, at each stage of the Con A-mediated endocytotic process, the Con A-receptor complexes redistribute into structures to which pp60c-src appears also to be associated: at first, into patches that form at the cell surface level and then, into a cap that stands at the cell center in a juxtanuclear position and that coincides with the Golgi apparatus. During this capping process, pp60c- src-containing vesicles continue to accumulate in a centriolar spot, as in interphase, Con A-untreated cells, from which Con A is excluded. The significance of the intracellular locations of pp60c-src to the possible functions of the protein is discussed. Also, the distribution patterns of the cellular protein in the NIH c-src overexpresser cells are compared with those of pp60v-src in RSV-transformed cells. The differences observed are discussed in relation with the differences in transforming capacities of the two proteins. Finally, the possible physiological significance of the association between pp60c-src and the structures generated after the binding of Con A to its surface receptors is addressed.  相似文献   

11.
Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person’s visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants’ tendency to adopt another’s point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males’ responses to threatening faces whereas it interferes with the ability to adopt another’s viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.  相似文献   

12.
We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.  相似文献   

13.
The mechanisms of nerve conduction block induced by direct current (DC) were investigated using a lumped circuit model of the myelinated axon based on Frankenhaeuser–Huxley (FH) model. Four types of nerve conduction block were observed including anodal DC block, cathodal DC block, virtual anodal DC block, and virtual cathodal DC block. The concept of activating function was used to explain the blocking locations and relation between these different types of nerve block. Anodal/cathodal DC blocks occurred at the axonal nodes under the block electrode, while virtual anodal/cathodal DC blocks occurred at the nodes several millimeters away from the block electrode. Anodal or virtual anodal DC block was caused by hyperpolarization of the axon membrane resulting in the failure of activating sodium channels by the arriving action potential. Cathodal or virtual cathodal DC block was caused by depolarization of the axon membrane resulting in inactivation of the sodium channel. The threshold of cathodal DC block was lower than anodal DC block in most conditions. The threshold of virtual anodal/cathodal blocks was about three to five times higher than the threshold of anodal/cathodal blocks. The blocking threshold was decreased with an increase of axonal diameter, a decrease of electrode distance to axon, or an increase of temperature. This simulation study, which revealed four possible mechanisms of nerve conduction block in myelinated axons induced by DC current, can guide future animal experiments as well as optimize the design of electrodes to block nerve conduction in neuroprosthetic applications.  相似文献   

14.
Slight increases or decreases in calcium ions in solutions which supported the growth of Volvox globator colonies caused the colonies to fall to the bottoms of their containers. High speed cinematography (600 frames/sec) showed that the flagella beat normally (21/sec) in balanced electrolyte solutions which have calcium concentrations between 0.5 and 1.0 mM. When colonies were placed in 10.0 or 0.0 mM CaCl2 solutions, flagellar beating disappeared within 1 hr. The cessation of flagellar beating was reversible when colonies were replaced in the balanced solution. The Volvox cell wall has been shown to be a fairly good cation-exchanger with calcium ions acting as the counterion to the fixed negative change. Colonies that were photopositive and gave a cathodal galvanotaxis responded to DC electrical potentials by producing solution patterns that were indicators of colony electronegativity. Colony resistance to electroosmotic flow was compared in potassium and calcium solutions. When colonies were placed in darkness for 24 hr and stimulated by DC electrical potentials, their cation-exchange properties became reduced and the cell walls appeared thinner. Application of a high DC electrical potential to dark-adapted colonies caused the colonies to shrink on their anode sides (anodal contraction). Other workers have found that the flagella on the anodal sides of dark-adapted colonies ceased beating during DC electrical stimulation. It is hypothesized that the electric current caused an increase of calcium ions on the anodal side of the colony that inhibited the flagellar mechanism of beating on that side. It is also hypothesized that the galvanotaxis associated with light-adapted (photopositive) colonies was due to calcium displacements in the colony cell walls that affected the flagellar beating on both sides of the colony.  相似文献   

15.
Vertical starch-gel electrophoresis at pH 8.6 revealed extensive hemoglobin multiplicity with several distinct cathodal and anodal hemoglobin components. Anodal hemoglobin components are present throughout the life cycle of the king salmon. Additional cathodal components are found in the adult fish. Cathodal hemoglobin components exhibited a higher oxygen affinity (P50 = 10.2 mm at 13 degrees C, pH 7.3) than the anodal hemoglobin components (P50 = 21.8 mmHg at 13 degrees C). Oxygen binding of the anodal hemoglobins are sensitive to pH, temperature, organic phosphates (ATP and GTP), as well as, ionic strength; binding of oxygen to the cathodal hemoglobins is independent of pH and not affected by organic phosphates. Anodal hemoglobin components are less resistant to thermal denaturation over the pH 6.0 to 8.0 range. Isothermal urea denaturation of separated anodal and cathodal hemoglobin fractions of the king salmon indicate inherent differences in the stabilization energies of these hemoglobins. Autoxidation of these hemoglobins occurs around pH 7.0 and below, as well as, in the presence of increasing Cl- concentrations.  相似文献   

16.
One of the major limitations in gene therapy is an inability of naked siRNA to passively diffuse through negatively charged cell membranes. Therefore, the siRNA transport into a cell requires efficient carriers. In this work we analyzed the charge-dependent interaction of the complexes of cationic carbosilane dendrimers (CBD) and anti-HIV siRNA (dendriplexes) with the model membranes - large unilamellar vesicles (LUV). We used the second generation of branched with CBD carbon-silicon bonds (CBD-CS) which are water-stable and that of oxygen-silicon bonds (CBD-OS) which are slowly hydrolyzed in aqueous solutions. The LUVs were composed of zwitterionic dimyristoylphosphatidylcholine (DMPC), negatively charged dipalmitoylphosphatidylglycerol (DPPG) and their mixture (DMPC/DPPG, molar ratio 7:3). The interaction of dendriplexes with LUVs affected both zeta potential and size of the vesicles. The changes of these values were larger for the negatively charged LUV. CBD-CS resulted in the decrease of zeta potential values to more negative ones, whereas an opposite effect took place for CBD-OS suggesting a different kind of interaction between LUVs and the dendriplexes. The results indicate that both CBD-CS and CBD-OS can be used for transport of siRNA into the cells. However, CBD-CS are preferred due to a better stability in water and improved bioavailability of siRNA on their surface.  相似文献   

17.
Summary Isolated competent amphibian ectoderm differentiates into neural (archencephalic) structures when treated with the plant lectin concanavalin A (Con A). While the inner ectoderm layer ofXenopus laevis forms brain structures after incubation with Con A, the outer ectoderm layer differentiates into ciliated epidermis only. This difference can be correlated with the pattern of Con A bound to the plasma membrane. With gold-labelled Con A it could be shown by transmission electron microscopy (TEM) that the outer ectoderm binds substantially less lectin than the inner layer. Furthermore we observed characteristic differences at the apical and basal surfaces of the cells of the same layer, i.e. on the apical cell surface of the superficial layer almost no Con A-gold could be found. In contrast, we observed a lot of gold particles on the basal cell side of the superficial layer. However, the number on both surfaces (apical and basal side of the cell) of the inner ectoderm layer was essentially higher, which could explain its biological reaction to the Con A stimulus and the differentiation into neural structures. The data presented in this paper indicate that early and late gastrula ectoderm bind similar amounts of Con A and support the view that the decrease in competence is not correlated with a loss of receptors for inducing factors. Furthermore, we describe the binding and the internalization of Con A via receptor-mediated endocytosis and the further fate of the Con A-gold-receptor complex inside the target cell.  相似文献   

18.
Summary The proteins of three anodal Gc1 variants, Gc 1A16, 1A11, and 1A17, are characterized by the most acidic isoelectric points observed so far among the different Gc mutants. Stepwise removal of N-acetylneuraminic acid (NANA) by treatment with neuraminidase was performed to estimate the degree of sialilation of these Gc variants. The results indicate that both proteins, the anodal and the cathodal component of these Gc 1 mutants, carry sialic acid residues. This observation is remarkable in so far as usually only the anodal component of the Gc 1 protein contains NANA and only a single residue. From the experiments carried out it can be deduced that Gc 1A16 has two NANA residues in the anodal and one NANA residue in the cathodal component. Gc 1A16 was found in four members of three generations in a Danish family; the variant segregated as a Mendelian trait. More difficult to interprete are the results obtained with the variants Gc 1A11 and Gc 1A17. Gc 1A11 probably has three NANA residues in the anodal and two NANA residues in the cathodal component. Gc 1A11 has been observed in two mother-child pairs and is presumably also a simple genetic trait. Gc 1A17 has also several NANA residues in both Gc proteins; it is suggested that the anodal component has either three or four NANA residues and the cathodal component either two or three NANA residues. Family information on this variant is not yet available.  相似文献   

19.
Transcranial direct current stimulation (tDCS) has been used as a useful interventional brain stimulation technique to improve unilateral upper-limb motor function in healthy humans, as well as in stroke patients. Although tDCS applications are supposed to modify the interhemispheric balance between the motor cortices, the tDCS after-effects on interhemispheric interactions are still poorly understood. To address this issue, we investigated the tDCS after-effects on interhemispheric inhibition (IHI) between the primary motor cortices (M1) in healthy humans. Three types of tDCS electrode montage were tested on separate days; anodal tDCS over the right M1, cathodal tDCS over the left M1, bilateral tDCS with anode over the right M1 and cathode over the left M1. Single-pulse and paired-pulse transcranial magnetic stimulations were given to the left M1 and right M1 before and after tDCS to assess the bilateral corticospinal excitabilities and mutual direction of IHI. Regardless of the electrode montages, corticospinal excitability was increased on the same side of anodal stimulation and decreased on the same side of cathodal stimulation. However, neither unilateral tDCS changed the corticospinal excitability at the unstimulated side. Unilateral anodal tDCS increased IHI from the facilitated side M1 to the unchanged side M1, but it did not change IHI in the other direction. Unilateral cathodal tDCS suppressed IHI both from the inhibited side M1 to the unchanged side M1 and from the unchanged side M1 to the inhibited side M1. Bilateral tDCS increased IHI from the facilitated side M1 to the inhibited side M1 and attenuated IHI in the opposite direction. Sham-tDCS affected neither corticospinal excitability nor IHI. These findings indicate that tDCS produced polarity-specific after-effects on the interhemispheric interactions between M1 and that those after-effects on interhemispheric interactions were mainly dependent on whether tDCS resulted in the facilitation or inhibition of the M1 sending interhemispheric volleys.  相似文献   

20.
Electrostatic charge of approximately -10 kv was produced by friction on polystyrene food container samples. This charge quickly decayed to a lower, more stable, level. Exposure of samples to positively charged red and negatively charged green fluorescent particles resulted in a particle-distribution pattern on the plastic surface. The dynamic attraction of fluorescent particles was illustrated by time-lapse photography. Similar distribution patterns of airborne bacterial spores were shown to develop. In controlled bacterial aerosol exposure tests, an increase in surface contamination of the plastic samples was found to be quantitatively related to an increase in negative electrostatic charge on the plastic. Static charge was found to accumulate on plastic food containers during their manufacture, and to remain indefinitely on many of the finished products. This charge was of the intensity and polarity to attract positively charged bacterial cells if such particles were present in the air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号