首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R C Rubenstein  M E Linder  E M Ross 《Biochemistry》1991,30(44):10769-10777
The selective regulation of Gs (long and short forms), Gi's (1, 2, and 3), and Go by the beta-adrenergic receptor was assessed quantitatively after coreconstitution of purified receptor, purified G-protein beta gamma subunits, and individual recombinant G-protein alpha subunits that were expressed in and purified from Escherichia coli. Receptor and beta gamma subunits were incorporated into phospholipid vesicles, and the alpha subunits bound to the vesicles stoichiometrically with respect to beta gamma. Efficient regulation of alpha subunit by receptor required the presence of beta gamma. Regulation of G proteins was measured according to the stimulation of the initial rate of GTP gamma S binding, steady-state GTPase activity, and equilibrium GDP/GDP exchange. The assays yielded qualitatively similar results. GDP/GDP exchange was a first-order reaction for each subunit. The rate constant increased linearly with the concentration of agonist-liganded receptor, and the dependence of the rate constant on receptor concentration was a reproducible measurement of the efficiency with which receptor regulated each G protein. Reconstituted alpha s (long or short form) was stimulated by receptor to approximately the extent described previously for natural Gs. Both alpha i,1 and alpha i,3 were regulated with 25-33% of that efficiency. Stimulation of alpha o and alpha i,2 was weak, and stimulation of alpha o was barely detectable over its high basal exchange rate. Reduction of the receptor with dithiothreitol increased the exchange rates for all G proteins but did not alter the relative selectivity of the receptor.  相似文献   

2.
The molybdenum-iron protein of Azotobacter vinelandii nitrogenase was separated into two subunits of equal concentration by ion exchange chromatography on sulfopropyl (SP) Sephadex at pH 5.4 in 7 M urea. Better than 90% yield of each subunit was obtained on a preparative scale if the reduced carboxymethylated molybdenum-iron protein was incubated at 45 degrees C for 45 min prior to chromatography. Without the heating step low yields of the subunits were obtained. Although the amino acid compositions of the two subunits were very similar, the NH2-terminal sequences were completely different as determined by automated sequential Edman degradation. The sequence for the alpha subunit was NH2-Ser-Gln-Gln-Val-Asp-Lys-Ile-Lys-Ala-Ser-Tyr-Pro-Leu-Phe-Leu-Asp-Gln-Asp-Tyr- and for the beta subunit the sequence was NH2-Thr-Gly-Met-Ser-Arg-Glu-Glu-Val-Glu-Ser-Leu-Ile-Gln-Glu-Val-Leu-Glu-Val-Tyr-. Likewise the COOH-terminal sequences for the two subunits, as determined with carboxypeptidase Y, were tota-ly different. The sequence for the alpha subunit was -Leu-Arg-Val-COOH and that for the beta subunit was -Ile-(Phe, Glu)-Ala-Phe-COOH. Radioautographs of tryptic peptide maps were prepared for the molybdenum-iron protein and the two subunits which had been labeled at the cysteinyl residues with iodo[2-14C]acetic acid. These maps indicated that the two subunits had no cysteinyl peptides in common and that the cysteinyl residues were clustered in both subunits.  相似文献   

3.
The pyridine nucleotide transhydrogenase (PNT) of Escherichia coli consists of two different subunits (alpha and beta) and assembles as a tetramer (alpha 2 beta 2) in the inner membrane. The pnt genes from E. coli have been cloned on a multicopy plasmid resulting in high level expression of the enzyme activity. We have studied the influence of the different segments of the polypeptide chains of the alpha and beta subunits on the assembly and function of the enzyme by constructing a series of deletion mutants for both of the subunits. Our results show that the assembly of the beta subunit is contingent upon the insertion of the alpha subunit into the membrane, while the alpha subunit can assemble independently of the beta subunit. All deletions constructed for the cytosolic portion of the alpha subunit gave no incorporation of the alpha subunit and, as a consequence, of the beta subunit, also. Of the four membrane-spanning regions of the alpha subunit, the last two were indispensable, while the deletion of the first two still allowed the association of alpha as well as of the beta subunit with the membrane. However, the enzyme was not functional. The two subunits were also loosely associated as mild detergent treatment released them from the membrane in contrast with the wild-type enzyme. Deletions within the beta subunit had little effect on the assembly of the alpha subunit, although less was incorporated. All deletions involving the cytosolic portion of the beta subunit resulted in loss of incorporation into the membrane. Of the eight membrane-spanning regions of the beta subunit, the deletion of regions 2-3, 2-4, 2-6, and 2-7 yielded significant association of both the subunits with the membrane. However, none of these mutants assembled a functional enzyme, and again the two subunits were loosely associated with the membrane. Based on the stringent requirement of the cytosolic portions of alpha and beta subunits for assembly, a model is proposed that suggests interactions between these two regions must occur prior to assembly.  相似文献   

4.
Purification and characterization of apolipoprotein J   总被引:11,自引:0,他引:11  
Apolipoprotein J (apoJ), a unique 70-kDa component of high density lipoproteins in human plasma, consists of two disulfide-linked subunits designated apoJ alpha (34-36 kDa), and apoJ beta (36-39 kDa) which share pI values of 4.9-5.4 and which are recognized by a monoclonal antibody (mAb) 11. ApoJ and its subunits were purified to homogeneity from plasma by a combination of immunoaffinity chromatography, using mAb11 linked to Affi-Gel, and reverse-phase high performance liquid chromatography. ApoJ alpha and apoJ beta are both glycoproteins. When deglycosylated, the molecular mass of apoJ alpha is 24 kDa and that of apoJ beta is 28 kDa, suggesting that approximately 30% of the mass of each subunit is carbohydrate. The amino acid compositions of apoJ alpha and apoJ beta are very similar; however, the sequences of the first 30-amino acid residues are distinct. A comparison of peptide maps suggests that apoJ alpha and apoJ beta are not identical but share limited regions of homology. This possibility is supported by immunochemical data. Five additional mAb specific for apoJ were characterized. One of the mAb, like mAb11, reacts with both apoJ alpha and apoJ beta; the others react with apoJ alpha only. All mAb, including those which recognize both apoJ alpha and apoJ beta and those which recognize apoJ alpha only, immunoprecipitate a approximately 50-kDa protein synthesized from a liver mRNA template translated in a rabbit reticulocyte lysate. We propose that the apoJ alpha and apoJ beta subunits, which have limited homology, are derived by proteolytic cleavage of a common precursor.  相似文献   

5.
The alpha and beta subunits of human follitropin were isolated in a high state of purity. The tryptophan fluorescence of the native hormone and the isolated beta subunit are different. The N-terminus of the alpha and beta subunits was identified as valine and aspartic acid respectively. While recombination of the isolated alpha and beta subunits restores the electrophoretic mobility of the intact hormone, its receptor binding activity cannot be fully regenerated. Substitution of the human follitropin alpha by an ovine lutropin alpha subunit, to form a recombinant with the follitropin beta subunit, generates a complex with 2-3 receptor binding activity of the native human follitropin and the same activity as ovine follitropin. Acylation of the intact hormone does not disrupt the quaternary structure but leads to complete inactivation. Acylation studies with the subunits suggests the crucial role of the epsilon-amino groups of the alpha subunit in determining biological activity.  相似文献   

6.
Antibodies to the alpha and beta 2 subunits and site-directed antibodies that distinguish alpha subunits of the RI and RII subtypes have been used to study the biosynthesis and assembly of sodium channels. The RII sodium channel subtype is preferentially expressed in rat brain neurons in primary cell culture. Post-translational processing of alpha subunits includes incorporation of palmityl residues in thioester linkage and sulfate residues attached to oligosaccharides. The incorporation of [3H] palmitate into alpha subunits is inhibited by tunicamycin, indicating that it occurs in the early stages of biosynthesis but after co-translational glycosylation. Mature alpha subunits are attached to beta 2 subunits through disulfide bonds within 1 h after synthesis and up to 30% can be specifically immunoprecipitated from the cell surface with antibodies against the beta 2 subunits by 4 h after synthesis. The remaining alpha subunits remain in an intracellular pool. The alpha subunits synthesized in the presence of castanospermine and swainsonine have reduced apparent size. Castanospermine prevents incorporation of approximately 81% of the sialic acid of the alpha subunit and inhibits sulfation but not palmitylation. Although inhibition of glycosylation with tunicamycin blocks assembly of functional sodium channels, castanospermine and swainsonine do not prevent the covalent assembly of alpha and beta 2 subunits or the transport of alpha beta 2 complexes to the cell surface, and sodium channels synthesized under these conditions have normal affinity for saxitoxin. Thus, the extensive processing and terminal sialylation of oligosaccharide chains during maturation of the alpha subunit is not essential. A kinetic model for biosynthesis, processing, and assembly of sodium channel subunits is presented.  相似文献   

7.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

8.
We have expressed the alpha4beta3delta and alpha4beta3gamma2L subtypes of the rat GABAA receptor in Xenopus oocytes and have investigated their agonist activation properties. GABA was a more potent agonist of the alpha4beta3delta receptor (EC50 approximately 1.4 micromol/L) than of the alpha4beta3gamma2L subtype (EC50 approximately 27.6 micromol/L). Other GABAA receptor agonists (muscimol, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, imidazole-4-amino acid) displayed similar subtype selectivity. The structural determinants underlying these differences have been investigated by co-expressing chimeric delta/gamma2L subunits with alpha4 and beta3 subunits. A stretch of amino acids in the delta subunit, S238-V264, is shown to play an important role in determining both agonist potency and the efficacies of full or partial agonists. This segment includes transmembrane domain 1 and the short intracellular loop that leads to the second transmembrane domain. The effects of the competitive antagonists, bicuculline and SR95531, and the channel blocker, picrotoxin, were not significantly affected by the incorporation of chimeric subunits. As the delta and gamma2L subunits have not been previously implicated directly in agonist binding, we suggest that the effects are likely to arise from changes in the transduction mechanisms that link agonist binding to channel activation.  相似文献   

9.
This study determined whether all protein kinase A (PKA) and protein kinase C (PKC) phosphorylation sites on the alpha4 subunit of rat alpha4beta2 neuronal nicotinic receptors could be localized to the M3/M4 cytoplasmic domain of the protein, and investigated specific amino acid substrates for the kinases through two-dimensional phosphopeptide mapping and site-directed mutagenesis. Experiments were conducted using alpha4beta2 receptors expressed in Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(333-594) ). When oocytes expressing alpha4beta2 receptors were incubated with [(32) P]orthophosphate in order to label endogenous ATP stores, phosphorylation of alpha4 subunits was evident. Incubation of either immunoprecipitated receptors or the fusion protein with [(32) P]ATP and either PKA or PKC followed by trypsinization of the samples demonstrated that the kinases phosphorylated alpha4 subunits on multiple phosphopeptides, and that the phosphorylated full-length alpha4 protein and fusion protein produced identical phosphopeptide maps. Site-directed mutagenesis of Ser365, Ser472 and Ser491 to alanines in the fusion protein eliminated phosphopeptides phosphorylated by PKA, but not by PKC. Other mutations investigated, Ser470, Ser493, Ser517 and Ser590, did not alter the phosphopeptide maps. Results indicate that Ser365, Ser472 and Ser491 on neuronal nicotinic receptor alpha4 subunits are phosphorylated by PKA and are likely to represent post-translational regulatory sites on the receptor.  相似文献   

10.
The membrane proximal regions of integrin alpha and beta subunits are highly conserved in evolution. In particular, all integrin alpha subunits share the KXGFFKR sequence at the beginning of their cytoplasmic domains. Previous work has shown that this domain is important in integrin receptor assembly. Using chimeric integrin alpha and beta subunits, we show that the native cytoplasmic domains of both subunits must be present for efficient assembly. Most strikingly, chimeric alpha 1 and beta 1 subunits with reciprocally swapped intracellular domains dimerize selectively into collagen IV receptors expressed at high levels on the surface. However, these receptors, which bind ligand efficiently, are deficient in a variety of post-ligand binding events, including cytoskeletal association and induction of tyrosine phosphorylation. Furthermore, deletion of the distal alpha cytoplasmic domain in the swapped heterodimers leads to ligand-independent focal contact localization, which also occurs in wild-type subunits when the distal cytoplasmic domain is deleted. These results show that proper integrin assembly requires opposed alpha and beta cytoplasmic domains, and this opposition prevents ligand-independent focal contact localization. Our working hypothesis is that these two domains may associate during receptor assembly and provide the mechanism for integrin receptor latency.  相似文献   

11.
Conditions are described to characterize and estimate the precursors of porcine LH alpha and beta subunits and indirectly their specific mRNAs. Poly(A) RNAs extracted from castrated male pig anterior pituitaries were translated in a wheat-germ system in the presence of [35S] cysteine and [35S] methionine. The translation products were precipitated by antisera directed against reduced and carboxymethylated LH alpha and beta subunits and analyzed by high resolution electrophoresis. It is shown that the precursors of pLH alpha and beta subunits are located in two distinct congruent to 15 K proteins and represent--on the basis of the incorporation of the [35S] labeled aminoacids into proteins--congruent to 0.12% and 0.05% respectively of the total translation products. It is suggested that in the pig, as in other species, the LH alpha and beta subunits are encoded by two distinct mRNAs, and at variance with other species the leader sequence of LH alpha mRNA is longer than that of LH beta mRNA.  相似文献   

12.
Myristyl and palmityl acylation of the insulin receptor   总被引:18,自引:0,他引:18  
The presence of covalently bound fatty acids in the insulin receptor has been explored in cultured human (IM-9) lymphocytes. Both alpha (Mr = 135,000) and beta (Mr = 95,000) subunits of the receptor incorporate [3H]myristic and [3H]palmitic acids in a covalent form. The effects of alkali and hydroxylamine on the labeled subunits indicate the existence of two different kinds of fatty acid linkage to the protein with chemical stabilities compatible with amide and ester bonds. The alpha subunit contains only amide-linked fatty acid while the beta subunit has both amide- and ester-linked fatty acids. Analysis by high performance liquid chromatography after acid hydrolysis of the [3H]myristate- and [3H]palmitate-labeled subunits demonstrates the fatty acid nature of the label. Furthermore, both [3H]myristic and [3H]palmitic acids are found attached to the receptor subunits regardless of which fatty acid was used for labeling. The incorporation of fatty acids into the insulin receptor is dependent on protein synthesis and is also detectable in the Mr = 190,000 proreceptor form. Fatty acylation is a newly identified post-translational modification of the insulin receptor which may have an important role in its interaction with the membrane and/or its biological function.  相似文献   

13.
Neuronal nicotinic acetylcholine receptors (nAChRs) are pentamers composed of alpha and beta subunits. Different molecular compositions of these subunits constitute various receptor subtypes that are implicated in the pathophysiology and/or treatment of several disease states but are difficult to distinguish pharmacologically. Alpha-conotoxins are a group of small, structurally defined peptides that may be used to molecularly dissect the nAChR-binding site. Heteromeric nAChRs generally contain either a beta2 or beta4 subunit in addition to an alpha subunit at the ligand-binding interface. Alpha-conotoxin BuIA kinetically distinguishes between beta2- and beta4-containing nAChRs, with long off times for the latter. Mutational studies were used to assess the influence of residues that line the putative acetylcholine-binding pocket but differ between beta2 and beta4 subunits. Residues Thr/Lys59, Val/Ile111, and Phe/Gln119 of the respective beta2 and beta4 subunits are critical to off-rate differences. Among these residues, Thr59 of nAChR beta2 may interfere with effective access to the binding site, whereas Lys59 may facilitate this binding.  相似文献   

14.
K Prasad  J H Keen 《Biochemistry》1991,30(22):5590-5597
The clathrin assembly protein complex AP-2 is a multimeric subunit complex consisting of two 100-115-kDa subunits known as alpha and beta and 50- and 16-kDa subunits. The subunits have been dissociated and separated by ion-exchange chromatography in 7.5 M urea. Fractions highly enriched in either the alpha or beta subunit were obtained. The alpha fraction interacted with clathrin as evidenced by its ability to bind to preassembled clathrin cages. It also reacted with dissociated clathrin trimers under conditions that favor assembly of coat structures, but did not yield discrete clathrin polygonal lattices. The enriched beta fraction (containing small amounts of alpha) reacted with clathrin to yield intact coats with the incorporation of approximately equivalent amounts of alpha and beta subunits into the polymerized species; excess free beta subunit was unreactive. The AP-2 complex was also completely dissociated in a highly denaturing solvent, 6 M Gdn.HCl, and the constituent subunits of 100-115, 50, and 16 kDa were separated by gel filtration. In a coassembly assay with clathrin, the clathrin polymerizing activity was exclusively associated with the 100-kDa subunit fraction with stoichiometric incorporation of both alpha and beta subunits of 100 kDa into the polymerized coats, and with no requirement for 50- or 16-kDa subunits. These observations demonstrate that the assembly activity of the complex is associated with the alpha and beta subunits and suggest that both subunits, through independent interactions with clathrin, are required for expression of complete lattice assembly activity.  相似文献   

15.
Neff S  Mason PW  Baxt B 《Journal of virology》2000,74(16):7298-7306
We have previously reported that Foot-and-mouth disease virus (FMDV), which is virulent for cattle and swine, can utilize the integrin alpha(v)beta(3) as a receptor on cultured cells. Since those studies were performed with the human integrin, we have molecularly cloned the bovine homolog of the integrin alpha(v)beta(3) and have compared the two receptors for utilization by FMDV. Both the alpha(v) and beta(3) subunits of the bovine integrin have high degrees of amino acid sequence similarity to their corresponding human subunits in the ectodomains (96%) and essentially identical transmembrane and cytoplasmic domains. Within the putative ligand-binding domains, the bovine and human alpha(v) subunits have a 98.8% amino acid sequence similarity while there is only a 93% similarity between the beta(3) subunits of these two species. COS cell cultures, which are not susceptible to FMDV infection, become susceptible if cotransfected with alpha(v) and beta(3) subunit cDNAs from a bovine or human source. Cultures cotransfected with the bovine alpha(v)beta(3) subunit cDNAs and infected with FMDV synthesize greater amounts of viral proteins than do infected cultures cotransfected with the human integrin subunits. Cells cotransfected with a bovine alpha(v) subunit and a human beta(3) subunit synthesize viral proteins at levels equivalent to those in cells expressing both human subunits. However, cells cotransfected with the human alpha(v) and the bovine beta(3) subunits synthesize amounts of viral proteins equivalent to those in cells expressing both bovine subunits, indicating that the bovine beta(3) subunit is responsible for the increased effectiveness of this receptor. By engineering chimeric bovine-human beta(3) subunits, we have shown that this increase in receptor efficiency is due to sequences encoding the C-terminal one-third of the subunit ectodomain, which contains a highly structured cysteine-rich repeat region. We postulate that amino acid sequence differences within this region may be responsible for structural differences between the human and bovine beta(3) subunit, leading to more efficient utilization of the bovine receptor by this bovine pathogen.  相似文献   

16.
17.
Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking alpha (alpha2-alpha4, alpha6) and beta (beta2, beta4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (beta4_alpha2, beta4_alpha3, beta4_alpha4, and beta2_alpha4) when coexpressed with the corresponding beta monomer subunit. All tandems expressed when injected alone, except for beta4_alpha3, which produced functional channels only together with beta4 monomer and was chosen for further characterization. These channels produced from beta4_alpha3 tandem constructs plus beta4 monomer were identical with receptors expressed from monomer alpha3 and beta4 constructs in acetylcholine sensitivity and in the number of alpha and beta subunits incorporated in the channel gate. However, separately mutating the beta subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of beta subunits from the tandem and one from the beta monomer construct, whereas the rest incorporated two or three beta monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.  相似文献   

18.
The receptor on human neutrophils (polymorphonuclear leukocytes or PMN) that mediates cellular adherence has been purified from the peripheral blood PMN obtained from an individual with chronic myelogenous leukemia (CML). This receptor consists of two noncovalently associated subunits, designated alpha M (Mac-1 alpha, CD11b) (Mr = 170,000) and beta (Mac-1 beta, CDw18) (Mr = 100,000), respectively, which are identical on normal and CML PMN. The subunits were purified by monoclonal antibody 60.1-Sepharose (anti-alpha M) affinity chromatography and separated in 5-nmol quantities by high pressure liquid chromatography on a TSK-4000 gel filtration column. Subunits were characterized by amino acid composition, NH2-terminal amino acid sequence, and carbohydrate content. The NH2-terminal sequence of the human PMN alpha M subunit contains regions of homology with the human platelet glycoprotein IIb alpha. We conclude that nanomole amounts of individual alpha M and beta subunits of the receptor on human PMN that mediates cellular adherence can be isolated and separated using CML PMN.  相似文献   

19.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

20.
The two types of subunits alpha and beta constitutive of yeast phosphofructokinase have been separated by ion-exchange chromatography under denaturating conditions. Amino acid analysis and peptide mapping were performed on the isolated subunits. The frequence of most of the amino acids significantly differs between the two types of polypeptide chains. Moreover, tryptic peptide maps of alpha and beta subunits are clearly not superimposable. These chemical differences seem sufficient to account for the distinct catalytic and regulatory functions of beta and alpha subunits in the yeast phosphofructokinase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号