首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unicellular alga Euglena gracilis Klebs `Z' converted exogenous indole-3-ethanol (trytophol) to two major metabolites: tryptophol galactoside and an unknown compound, and to minor amounts of indole-3-acetic acid, tryptophol acetate, and tryptophol glucoside. The unknown was hydrolyzed to tryptophol by methanolic ammonia and should therefore be a tryptophol ester. The galactoside was identified as 2-(indol-3-yl)ethyl-β-d-galactopyranoside. This structure was established by comparison with an authentic standard involving chromatographic methods, ultraviolet and mass spectroscopy, enzymic and acid hydrolysis, and identification of the galactose in the hydrolysate. By forming tryptophol galactoside, Euglena differs from the higher plants examined so far, for which the corresponding glucoside is the only sugar conjugate of tryptophol detected.  相似文献   

2.
Summary Tryptamine was converted by etiolated pea seedlings into IAA, tryptophol, and an appreciable amount of an unknown metabolite. This latter compound was characterised by TLC and electrophoresis and identified, by mass spectrometry and enzymatic cleavage, as tryptophol glycoside: indole-3-ethyl--d-glycopyranoside.Abbreviations IAA indole-3-acetic acid - IAAld indole-3-acetaldehyde - TOH tryptophol - TO-glc tryptophol glucoside  相似文献   

3.
《Phytochemistry》1986,25(11):2457-2461
2,6-Dihydroxyacetophenone and five structurally related compounds were tested for their effects on metabolism of[2-14C]IAA in stem segments of 3-week-old American germander (Teucrium canadense). Pre-treatment of the plants with 2 mM 2,6-dihydroxyacetophenone for 12 hr significantly reduced the formation of two radioactive metabolites, which were tentatively identified as N-(indole-3-acetyl)-L-aspartic acid and N-(indole-3-acetyl)-L-glutamic acid. The chemical pre-treatment also decreased the level of a less polar metabolite chromatographically indistinguishable from oxindole-3-acetic acid, an oxidative product of IAA, and other unidentified metabolites of IAA. Concomitantly, the level of free [2-14C]IAA increased significantly in the treated tissue. 2,4-, 2,5- and 3,4-Dihydroxyacetophenones, as well as 3-bromo-2,6-dihydroxyacetophenone and 2-hydroxy-6-methoxyacetophenone, did not show a similar effect.  相似文献   

4.
High specific activity [3H]indole-3-acetic acid (IAA) was applied directly to root nodules of intact pea plants. After 24 h, radioactivity was detected in all plant tissues. In nodule and root tissue, only 2–3% of3H remained as IAA, and analysis by thin layer chromatography suggested that indole-3-acetyl-L-aspartic acid (IAAsp) was a major metabolite. The occurrence of IAAsp in pea root and nodule tissue was confirmed unequivocally by gas chromatography-mass spectrometry (GC-MS). The following endogenous indole compounds were also unequivocally identified in pea root nodules by GC-MS: IAA, indole-3-pyruvic acid, indole-3-lactic acid, indole-3-propionic acid, indole-3-butyric acid, and indole-3-carboxylic acid. Evidence of the occurrence of indole-3-methanol was also obtained. With the exception of IAA and indole-3-propionic acid, these compounds have not previously been unequivocally identified in a higher plant tissue.  相似文献   

5.
Incubation of mature sweet corn kernels of Zea mays in dilute solutions of 14C-labeled indole-3-acetic acid leads to the formation of 14C-labeled esters of myo-inositol, glucose, and glucans. Utilizing this knowledge it was found that an enzyme preparation from immature sweet corn kernels of Zea mays catalyzed the CoA- and ATP-dependent esterification of indole-3-acetic acid to myo-inositol and glucose. The esters formed were 2-O-(indole-3-acetyl)-myo-inositol, 1-dl-1-O-(indole-3-acetyl)-myo-inositol, di-O-(indole-3-acetyl)-myo-inositol, tri-O-(indole-3-acetyl)-myo-inositol, 2-O-(indole-3-acetyl)-d-glucopyranose, 4-O-(indole-3-acetyl)-d-glucopyranose and 6-O-(indole-3-acetyl)-d-glycopyranose. An assay system was developed for measuring esterification of 14C-labeled indole-3-acetic acid by ammonolysis of the esters followed by isolation and counting the radioactive indole-3-acetamide.  相似文献   

6.
Two-week-old dwarf peas (Pisum sativum cv Little Marvel) were sprayed with gibberellic acid (GA3), and after 3 or 4 days the upper stem and young leaf samples were analyzed for indole-3-acetic acid (IAA) and indole-3-acetyl aspartic acid by an isotope dilution high performance liquid chromatography method. GA3 increased IAA levels as much as 8-fold and decreased indole-3-acetyl aspartic acid levels.  相似文献   

7.
The indole-3-pyruvate decarboxylase gene (ipdC), coding for a key enzyme of the indole-3-pyruvic acid pathway of IAA biosynthesis in Azospirillum brasilense SM was functionally disrupted in a site-specific manner. This disruption was brought about by group II intron-based Targetron gene knock-out system as other conventional methods were unsuccessful in generating an IAA-attenuated mutant. Intron insertion was targeted to position 568 on the sense strand of ipdC, resulting in the knock-out strain, SMIT568s10 which showed a significant (∼50%) decrease in the levels of indole-3-acetic acid, indole-3-acetaldehyde and tryptophol compared to the wild type strain SM. In addition, a significant decrease in indole-3-pyruvate decarboxylase enzyme activity by ∼50% was identified confirming a functional knock-out. Consequently, a reduction in the plant growth promoting response of strain SMIT568s10 was observed in terms of root length and lateral root proliferation as well as the total dry weight of the treated plants. Residual indole-3-pyruvate decarboxylase enzyme activity, and indole-3-acetic acid, tryptophol and indole-3-acetaldehyde formed along with the plant growth promoting response by strain SMIT568s10 in comparison with an untreated set suggest the presence of more than one copy of ipdC in the A. brasilense SM genome.  相似文献   

8.
The rolB gene of the plant pathogen Agrobacterium rhizogenes has an important role in the establishment of hairy root disease in infected plant tissues. When expressed as a single gene in transgenic plants the RolB protein gives rise to effects indicative of increased auxin activity. It has been reported that the RolB product is a β-glucosidase and proposed that the physiological and developmental alterations in transgenic plants expressing the rolB gene are the result of this enzyme hydrolysing bound auxins, in particular (indole-3-acetyl)-β-D-glucoside (IAGluc), and thereby bringing about an increase in the intracellular concentration of indole-3-acetic acid (IAA). Using tobacco plants as a test system, this proposal has been investigated in detail. Comparisons have been made between the RolB phenotype and that of IaaM/iaaH transformed plants overproducing IAA. In addition, the levels of IAA and IAA amide and IAA ester conjugates were determined in wild-type and transgenic 35S-rolB tobacco plants and metabolic studies were carried out with [13C6]IAA [2′-14C]IAA, [14C]IAGluc, [5-3H]-2-o-(indole-3-acetyl)-myo-inositol and [14C]indole-3-acetylaspartic acid. The data obtained demonstrate that expression of the rolB encoded protein in transgenic tobacco does not produce a phenotype that resembles that of IAA over producing plants, does not alter the size of the free IAA pool, has no significant effect on the rate of IAA metabolism, and, by implication, appears not to influence the overall rate of IAA biosynthesis. Furthermore, the in vivo hydrolysis of IAGluc, and that of the other IAA conjugates that were tested, is not affected. On the basis of these findings, it is concluded that the RolB phenotype is not the consequence of an increase in the size of the free IAA pool mediated by an enhanced rate of hydrolysis of IAA conjugates.  相似文献   

9.
High specific activity [3H]indole-3-acetic acid (IAA) was applied directly to root nodules of intact pea plants. After 24 h, radioactivity was detected in all plant tissues. In nodule and root tissue, only 2–3% of3H remained as IAA, and analysis by thin layer chromatography suggested that indole-3-acetyl-L-aspartic acid (IAAsp) was a major metabolite. The occurrence of IAAsp in pea root and nodule tissue was confirmed unequivocally by gas chromatography-mass spectrometry (GC-MS). The following endogenous indole compounds were also unequivocally identified in pea root nodules by GC-MS: IAA, indole-3-pyruvic acid, indole-3-lactic acid, indole-3-propionic acid, indole-3-butyric acid, and indole-3-carboxylic acid. Evidence of the occurrence of indole-3-methanol was also obtained. With the exception of IAA and indole-3-propionic acid, these compounds have not previously been unequivocally identified in a higher plant tissue.  相似文献   

10.
Summary Degradation of indole-3-acetic acid was investigated in etiolated pea shoots; the study was limited to indolic metabolites. The products formed were fractionated by column chromatography and identified by thin-layer chromatography and chemical methods. The pathway of indole-3-acetic acid degradation involving indole-3-aldehyde was found to be more significant than stated in literature, and indole-3-methanol was established as the major indolic metabolite.The following abbreviations will be used: IAA: indole-3-acetic acid; IM: indole-3-methanol; IAld: indole-3-aldehyde; ICA: indole-3-carboxylic acid.  相似文献   

11.
GC-MS properties of three isomeric esters of indole-3-acetic acid and myoinositol, three esters of indole-3-acectic acid and myoinositol arabinoside and three esters of indole-3-acetic acid and myoinositol galactoside are presented. MS fragmentation patterns for the four possible pentamethyl myoinositols are also shown. These data indicated that the arabinose, and galactose of the glycosides were in the pyranose form and that C-1 of the sugar was linked to the 5 hydroxyl of myoinositol. Homologies in fragmentation patterns for the esters and the glycoside esters, together with knowledge of the properties of 2-O-indole-3-acetyl-myoinositol, permitted identification of one of the arabinosides as 5-O-l-arabinopyranosyl-2-O-indole-3-acetyl-myoinositol and one of the galactosides as 5-O-d- galactopyranosyl-2-O-indole-3-acetyl-myoinositol. The remaining two GLC peaks observed for the arabinoside were then, most likely, the two mixtures of diastereoisomers 1 d- and 1 l-5-O-l-arabinopryranosyl-1-O-indole-3-acetyl myoinositol and 1 d- and 1 l-5-O-l-arabinopyranosyl-4-O-indole-3-acetyl-myoinositol. The remaining two GLC peaks observed for the galactoside would then be the 1 d and 1 l-5-O-d-galactopyranosyl-1-O-indole-3-acetyl-myoinositol and 1 d- and 1 l-5-O-d- galactopyranosyl-4-O-indoleacetyl-myoinositol.  相似文献   

12.
Incubation of sections of various tissues of Pinus pinea L. with a relatively low concentration (3.6 μM) of indole-3-acetic acid-2-14C (IAA) resulted in the formation of two major metabolites. The first, which has not been identified, seemed to be a polar acidic compound and the second was identified as indole-3-acetylaspartic acid (IAAsp). The polar acidic metabolite has been found to be the major metabolite in needles, shoot wood and roots, while IAAsp has been found to be the major metabolite in shoot bark. Increasing the concentration of IAA in the incubation medium resulted in an increase in the formation of a third metabolite which proved to be l-O-(indole-3-acetyl)-β-d -glucose (IAGlu) and a concomitant decrease in the amount of the polar acidic metabolite. This phenomenon was prominent particularly in needles. IAGlu was isolated from needles and IAAsp was isolated from shoot bark by means of polyvinylpolypyrrolidone column chromatography and preparative thin-layer chromatography. IAGlu was identified by comparison with authentic material by co-chromatography in three different solvent systems and by 1H-nuclear magnetic resonance analysis. IAAsp was identified by comparison with authentic material by gas-liquid chromatography and 1H-nuclear magnetic resonance analysis. Several aspects of formation, separation and isolation of IAA metabolites are discussed.  相似文献   

13.
R. Rajagopal  Poul Larsen 《Planta》1972,103(1):45-54
Summary Living tissues of diverse plants representing 17 families were infiltrated with indole-3-acetaldoxime (IAAld oxime) in phosphate buffer, pH 6, and incubated for 3 hours at 25°C. Indole compounds were then extracted, separated and identified by paper or thin-layer chromatography (TLC). Indole-3-acetic acid (IAA) was quantitatively determined. Every tissue tested converted the oxime to IAA and tryptophol (T-ol). While accumulation of indole-3-acetonitrile (IAN) was observed in the non-acidic fractions of extracts of tissues of 8 species, indole-3-acetaldehyde (IAAld) accumulated in only a single tissue viz. Amaranthus shoot.IAAld oxime undergoes spontaneous hydrolysis at pH values below 4.7 leading to the formation of IAAld. Ce l-free preparations of etiolated Avena coleoptiles appear to contain an enzyme system capable of hydrolysing the oxime to IAAld. In the presence of such preparations, more IAAld and IAA are formed at all tested durations than the spontaneously formed IAAld. In the presence of bisulfite or semicarbazide, no IAA is formed, suggesting the intermediary formation of IAAld. The compound trapped with sodium bisulfite resembles very closely synthetic IAAld in its IR spectrum.In intact tissues, therefore, IAAld oxime appears to be first hydrolysed to IAAld which is then partly oxidized to IAA and mostly reduced to T-ol. Besides other evidence, formation of T-ol in every instance is believed to indicate the intermediary formation of IAAld. The nitrile pathway is considered to be only of minor importance in normal IAA biogenesis in the majority of higher plants.  相似文献   

14.
Hypocotyl explants of pumpkin ( Cucurbita pepo L.) were inoculated aseptically on solid media containing Murashige and Skoog (MS) macro- and micronutrients, organic supplements, glucose as a carbon source, and indoleacetic acid (IAA) or one of its possible metabolic precursors, i.e. indole-3-ethanol [3-(2-hydroxyethyl)-indole, tryptophol], 2-(indol-3-yl)-ethyl α-L-arabinopyranoside (tryptophol arabinoside), and 2-(indol-3-yl)-ethyl β-D-glucopyranoside (tryptophol glucoside). Embryogenic callus and adventitious roots developed on the explants, the response depending on the source of auxin, its concentration, and endogenous, possibly genetic, factors. Hypocotyl sections did not form embryogenic tissues and did not survive on media which did not contain an auxin or auxin precursors. Fewer explants responded to IAA than to indole-3-ethanol. Its arabinopyranoside was even more effective, while only a few hypocotyl sections proliferated in the presence of the corresponding glucopyranoside. Embryogenic callus induced by any of the four above compounds could be subcultured on media containing the same source of auxin. Selected callus lines have been maintained for more than three years and have continued to form embryoids. Indole-3-ethanol and IAA were suitable for clonal propagation of regenerated plantlets by axillary and apical bud culture.  相似文献   

15.
Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.  相似文献   

16.
Exogenous [14C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [14C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGIu). Increased formation of ICGIu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGIu were identified by combined gas chromatography-mass spectrometry. Formation of ICGIu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene reduces endogenous IAA levels.  相似文献   

17.
New esters of indole-3-acetic acid and d-glucose have been isolated from mature sweet-corn kernels of Zea mays. The esters were resolved by t.l.c. into two fractions having RF values distinct from that of authentic 1-O-(indole-3-acetyl)-β-d-glucopyranose. Analysis of the trimethylsilyl ethers of the two fractions by combined gas-liquid chromatography-mass spectrometry (g.l.c.-m.s.) showed that the esters have a free carbonyl group. Labeling of the carbonyl carbon atom with an O-methyloxime group, and analysis of the O-trimethylsilyl O-methyloxime derivatives by g.l.c.-m.s. permitted the new compounds to be identified as a mixture of 2-O-(indole-3-acetyl)-d-glucopyranose, 4-O-(indole-3-acetyl)-d-glucopyranose, and 6-O-(indole-3-acetyl)-d-glucopyranose.  相似文献   

18.
Summary Among the indole compounds formed when tryptophan 2-14C is metabolized by Rhizobium, indole-3-lactic acid (ILA) is specially studied. In the course of experiments carried out in the culture medium of growing Rhizobium and in suspensions of washed bacterial cells the amount of ILA formed is compared with that of indole-3-acetic acid (IAA) occurring simulataneously. The formation of ILA and that of IAA directly depend on a transamination reaction. A large quantity of ILA is present in suspensions of washed bacterial cells.When ILA alone, as precursor, is incubated with Rhizobium, several products are identified: IAA, indole-3-acetaldehyde and tryptophol. Tryptophan is also detected in the aqueous fraction and is labelled when ILA 2-14C is used. The pathway of this metabolism are discussed and a general scheme is suggested.  相似文献   

19.
Bound auxin metabolism in cultured crown-gall tissues of tobacco   总被引:1,自引:1,他引:0  
Bound auxin metabolism in cultured crown-gall tumor cells and pith callus of tobacco was examined by feeding radiolabeled auxins and auxin conjugates. In all tissues fed [14C]indoleacetic acid (IAA), at least one-third of the IAA was decarboxylated, and most of the remaining radiolabel occurred in a compound(s) which did not release IAA with alkaline hydrolysis. In cells transformed by the A6 strain of Agrobacterium tumefaciens, the only detectable IAA conjugate was indole-3-acetylaspartic acid (IAAsp), whereas cells transformed by the gene 2 mutant strain A66 produced an unidentified amide conjugate but no IAAsp. By contrast, cells fed [14C]naphthaleneacetic acid (NAA) accumulated several amide and ester conjugates. The major NAA metabolite in A6-transformed cells was naphthaleneacetylaspartic acid (NAAsp), whereas the major metabolites in A66-transformed cells were NAA esters. In addition, A66-transformed cells produced an amide conjugate of NAA which was not found in A6-transformed cells and which showed chromatographic properties similar to the unknown IAA conjugate. Pith callus fed [14C] NAA differed from both tumor lines in that it preferentially accumulated amide conjugates other than NAAsp. Differences in the accumulation of IAA and NAA conjugates were attributed in part to the high capacity of tobacco cells to oxidize IAA and in part to the specificity of bound auxin hydrolases. All tissues readily metabolized IAAsp and indole-3-acetyl-myo-inositol, but hydrolyzed NAAsp very slowly. Indirect evidence is provided which suggests that ester conjugates of NAA are poorly hydrolyzed as well. Analysis of tissues fed [14C]NAA together with high concentrations of unlabeled IAA or NAA indicates that tissue-specific differences in NAA metabolism were not the result of variation in endogenous auxin levels. Our results support the view that bound auxin hydrolysis is highly specific and an important factor controlling bound auxin accumulation.  相似文献   

20.
Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7′-O-β-d-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed from labeled indole-3-acetic acid supplied to intact seedlings and root segments. The glucoside of 7-hydroxyoxindole-3-acetic acid was also isolated as an endogenous compound in the caryopses and shoots of 4-day-old seedlings. It accumulates to a level of 4.8 nanomoles per plant in the kernel, more than 10 times the amount of oxindole-3-acetic acid. In the shoot it is present at levels comparable to that of oxindole-3-acetic acid and indole-3-acetic acid (62 picomoles per shoot). We conclude that 7-hydroxyoxindole-3-acetic acid-glucoside is a natural metabolite of indole-3-acetic acid in Z. mays seedlings. From the data presented in this paper and in previous work, we propose the following route as the principal catabolic pathway for indole-3-acetic acid in Zea seedlings: Indole-3-acetic acid → Oxindole-3-acetic acid → 7-Hydroxyoxindole-3-acetic acid → 7-Hydroxyoxindole-3-acetic acid-glucoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号