首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ionic channels in plant cell membranes   总被引:2,自引:0,他引:2  
The use of patch clamp methods for identifying ion-specific channels and other transport structures in plant cell membranes is described. Methodology, basic concepts that underlie data analysis, and applications of this powerful technique are emphasized.  相似文献   

2.
Anion transporters in plant mitochondria   总被引:2,自引:9,他引:2       下载免费PDF全文
The swelling of potato (Solanum tuberosum L.) mitochondria in isosmotic ammonium salts of phosphate, chloride, malate, succinate, and citrate was investigated by measuring light scattering. Potato mitochondria swell spontaneously in ammonium phosphate, and this swelling can be inhibited in N-ethylmaleimide. They swell in ammonium malate or succinate only after the addition of inorganic phosphate and in ammonium citrate only after the addition of both phosphate and a dicarboxylic acid. Pentylmalonate inhibits swelling in ammonium citrate solutions by competing for dicarboxylate entry. The results indicate that potato mitochondria possess a phosphate-hydroxyl carrier, a dicarboxylate carrier, and a tricarboxylate carrier.  相似文献   

3.
Summary Synaptic membranes from rat brain were incorporated into planar lipid bilayers, and the characteristics of two types of anion-selective channels (type I and type II) were investigated. In asymmetric BaCl2 buffers (cis, 100mm/trans, 25mm), single channel conductances at –40 mV were 70 pS (type I) and 120 pS (type II). Permeability ratios (P Na:P Ba:P Cl) calculated from the Goldman-Hodgkin-Katz current equation for type I and type II channels were 0.230.041 and 0.050.031, respectively. Both channels exhibited characteristic voltage-dependent bursting activities. Open probability for type I channels had a maximum of 0.7 at about 0 mV and decreased to zero at greater transmembrane potentials of either polarity. Type II channels were relatively voltage independent at negative voltages and were inactivated at highly positive voltages. Type I channels showed spontaneous irreversible inactivation often preceded by sudden transition to subconducting states. DIDS blocked type I channels only from thecis side, while it blocked type II channels from either side.  相似文献   

4.
Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one.  相似文献   

5.
Anion channels in plant cells   总被引:1,自引:0,他引:1  
Plant anion channels allow the efflux of anions from cells. They are involved in turgor pressure control, changes in membrane potential, organic acid excretion, tolerance to salinity and inorganic anion nutrition. The recent molecular identification of anion channel genes in guard cells and in roots allows a better understanding of their function and of the mechanisms that control their activation.  相似文献   

6.
Modulation of plant ion channels by oxidizing and reducing agents   总被引:1,自引:0,他引:1  
Ion channels are proteins forming hydrophilic pathways through the membranes of all living organisms. They play important roles in the electrogenic transport of ions and metabolites. Because of biophysical properties such as high selectivity for the permeant ion, high turnover rate, and modulation by physico-chemical parameters (e.g., membrane potential, calcium concentration), they are involved in several physiological processes in plant cells (e.g., maintenance of the turgor pressure, stomatal movements, and nutrient absorption by the roots). As plants cannot move, plant metabolism must be flexible and dynamic, to cope with environmental changes, to compete with other living species and to prevent pathogen invasion. An example of this flexibility and dynamic behavior is represented by their handling of the so-called reactive oxygen species, inevitable by-products of aerobic metabolism. Plants cope with these species on one side avoiding their toxic effects, on the other utilizing them as signalling molecules and as a means of defence against pathogens. In this review, we present the state-of-the-art of the modulation of plant ion channels by oxidizing and reducing agents.  相似文献   

7.
Conclusion Exciting innovations in the methodologies available for the study of ionic channels (notably in animal cells) have allowed hitherto impossible advances in the comprehension of both structure and function. In using channels like the Na channel and the AChR as examples of these strategies, we have tried to give a concise but up to date account of the current possibilities (in particular, the patch-clamp) for research in membrane physiology. That few of these techniques have been applied to plant cell membranes simply indicates the scope for advancement in the understanding of some problems fundamental to plant physiology. The mechanisms of transport involved in processes known to be important for the life of plant cells (e.g., regulation of cytoplasmic and vacuolar potential differences and pH, maintenance of vacuolar turgor pressure, accumulation of metabolites and their counterions, response to environmental stimuli) are relatively speaking, poorly characterized. In that ion fluxes through plasmalemma and tonoplast membranes are at least in part likely to be via ionic channels for all of these processes, an important step forward would be the application of patch-clamp techniques for the direct demonstration of a channel mechanism and the subsequent elucidation of their role.  相似文献   

8.
Plant hormones are signal molecules, present in trace quantities, that act as major regulators of plant growth and development. They are involved in a wide range of processes such as elongation, flowering, root formation and vascular differentiation. For many years, agriculturists have applied hormones to their crops to either increase the yield, or improve the quality of the commercial product. Nowadays, the knowledge of hormone biosynthesis, degradation and signaling pathways has allowed the utilization of biotechnological tools to further improve the main agricultural crops. Natural or artificial mutants, with impaired functioning of the corresponding genes, have been adopted because of their superior phenotype in specific agricultural traits. In addition, transgenic plants have been generated to regulate internal hormone levels, or their signaling pathways, resulting in some crops that have revolutionized agriculture.  相似文献   

9.
Current evidences support a central role in signal transduction and turgor regulation for plasma membrane anion channels. The present review focuses on these channels as putative targets for plant hormones. Various approaches have been developed to investigate the contribution of anion channels to hormone responses at the level of integrated responses of intact cells or organs, or to study directly the hormonal regulation of anion channels at the membrane level. These approaches are mainly discussed for two biological models, stomatal guard cells and hypocotyl or coleoptile cells, both cell types being equipped with several types of anion channels. Membrane potential and anion flux measurements, together with pharmacological studies using anion channel inhibitors, reveal that anion permeabilities are involved in the responses of guard cells or hypocotyl cells to abscisic acid and/or auxin. In a few instances, a modulation of anion channel activity can be detected in voltage-clamp or patch-clamp experiments. From these data and other studies, anion channel activation seems to constitute a very early step in many transduction cascades within response pathways to endogenous hormonal signals, but also to abiotic and biotic environmental signals such as light or molecules involved in plant-pathogen interactions. This points to plasma membrane anion channels as major actors in plant signalling networks.  相似文献   

10.
The receptor-evoked Ca2+ signal in secretory epithelia mediate many cellular functions essential for cell survival and their most fundamental functions of secretory granules exocytosis and fluid and electrolyte secretion. Ca2+ influx is a key component of the receptor-evoked Ca2+ signal in secretory cell and is mediated by both TRPC and the STIM1-activated Orai1 channels that mediates the Ca2+ release-activated current (CRAC) Icrac. The core components of the receptor-evoked Ca2+ signal are assembled at the ER/PM junctions where exchange of materials between the plasma membrane and internal organelles take place, including transfer of lipids and Ca2+. The Ca2+ signal generated at the confined space of the ER/PM junctions is necessary for activation of the Ca2+-regulated proteins and ion channels that mediate exocytosis with high fidelity and tight control. In this review we discuss the general properties of Ca2+ signaling, PI(4,5)P2 and other lipids at the ER/PM junctions with regard to secretory cells function and disease caused by uncontrolled Ca2+ influx.  相似文献   

11.
Ravens U  Wettwer E  Hála O 《Cell calcium》2004,35(6):575-582
Ion channels and transporter proteins are prerequisites for formation and conduction of cardiac electrical impulses. Acting in concert, these proteins maintain cellular Na(+) and Ca(2+) homeostasis. Since intracellular Ca(2+) concentration determines contractile activation, we expect the majority of agents that modulate activity of ion channels and transporters not only to influence cellular action potentials but also contractile force. Drugs which block ion channels usually possess antiarrhythmic properties, those inhibiting the Na(+) pump have predominantly inotropic effects and those affecting Na(+),Ca(2+)- or Na(+),H(+)-exchanger protect against ischaemic cell damage. However, irrespective of their primary indication, all compounds targeted against ion channels and transporter proteins possess potential proarrhythmic activity.  相似文献   

12.
13.
Anion exchangers (AEs) of the Cl-/HCO3- exchanger family contribute to the regulation of intracellular acid-base balance. Recently, we found that anion exchanger 2 (AE2) was significantly expressed in human hepatocellular carcinoma (HCC) and in poorly-differentiated human HCC HA22T/VGH cells. In the present study, we further explored the pharmacological function of AE in four human HCC cell lines (SK-Hep-1, HA22T/VGH, HepG2, and Hep3B) following the treatment of 4,4’-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), an AEs specific inhibitor. After administrations with 400–1000 μM of DIDS, cell proliferation was greatly inhibited in a dose-dependent manner from 47.5 to 65.0% in higher malignant HA22T/VGH cells, but not in other cell lines. The results of 4,6-diamidino-2-phenylindole (DAPI) staining, DNA fragmentation and flow cytometric analysis further revealed that cell apoptosis induced by DIDS was also observed in HA22T/VGH cells. Therefore, these findings suggested that AE may be involved, in part, in the proliferation and survival of HA22T cells and could be a new potential therapeutic target against specific human HCC. The authors Chih-Yang Huang and Jer-Yuh Lin contributed equally to this article.  相似文献   

14.
Membrane proteins span a large variety of different functions such as cell-surface receptors, redox proteins, ion channels, and transporters. Proteins with functional pores show different characteristics of helix-helix packing as other helical membrane proteins. We found that the helix-helix contacts of 13 nonhomologous high-resolution structures of membrane channels and transporters are mainly accomplished by weakly polar amino acids (G > S > T > F) that preferably create contacts every fourth residue, typical for right-handed helix crossings. There is a strong correlation between the now available biological hydrophobicity scale and the propensities of the weakly polar and hydrophobic residues to be buried at helix-helix interfaces or to be exposed to the lipids in membrane channels and transporters. The polar residues, however, make no major contribution towards the packing of their transmembrane helices, and are therefore subsumed to be primarily exposed to the polar milieu during the folding process. The contact formation of membrane channels and transporters is therefore ruled by the solubility of the residues, which we suppose to be the driving force for the assembly of their transmembrane helices. By contrast, in 14 nonhomologous high-resolution structures of other membrane protein coils, also large and polar amino acids (D > S > M > Q) create characteristic contacts every 3.5th residues, which is a signature for left-handed helix crossings. Accordingly, it seems that dependent on the function, different concepts of folding and stabilization are realized for helical membrane proteins. Using a sequence-based matrix prediction method these differences are exploited to improve the prediction of buried and exposed residues of transmembrane helices significantly. When the sequence motifs typical for membrane channels and transporters were applied for the prediction of helix-helix contacts the quality of prediction rises by 16% to an average value of 76%, compared to the same approach when only single amino acid positions are taken into account.  相似文献   

15.
Ionic fluxes in sea urchin sperm plasma membrane regulate cell motility and the acrosome reaction (AR). Although cationic channels mediate some of the ionic movements, little is known about anion channels in these cells. The fusion of sperm plasma membranes into lipid bilayers allowed identification of a 150 pS anion channel. This anion channel was enriched from detergent-solubilized sperm plasma membranes using a wheat germ agglutinin Sepharose column. Vesicles formed from this preparation were fused into black lipid membranes (BLM), yielding single channel anion-selective activity with the properties of those found in the sperm membranes. The following anion selectivity sequence was found: NO3? > CNS? > Br? > CI?. This anion channel has a high open probability at the holding potentials tested, it is partially blocked by 4,4′-diisothiocyano-2,2′ -stilbendisulfonic acid (DIDS), and it often displays substates. The sperm AR was also inhibited by DIDS. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The voltage-dependent anion channels (VDACs), mitochondrial outer membrane components, are present in organisms from fungi to animals and plants. They are thought to function in the regulation of metabolite transport between mitochondria and the cytoplasm. Sufficient knowledge on plant VDACs has been accumulated, so that we can here summarize the current information. Then, the involvement of mitochondria in plant defense and cell death is overviewed. While, in mammals, it is suggested that VDAC, also known as a component of the permeability transition pore (PTP) complex formed in the junction site of mitochondrial outer and inner membrane, is a key player in mitochondria-mediated cell death, little is known about the role of plant VDACs in this process. We have shown that plant VDACs are involved in mitochondria-mediated cell death and in defense against a non-host pathogen. In light of the current findings, we discuss the role of the PTP complex and VDAC as its component in plant pathogen defense and cell death.  相似文献   

17.
Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.  相似文献   

18.
An important component of neuronal differentiation is the tightly controlled expression of a spectrum of ion channel proteins. Ion channels play a critical role in the generation and propagation of action potentials as well as in the cellular response to neurotransmitters, and thus are central in the transfer and integration of information in the nervous system. A model system amenable to analysis of ion channel expression and neuronal differentiation is the rat pheochromocytoma (PC12) cell line. Here, we have used electrophysiological and molecular biological approaches to analyze the expression of voltage-dependent sodium (Na) channels and nicotinic acetylcholine receptors (nAChR) in mutagenized variants (nnr cells) of the PC12 cell line. Our data reveal striking differences in the expression of these channels when compared to wild-type PC12 cells. Even in the absence of nerve growth factor (NGF), nnr cells express functional Na channels and Na channel mRNA at levels exceeding those in wild-type PC12 cells differentiated with NGF. In contrast, acetylcholine-induced currents were evident in only a small proportion of cells, presumably due to the altered pattern of expression of mRNAs encoding individual nAChR subunits. The altered ion channel expression in these variants provides an avenue for analyzing Na channel and nAChR channel function, as well as for identifying mechanisms governing their expression.The authors thank J. Boulter (The Salk Institute) for providing nAChR cDNA clones, C. Machida (Oregon Health Sciences University) for providing the cyclophilin cDNA, and L. Greene for providing nnr3 cells, nnr5 cells, and nnr5 cells stably transfected with trkA. This research was supported by grants awarded by the National Institutes of Health to LPH (NS28668), PDG (NS30243), and RAM (NS28767).  相似文献   

19.
The antibiotic protein colicin E1 forms ion channels in planar lipid bilayers that are capable of conducting monovalent organic cations having mean diameters of at least 9 Å. Polyvalent organic cations appear to be completely impermeant, regardless of size. All permeant ions, whether large or small, positively or negatively charged, are conducted by this channel at very slow rates. We have examined the permeability of colicin E1 channels to anionic probes having a variety of sizes, shapes, and charge distributions. In contrast to the behavior of cations, polyvalent as well as monovalent organic anions were found to permeate the colicin E1 channel. Inorganic sulfate was able to permeate the channel only when the pH was 4 or less, conditions under which the colicin E1 protein is predominantly in an anion-preferring conformational state. The less selective state(s) of the colicin E1 channel, observed when the pH was 5 or greater, was not permeable to inorganic sulfate. The sulfate salt of the impermeant cation Bis-T6 (N,N,N,N-tetramethyl-1,6-hexanediamine) had no effect on the single channel conductance of colicin E1 channels exposed to solutions containing 1 m NaCl at pH 5. The complete lack of blocking activity by either of these two impermeant ions indicates that both are excluded from the channel lumen. These results are consistent with our hypothesis that there is but a single location in the lumen of the colicin E1 channel where positively charged groups can be effectively hydrated. This site may coincide with the location of the energetic barrier which impedes the movement of anions.The authors wish to thank Dr. F.S. Cohen for making available unpublished data and for helpful comments. This work was supported by National Institutes of Health grant GM 37396 and by the Howard Hughes Medical Institute Undergraduate Biological Sciences Education Initiative (E.R.K.)  相似文献   

20.
Summary This study is concerned with the characterization of the ionic currents in the vacuolar membrane (tonoplast) of plant cells. Voltage patch-clamp experiments at the whole vacuole and single channel levels were employed to study the effects of cytoplasmic chloride on the tonoplast inward rectifying currents of sugar beet cultured cells. Whole vacuole experiments showed that removal of cytoplasmic chloride induced a decrease in the level of the inward currents, an effect that was reversed upon returning to control levels of cytoplasmic chloride. Substitution of cytoplasmic chloride by any other anion (organic or inorganic) resulted in a reduction in the level of the inward currents. At a given negative tonoplast potential, the inward currents showed a linear relationship with the concentration of cytoplasmic chloride between 10 and 100 mM, with the slope of these relationships increasing as the potential was made more negative. Single channel experiments showed that reduction of cytoplasmic chloride changed the gating mechanism of the channels without affecting the single channel conductance. Reduction of cytoplasmic chloride caused a decrease in the open probability of the tonoplast cation channels by reducing their mean open time and by inducing the appearance of an additional closed state.This work was supported by the National Science and Engineering Research Council of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号