首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Liquid chromatography coupled to mass spectrometry (LC-MS) and combined with tandem mass spectrometry (LC-MS/MS) have become a prominent tool for the analysis of complex proteomic samples. An important step in a typical workflow is the combination of results from multiple LC-MS experiments to improve confidence in the obtained measurements or to compare results from different samples. To do so, a suitable mapping or alignment between the data sets needs to be estimated. The alignment has to correct for variations in mass and elution time which are present in all mass spectrometry experiments. RESULTS: We propose a novel algorithm to align LC-MS samples and to match corresponding ion species across samples. Our algorithm matches landmark signals between two data sets using a geometric technique based on pose clustering. Variations in mass and retention time are corrected by an affine dewarping function estimated from matched landmarks. We use the pairwise dewarping in an algorithm for aligning multiple samples. We show that our pose clustering approach is fast and reliable as compared to previous approaches. It is robust in the presence of noise and able to accurately align samples with only few common ion species. In addition, we can easily handle different kinds of LC-MS data and adopt our algorithm to new mass spectrometry technologies. AVAILABILITY: This algorithm is implemented as part of the OpenMS software library for shotgun proteomics and available under the Lesser GNU Public License (LGPL) at www.openms.de.  相似文献   

2.
Mass peak alignment (ion-wise alignment) has recently become a popular method for unsupervised data analysis in untargeted metabolic profiling. Here we present MSClust-a software tool for analysis GC-MS and LC-MS datasets derived from untargeted profiling. MSClust performs data reduction using unsupervised clustering and extraction of putative metabolite mass spectra from ion-wise chromatographic alignment data. The algorithm is based on the subtractive fuzzy clustering method that allows unsupervised determination of a number of metabolites in a data set and can deal with uncertain memberships of mass peaks in overlapping mass spectra. This approach is based purely on the actual information present in the data and does not require any prior metabolite knowledge. MSClust can be applied for both GC-MS and LC-MS alignment data sets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0368-2) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background  

Liquid chromatography coupled to mass spectrometry (LC-MS) has become a prominent tool for the analysis of complex proteomics and metabolomics samples. In many applications multiple LC-MS measurements need to be compared, e. g. to improve reliability or to combine results from different samples in a statistical comparative analysis. As in all physical experiments, LC-MS data are affected by uncertainties, and variability of retention time is encountered in all data sets. It is therefore necessary to estimate and correct the underlying distortions of the retention time axis to search for corresponding compounds in different samples. To this end, a variety of so-called LC-MS map alignment algorithms have been developed during the last four years. Most of these approaches are well documented, but they are usually evaluated on very specific samples only. So far, no publication has been assessing different alignment algorithms using a standard LC-MS sample along with commonly used quality criteria.  相似文献   

4.
5.

Background

Recent advances in liquid chromatography-mass spectrometry (LC-MS) technology have led to more effective approaches for measuring changes in peptide/protein abundances in biological samples. Label-free LC-MS methods have been used for extraction of quantitative information and for detection of differentially abundant peptides/proteins. However, difference detection by analysis of data derived from label-free LC-MS methods requires various preprocessing steps including filtering, baseline correction, peak detection, alignment, and normalization. Although several specialized tools have been developed to analyze LC-MS data, determining the most appropriate computational pipeline remains challenging partly due to lack of established gold standards.

Results

The work in this paper is an initial study to develop a simple model with "presence" or "absence" condition using spike-in experiments and to be able to identify these "true differences" using available software tools. In addition to the preprocessing pipelines, choosing appropriate statistical tests and determining critical values are important. We observe that individual statistical tests could lead to different results due to different assumptions and employed metrics. It is therefore preferable to incorporate several statistical tests for either exploration or confirmation purpose.

Conclusions

The LC-MS data from our spike-in experiment can be used for developing and optimizing LC-MS data preprocessing algorithms and to evaluate workflows implemented in existing software tools. Our current work is a stepping stone towards optimizing LC-MS data acquisition and testing the accuracy and validity of computational tools for difference detection in future studies that will be focused on spiking peptides of diverse physicochemical properties in different concentrations to better represent biomarker discovery of differentially abundant peptides/proteins.  相似文献   

6.

Background  

Mass Spectrometry coupled to Liquid Chromatography (LC-MS) is commonly used to analyze the protein content of biological samples in large scale studies. The data resulting from an LC-MS experiment is huge, highly complex and noisy. Accordingly, it has sparked new developments in Bioinformatics, especially in the fields of algorithm development, statistics and software engineering. In a quantitative label-free mass spectrometry experiment, crucial steps are the detection of peptide features in the mass spectra and the alignment of samples by correcting for shifts in retention time. At the moment, it is difficult to compare the plethora of algorithms for these tasks. So far, curated benchmark data exists only for peptide identification algorithms but no data that represents a ground truth for the evaluation of feature detection, alignment and filtering algorithms.  相似文献   

7.
Label-free quantification of high mass resolution LC-MS data has emerged as a promising technology for proteome analysis. Computational methods are required for the accurate extraction of peptide signals from LC-MS data and the tracking of these features across the measurements of different samples. We present here an open source software tool, SuperHirn, that comprises a set of modules to process LC-MS data acquired on a high resolution mass spectrometer. The program includes newly developed functionalities to analyze LC-MS data such as feature extraction and quantification, LC-MS similarity analysis, LC-MS alignment of multiple datasets, and intensity normalization. These program routines extract profiles of measured features and comprise tools for clustering and classification analysis of the profiles. SuperHirn was applied in an MS1-based profiling approach to a benchmark LC-MS dataset of complex protein mixtures with defined concentration changes. We show that the program automatically detects profiling trends in an unsupervised manner and is able to associate proteins to their correct theoretical dilution profile.  相似文献   

8.
Quantitative proteomics approaches using stable isotopes are well-known and used in many labs nowadays. More recently, high resolution quantitative approaches are reported that rely on LC-MS quantitation of peptide concentrations by comparing peak intensities between multiple runs obtained by continuous detection in MS mode. Characteristic of these comparative LC-MS procedures is that they do not rely on the use of stable isotopes; therefore the procedure is often referred to as label-free LC-MS. In order to compare at comprehensive scale peak intensity data in multiple LC-MS datasets, dedicated software is required for detection, matching and alignment of peaks. The high accuracy in quantitative determination of peptide abundance provides an impressive level of detail. This approach also requires an experimental set-up where quantitative aspects of protein extraction and reproducible separation conditions need to be well controlled. In this paper we will provide insight in the critical parameters that affect the quality of the results and list an overview of the most recent software packages that are available for this procedure.  相似文献   

9.
Integrated liquid-chromatography mass-spectrometry (LC-MS) is becoming a widely used approach for quantifying the protein composition of complex samples. The output of the LC-MS system measures the intensity of a peptide with a specific mass-charge ratio and retention time. In the last few years, this technology has been used to compare complex biological samples across multiple conditions. One challenge for comparative proteomic profiling with LC-MS is to match corresponding peptide features from different experiments. In this paper, we propose a new method--Peptide Element Alignment (PETAL) that uses raw spectrum data and detected peak to simultaneously align features from multiple LC-MS experiments. PETAL creates spectrum elements, each of which represents the mass spectrum of a single peptide in a single scan. Peptides detected in different LC-MS data are aligned if they can be represented by the same elements. By considering each peptide separately, PETAL enjoys greater flexibility than time warping methods. While most existing methods process multiple data sets by sequentially aligning each data set to an arbitrarily chosen template data set, PETAL treats all experiments symmetrically and can analyze all experiments simultaneously. We illustrate the performance of PETAL on example data sets.  相似文献   

10.

Background

Differences in sample collection, biomolecule extraction, and instrument variability introduce bias to data generated by liquid chromatography coupled with mass spectrometry (LC-MS). Normalization is used to address these issues. In this paper, we introduce a new normalization method using the Gaussian process regression model (GPRM) that utilizes information from individual scans within an extracted ion chromatogram (EIC) of a peak. The proposed method is particularly applicable for normalization based on analysis order of LC-MS runs. Our method uses measurement variabilities estimated through LC-MS data acquired from quality control samples to correct for bias caused by instrument drift. Maximum likelihood approach is used to find the optimal parameters for the fitted GPRM. We review several normalization methods and compare their performance with GPRM.

Results

To evaluate the performance of different normalization methods, we consider LC-MS data from a study where metabolomic approach is utilized to discover biomarkers for liver cancer. The LC-MS data were acquired by analysis of sera from liver cancer patients and cirrhotic controls. In addition, LC-MS runs from a quality control (QC) sample are included to assess the run to run variability and to evaluate the ability of various normalization method in reducing this undesired variability. Also, ANOVA models are applied to the normalized LC-MS data to identify ions with intensity measurements that are significantly different between cases and controls.

Conclusions

One of the challenges in using label-free LC-MS for quantitation of biomolecules is systematic bias in measurements. Several normalization methods have been introduced to overcome this issue, but there is no universally applicable approach at the present time. Each data set should be carefully examined to determine the most appropriate normalization method. We review here several existing methods and introduce the GPRM for normalization of LC-MS data. Through our in-house data set, we show that the GPRM outperforms other normalization methods considered here, in terms of decreasing the variability of ion intensities among quality control runs.
  相似文献   

11.
Warp2D is a novel time alignment approach, which uses the overlapping peak volume of the reference and sample peak lists to correct misleading peak shifts. Here, we present an easy-to-use web interface for high-throughput Warp2D batch processing time alignment service using the Dutch Life Science Grid, reducing processing time from days to hours. This service provides the warping function, the sample chromatogram peak list with adjusted retention times and normalized quality scores based on the sum of overlapping peak volume of all peaks. Heat maps before and after time alignment are created from the arithmetic mean of the sum of overlapping peak area rearranged with hierarchical clustering, allowing the quality control of the time alignment procedure. Taverna workflow and command line tool are provided for remote processing of local user data. AVAILABILITY: online data processing service is available at http://www.nbpp.nl/warp2d.html. Taverna workflow is available at myExperiment with title '2D Time Alignment-Webservice and Workflow' at http://www.myexperiment.org/workflows/1283.html. Command line tool is available at http://www.nbpp.nl/Warp2D_commandline.zip. CONTACT: p.l.horvatovich@rug.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

12.
One of the challenges of using mass spectrometry for metabolomic analyses of samples consisting of thousands of compounds is that of peak identification and alignment. This paper addresses the issue of aligning mass spectral data from different samples in order to determine average component m/z peak values. The alignment scheme developed takes the instrument m/z measurement error into consideration in order to heuristically align two or more samples using a technique comparable to automated visual inspection and alignment. The results obtained using mass spectral profiles of replicate human urine samples suggest that this heuristic alignment approach is more efficient than other approaches using hierarchical clustering algorithms. The output consists of an average m/z and intensity value for the spectral components together with the number of matches from the different samples. One of the major advantages of using this alignment strategy is that it eliminates the boundary problem that occurs when using predetermined fixed bins to identify and combine peaks for averaging and the efficient runtime allows large datasets to be processed quickly.  相似文献   

13.
14.
SUMMARY: Using replicated human serum samples, we applied an error model for proteomic differential expression profiling for a high-resolution liquid chromatography-mass spectrometry (LC-MS) platform. The detailed noise analysis presented here uses an experimental design that separates variance caused by sample preparation from variance due to analytical equipment. An analytic approach based on a two-component error model was applied, and in combination with an existing data driven technique that utilizes local sample averaging, we characterized and quantified the noise variance as a function of mean peak intensity. The results indicate that for processed LC-MS data a constant coefficient of variation is dominant for high intensities, whereas a model for low intensities explains Poisson-like variations. This result leads to a quadratic variance model which is used for the estimation of sample preparation noise present in LC-MS data.  相似文献   

15.
We describe a platform for the comparative profiling of urine using reversed-phase liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical data analysis. Urinary compounds were separated by gradient elution and subsequently detected by electrospray Ion-Trap MS. The lower limit of detection (5.7-21 nmol/L), within-day (2.9-19%) and between-day (4.8-19%) analytical variation of peak areas, linearity (R2: 0.918-0.999), and standard deviation for retention time (<0.52 min) of the method were assessed by means of addition of seven 3-8 amino acid peptides (0-500 nmol/L). Relating the amount of injected urine to the area under the curve (AUC) of the chromatographic trace at 214 nm better reduced the coefficient of variation (CV) of the AUC of the total ion chromatogram (CV = 10.1%) than relating it to creatinine (CV = 38.4%). LC-MS data were processed, and the common peak matrix was analyzed by principal component analysis (PCA) after supervised classification by the nearest shrunken centroid algorithm. The feasibility of the method to discriminate urine samples of differing compositions was evaluated by (i) addition of seven peptides at nanomolar concentrations to blank urine samples of different origin and (ii) a study of urine from kidney patients with and without proteinuria. (i) The added peptides were ranked as highly discriminatory peaks despite significant biological variation. (ii) Ninety-two peaks were selected best discriminating proteinuric from nonproteinuric samples, of which 6 were more intense in the majority of the proteinuric samples. Two of these 6 peaks were identified as albumin-derived peptides, which is in accordance with the early rise of albumin during glomerular proteinuria. Interestingly, other albumin-derived peptides were nondiscriminatory indicating preferential proteolysis at some cleavage sites.  相似文献   

16.
MOTIVATION: Methylation of cytosines in DNA plays an important role in the regulation of gene expression, and the analysis of methylation patterns is fundamental for the understanding of cell differentiation, aging processes, diseases and cancer development. Such analysis has been limited, because technologies for detailed and efficient high-throughput studies have not been available. We have developed a novel quantitative methylation analysis algorithm and workflow based on direct DNA sequencing of PCR products from bisulfite-treated DNA with high-throughput sequencing machines. This technology is a prerequisite for success of the Human Epigenome Project, the first large genome-wide sequencing study for DNA methylation in many different tissues. Methylation in tissue samples which are compositions of different cells is a quantitative information represented by cytosine/thymine proportions after bisulfite conversion of unmethylated cytosines to uracil and PCR. Calculation of quantitative methylation information from base proportions represented by different dye signals in four-dye sequencing trace files needs a specific algorithm handling imbalanced and overscaled signals, incomplete conversion, quality problems and basecaller artifacts. RESULTS: The algorithm we developed has several key properties: it analyzes trace files from PCR products of bisulfite-treated DNA sequenced directly on ABI machines; it yields quantitative methylation measurements for individual cytosine positions after alignment with genomic reference sequences, signal normalization and estimation of effectiveness of bisulfite treatment; it works in a fully automated pipeline including data quality monitoring; it is efficient and avoids the usual cost of multiple sequencing runs on subclones to estimate DNA methylation. The power of our new algorithm is demonstrated with data from two test systems based on mixtures with known base compositions and defined methylation. In addition, the applicability is proven by identifying CpGs that are differentially methylated in real tissue samples.  相似文献   

17.

Background  

Relative isotope abundance quantification, which can be used for peptide identification and differential peptide quantification, plays an important role in liquid chromatography-mass spectrometry (LC-MS)-based proteomics. However, several major issues exist in the relative isotopic quantification of peptides on time-of-flight (TOF) instruments: LC peak boundary detection, thermal noise suppression, interference removal and mass drift correction. We propose to use the Maximum Ratio Combining (MRC) method to extract MS signal templates for interference detection/removal and LC peak boundary detection. In our method, MRCQuant, MS templates are extracted directly from experimental values, and the mass drift in each LC-MS run is automatically captured and compensated. We compared the quantification accuracy of MRCQuant to that of another representative LC-MS quantification algorithm (msInspect) using datasets downloaded from a public data repository.  相似文献   

18.
Data processing forms an integral part of biomarker discovery and contributes significantly to the ultimate result. To compare and evaluate various publicly available open source label-free data processing workflows, we developed msCompare, a modular framework that allows the arbitrary combination of different feature detection/quantification and alignment/matching algorithms in conjunction with a novel scoring method to evaluate their overall performance. We used msCompare to assess the performance of workflows built from modules of publicly available data processing packages such as SuperHirn, OpenMS, and MZmine and our in-house developed modules on peptide-spiked urine and trypsin-digested cerebrospinal fluid (CSF) samples. We found that the quality of results varied greatly among workflows, and interestingly, heterogeneous combinations of algorithms often performed better than the homogenous workflows. Our scoring method showed that the union of feature matrices of different workflows outperformed the original homogenous workflows in some cases. msCompare is open source software (https://trac.nbic.nl/mscompare), and we provide a web-based data processing service for our framework by integration into the Galaxy server of the Netherlands Bioinformatics Center (http://galaxy.nbic.nl/galaxy) to allow scientists to determine which combination of modules provides the most accurate processing for their particular LC-MS data sets.  相似文献   

19.
A new algorithm is described for label-free quantitation of relative protein abundances across multiple complex proteomic samples. Q-MEND is based on the denoising and peak picking algorithm, MEND, previously developed in our laboratory. Q-MEND takes advantage of the high resolution and mass accuracy of the hybrid LTQ-FT MS mass spectrometer (or other high-resolution mass spectrometers, such as a Q-TOF MS). The strategy, termed "cross-assignment", is introduced to increase substantially the number of quantitated proteins. In this approach, all MS/MS identifications for the set of analyzed samples are combined into a master ID list, and then each LC-MS run is searched for the features that can be assigned to a specific identification from that master list. The reliability of quantitation is enhanced by quantitating separately all peptide charge states, along with a scoring procedure to filter out less reliable peptide abundance measurements. The effectiveness of Q-MEND is illustrated in the relative quantitative analysis of Escherichia coli samples spiked with known amounts of non-E. coli protein digests. A mean quantitation accuracy of 7% and mean precision of 15% is demonstrated. Q-MEND can perform relative quantitation of a set of LC-MS data sets without manual intervention and can generate files compatible with the Guidelines for Proteomic Data Publication.  相似文献   

20.
Data reduction of isotope-resolved LC-MS spectra   总被引:1,自引:1,他引:0  
MOTIVATION: Data reduction of liquid chromatography-mass spectrometry (LC-MS) spectra can be a challenge due to the inherent complexity of biological samples, noise and non-flat baseline. We present a new algorithm, LCMS-2D, for reliable data reduction of LC-MS proteomics data. RESULTS: LCMS-2D can reliably reduce LC-MS spectra with multiple scans to a list of elution peaks, and subsequently to a list of peptide masses. It is capable of noise removal, and deconvoluting peaks that overlap in m/z, in retention time, or both, by using a novel iterative peak-picking step, a 'rescue' step, and a modified variable selection method. LCMS-2D performs well with three sets of annotated LC-MS spectra, yielding results that are better than those from PepList, msInspect and the vendor software BioAnalyst. AVAILABILITY: The software LCMS-2D is available under the GNU general public license from http://www.bioc.aecom.yu.edu/labs/angellab/as a standalone C program running on LINUX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号