首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
All-trans-retinol is the common precursor of the active retinoids 11-cis-retinal, all-trans-retinoic acid (atRA) and 9-cis-retinoic acid (9cRA). Genetic and biochemical data supports an important role of the microsomal members of the short chain dehydrogenases/reductases (SDRs) in the first oxidative conversion of retinol into retinal. Several retinol dehydrogenases of this family have been reported in recent years. However, the structural and functional data on these enzymes is limited. The prototypic enzyme RDH5 and the related enzyme CRAD1 have been shown to face the lumen of the endoplasmic reticulum (ER), suggesting a compartmentalized synthesis of retinal. This is a matter of debate as a related enzyme has been proposed to have the opposite membrane topology. Recent data indicates that RDH5, and presumably other members of the SDRs, occur as functional homodimers, and need to interact with other proteins for proper intracellular localization and catalytic activity. Further analyses on the compartmentalization, membrane topology, and functional properties of microsomal retinol dehydrogenases, will give important clues about how retinoids are processed.  相似文献   

2.
Understanding of the stereospecificity of enzymatic reactions that regenerate the universal chromophore required to sustain vision in vertebrates, 11-cis-retinal, is needed for an accurate molecular model of retinoid transformations. In rod outer segments (ROS), the redox reaction involves all-trans-retinal and pro-S-NADPH that results in the production of pro-R-all-trans-retinol. A recently identified all-trans-retinol dehydrogenase (photoreceptor retinol dehydrogenase) displays identical stereospecificity to that of the ROS enzyme(s). This result is unusual, because photoreceptor retinol dehydrogenase is a member of a short chain alcohol dehydrogenase family, which is often pro-S-specific toward their hydrophobic alcohol substrates. The second redox reaction occurring in retinal pigment epithelium, oxidation of 11-cis-retinol, which is largely catalyzed by abundantly expressed 11-cis-retinol dehydrogenase, is pro-S-specific to both 11-cis-retinol and NADH. However, there is notable presence of pro-R-specific activities. Therefore, multiple retinol dehydrogenases are involved in regeneration of 11-cis-retinal. Finally, the cellular retinaldehyde-binding protein-induced isomerization of all-trans-retinol to 11-cis-retinol proceeds with inversion of configuration at the C(15) carbon of retinol. Together, these results provide important additions to our understanding of retinoid transformations in the eye and a prelude for in vivo studies that ultimately may result in efficient pharmacological intervention to restore and prevent deterioration of vision in several inherited eye diseases.  相似文献   

3.
4.
Short chain acyl-CoA (SCA), medium chain acyl-CoA (MCA), and isovaleryl-CoA (IV) dehydrogenases were purified to homogeneity from human liver using ammonium sulfate fractionation followed by DEAE-Sephadex A-50, hydroxyapatite, Matrex Gel Blue A, agarose-hexane-CoA, and Bio-Gel A-0.5 column chromatographies. The specific activities of the final preparations were enriched 507-, 750-, and 588-fold over those from the second ammonium sulfate fractionation step. The native molecular weights were estimated to be 168,000, 178,000, and 172,000, respectively, by gel filtration. Each of them exhibited, on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, a single protein band with molecular weights of 41,000, 44,000, and 42,000, respectively, indicating a homotetrameric structure. UV/visual spectra, fluorescence spectra, and other evidence indicated that each contains 1 mol of FAD per subunit. They all utilized electron transfer flavoprotein (ETF) or phenazine methosulfate (PMS) as an electron acceptor. The products of SCA dehydrogenase/butyryl-CoA, MCA dehydrogenase/octanoyl-CoA, and IV dehydrogenase/isovaleryl-CoA reactions were identified as crotonyl-CoA, 2-octenoyl-CoA, and 3-methylcrotonyl-CoA, respectively, using gas chromatography. Kinetic parameters Vappmax and Kappm) of these enzymes for various acyl-CoA substrates, as well as Kappm values for ETF and PMS are presented. In general, the substrate specificities of human SCA, MCA, and IV dehydrogenases are slightly less stringent than those of their rat counterparts and resemble those of their bovine and porcine counterparts. The pattern of substrate specificity for these enzymes determined using ETF as electron acceptor significantly differed from that determined using PMS. All of them were severely inhibited by (methylenecyclopropyl)acetyl-CoA.  相似文献   

5.
6.
The retina of the vertebrate eye is metabolically active and requires nutritive support. During the last 540 million years it has evolved into forms as complicated and nutritionally demanding as those found in avian or primate eyes. Diffusion from the choroid is generally able to supply the metabolic needs of thin retinae. However, when the thickness exceeds the limits of diffusion, structures are needed to supplement the vascular supply from the choroid. These supplemental nutritive devices include the choroidal gland, the falciform process and preretinal vascular plexus of fish, the conus papillaris of lizards, the pecten oculi of birds, the intraretinal vessels of mammals and a few novel systems that remain difficult to classify. These vascular systems are among the most variable features of the vertebrate eye. Here, we review classical and recent findings regarding such retinal nutrition systems, propose a three category classification for them based on histologic origins and speculate on the evolutionary forces which drove their development.  相似文献   

7.
Dipolyunsaturated phosphatidylcholines from bovine retina contain a whole series of unusual fatty acids. Methyl esters from these acids are very strongly retained on polar and nonpolar gas-liquid chromatography stationary phases. On thin layers of silica-AgNO3, they separate as tetra-, penta-, and hexaenoic fatty acid methyl esters. After hydrogenation, the three polyunsaturated fractions give the same series of saturated methyl esters, having 20 (or 22)-36 carbon atoms. High pressure liquid chromatography, as well as gas-liquid chromatography, indicates that the new components of the three fractions are even-carbon homologs of well known polyenoic fatty acids of the n-6 and n-3 families, since they behave as series of 20-36-carbon tetraenoic (n-6), pentaenoic (n-3 and n-6), and hexaenoic (n-3) fatty acids. Their occurrence in phospholipid molecules also having docosahexaenoate (22:6) explains the separation of major dipolyunsaturated phosphatidylcholines from retina into dodecaenoic, undecaenoic, and decaenoic fractions after argentation thin layer chromatography. Using high pressure liquid chromatography, the latter are resolved into individual species having 10-12 double bonds and 42-58 carbon atoms. The unusual PCs are thus endowed not only with the highest degree of unsaturation, but with the longest hydrocarbon chains yet reported for vertebrate glycerophospholipids. It is shown that phosphatidylcholines containing the novel fatty acids are highly concentrated in photoreceptor membranes and that they occur in the retina of vertebrates so distant in evolution as fish, birds, and various mammals.  相似文献   

8.
9.
Human short-chain dehydrogenases/reductases with dual retinol/sterol substrate specificity (RODH-like enzymes) are thought to contribute to the oxidation of retinol for retinoic acid biosynthesis and to the metabolism of androgenic and neuroactive 3alpha-hydroxysteroids. Here, we investigated the phylogeny and orthology of these proteins to understand better their origins and physiological roles. Phylogenetic and genomic analysis showed that two proteins (11-cis-RDH and RDHL) are highly conserved, and their orthologs can be identified in the lower taxa, such as amphibians and fish. Two other proteins (RODH-4 and 3alpha-HSD) are significantly less conserved. Orthologs for 3alpha-HSD are present in all mammals analyzed, whereas orthologs for RODH-4 can be identified in some mammalian species but not in others due to species-specific gene duplications. Understanding the evolution and divergence of RODH-like enzymes in various vertebrate species should facilitate further investigation of their in vivo functions using animal models.  相似文献   

10.
Structures identified as subsurface cisterns (SSC's) were found in retinal neurons and their processes in the Western grey squirrel, the California and 13-line ground squirrels, the South African clawed toad, and the domestic cat. The SSC's are located in amacrine, bipolar, and ganglion cells; they are connected with the rough endoplasmic reticulum and are associated with specific membrane specializations. SSC's were not seen in the Müller cells, an observation which agrees with earlier reports that these organelles do not exist in glial cells.  相似文献   

11.
In the central nervous system (CNS), the inhibitory transmitter GABA interacts with three subtypes of GABA receptors, type A, type B, and type C. Historically, GABA receptors have been classified as either the inotropic GABAA receptors or the metabotropic GABAB receptors. Over the past 10 yr, studies have shown that a third class, called the GABAC receptor, also exists. GABAC receptors are found primarily in the vertebrate retina and to some extent in other parts of the CNS. Although GABAA and GABAC receptors both gate chloride channels, they are pharmacologically, molecularly, and functionally distinct. The ρ subunit of the GABAC receptor, which has about 35% amino acid homology to GABAA receptor subunits, was cloned from the retina and, when expressed inXenopus oocytes, has properties similar to retinal GABAC receptors. There are probably distinct roles for GABAC receptors in the retina, because they are found on only a subset of neurons, whereas GABAA receptors are ubiquitous. This article reviews recent electrophysiological and molecular studies that have characterized the unique properties of GABAC receptors and describes the roles that these receptors may play in visual information processing in the retina.  相似文献   

12.
The calcium sensitive dehydrogenases of vertebrate mitochondria   总被引:2,自引:0,他引:2  
Three important dehydrogenases in vertebrate mitochondria are activated by Ca2+ ions with half-maximal effects at about 1 microM. These are pyruvate dehydrogenase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase. Activation of these enzymes can also be demonstrated within intact mitochondria when extramitochondrial Ca2+ is increased within the range of concentrations generally considered to occur in the cytoplasm of vertebrate cells. It is argued that the main role of the calcium transport system in the inner membrane of vertebrate mitochondria is to relay changes in the cytoplasmic concentration of Ca2+ into the mitochondrial matrix. In this way, hormones and other extracellular stimuli which stimulate ATP-requiring processes such as contraction and secretion through increases in the cytoplasmic concentration of Ca2+ may also increase intramitochondrial oxidative metabolism and hence the replenishment of ATP.  相似文献   

13.
Programmed cell death occurs naturally, as a physiological process, during the embryonic development of multicellular organisms. In the retina, which belongs to the central nervous system, at least two phases of cell death have been reported to occur during development. An early phase takes place concomitant with the processes of neurogenesis, cell migration and cell differentiation. A later phase affecting mainly neurons occurs when connections are established and synapses are formed, resulting in selective elimination of inappropriate connections. This pattern of cell death in the developing retina is common among different vertebrates. However, the timing and magnitude of retinal cell death varies among species. In addition, a precise regulation of apoptosis during retinal development has been described. Factors such as neurotrophins, among many others, and electrical activity influence the survival of retinal cells during the course of development. In this paper, we present a summary of these different aspects of programmed cell death during retinal development, and examine how these differ among different species.  相似文献   

14.
In this paper a mathematical model of the retina was proposed to clarify the spatio-temporal information processing mechanism in the retina of vertebrates. In order to explain spatio-temporal characteristics of an on-center receptive field of a ganglion cell, excitatory and inhibitory cell layers were introduced of which time lags increased with the lateral distance from a point of stimulation. The characteristics of this model were found to agree well with the physiological data: e.g., this model shows on-response to the input stimulus given on the center, off-response to the input on the surround, and on-off response to the input on the border between on- and off-response regions of the on-center field.  相似文献   

15.
The distribution of N-acetyl-lactosamine (NALA), a cell-surface carbohydrate epitope of the lactoseries, has been studied in the retina of representative species of all vertebrate classes by light microscope immunohistochemistry. In only some species of different classes (fish, amphibia and mammals) was NALA expression detected, and in these animals the distribution showed profound interspecies variability. In fishes and amphibia in which NALA was present, patterns ranged from single immunopositive cells to homogeneous labelling of cell layers. In mammals, NALA was found only in retinas that are cone dominated (tree squirrel and primates). In the tree squirrel, there was a dense cellular staining of the photoreceptor cell layer; whereas in primates, the carbohydrate epitope occur red only on some photoreceptor cells. From these receptor cells, positi ve axons could be traced to the inner plexiform layer. In spite of the profound interspecies differences, NALA is not randomly expressed, as its exclusive expression in mammals with cone- dominated vision indicates. The suggestion of a functional relevance for NALA glycosylation of retinal cells is supported by the labelling pattern for HNK-1 in these species, which was different from the pattern found in rod-dominated mammalian retinas. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
In the present work we investigate the neuronal activities in a vertebrate retina by modelling and simulations using the results of (Oguztöreli, 1979). The basic retinal network considered here consists of interconnected five neurons: a receptor cell (rod or cone), a horizontal cell, a bipolar cell, an amacrine cell, and a retinal ganglion cell. The mathematical model for the basic network is a system of nonlinear ordinary integral differential difference equations. A number of simulations describing the dynamics of the neural activities in the basic network under different conditions are presented, actual and steady-state solutions are discussed. An algorithm is proposed for the determination of the system parameters experimentally.This work was supported by the Natural Sciences and Engineering Research Council Canada under Grant NSERCA-4345 through the University of Alberta  相似文献   

17.
《Developmental neurobiology》2017,77(9):1114-1129
We evaluated the expression and function of the microglia‐specific growth factor, Progranulin‐a (Pgrn‐a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn‐a is expressed throughout the forebrain, but by 48 hpf pgrn‐a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn‐a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed—retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn‐a knockdown. Depleting Pgrn‐a results in a significant lengthening of the cell cycle. These data suggest that Pgrn‐a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn‐a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114–1129, 2017  相似文献   

18.
Soluble enzyme preparations from leaves of Foeniculum vulgare catalysed the pyridine nucleotide-dependent dehydrogenation of l-endo-fenchol to d-fenchone, while similar preparations from Tanacetum vulgare catalysed the pyridine nucleotide-dependent dehydrogenation of d-3-thujanol to d-3-thujone. The monoterpenol dehydrogenases were separated from alcohol (ethanol) dehydrogenase by gel-permeation chromatography, and the MW, pH optimum, cofactor preference and other general properties of these enzymes were examined. Specificity studies indicated that only a narrow range of monoterpenols, related to those structural classes produced in vivo, were oxidized by these dehydrogenases.  相似文献   

19.
Our recent studies have shown that endogenous zinc, co‐released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co‐released with glutamate by photoreceptors, provides an auto‐feedback system that plays an important cytoprotective role in the retina.

  相似文献   


20.
The distribution of taurine in the vertebrate retina   总被引:15,自引:9,他引:6  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号