首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

2.

Background and Aims

Invasive plants are potential agents of disruption in plant–pollinator interactions. They may affect pollinator visitation rates to native plants and modify the plant–pollinator interaction network. However, there is little information about the extent to which invasive pollen is incorporated into the pollination network and about the rates of invasive pollen deposition on the stigmas of native plants.

Methods

The degree of pollinator sharing between the invasive plant Carpobrotus affine acinaciformis and the main co-flowering native plants was tested in a Mediterranean coastal shrubland. Pollen loads were identified from the bodies of the ten most common pollinator species and stigmatic pollen deposition in the five most common native plant species.

Key Results

It was found that pollinators visited Carpobrotus extensively. Seventy-three per cent of pollinator specimens collected on native plants carried Carpobrotus pollen. On average 23 % of the pollen on the bodies of pollinators visiting native plants was Carpobrotus. However, most of the pollen found on the body of pollinators belonged to the species on which they were collected. Similarly, most pollen on native plant stigmas was conspecific. Invasive pollen was present on native plant stigmas, but in low quantity.

Conclusions

Carpobrotus is highly integrated in the pollen transport network. However, the plant-pollination network in the invaded community seems to be sufficiently robust to withstand the impacts of the presence of alien pollen on native plant pollination, as shown by the low levels of heterospecific pollen deposition on native stigmas. Several mechanisms are discussed for the low invasive pollen deposition on native stigmas.Key words: Alien plant, Carpobrotus aff. acinaciformis, competition for pollinators, invasion, Mediterranean shrubland, plant-pollinator network, pollen loads, pollinator visits, stigma  相似文献   

3.

Background and Aims

Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen. However, since pollen carryover in this species is limited, receipt of self pollen should increase rapidly for later flowers. Here the first direct experimental test of this hypothesis is described.

Methods

In order to link floral visitation sequences with selfing rates of individual flowers, replicate linear arrays were established, each composed of plants with unique genetic markers. This facilitated unambiguous assignment of paternity to all sampled progeny. A single wild bumble-bee was permitted to forage on each linear array, recording the order of floral visits on each display. Once fruits had matured, 120 fruits were harvested (four flowers from each of five floral displays in each of six arrays). Twenty-five seedlings from each fruit were genotyped and paternity was unambiguously assigned to all 3000 genotyped progeny.

Key Results

The order of pollinator probes on Mimulus floral displays strongly and significantly influenced selfing rates of individual fruits. Mean selfing rates increased from 21 % for initial probes to 78 % for the fourth flower probed on each display.

Conclusions

Striking among-flower differences in selfing rate result from increased deposition of geitonogamous (among-flower, within-display) self pollen as bumble-bees probe consecutive flowers on each floral display. The resulting heterogeneity in the genetic composition of sibships may influence seedling competition and the expression of inbreeding depression.Key words: Autogamy, bee, Bombus fervidus, floral display, geitonogamy, mating system, monkeyflower, Mimulus ringens, paternity analysis, pollen carryover, pollinator visitation sequence, self-fertilization  相似文献   

4.
Han Y  Dai C  Yang CF  Wang QF  Motley TJ 《Annals of botany》2008,102(3):473-479

Background and Aims

Anther appendages play diverse roles in anther dehiscence and pollen dispersal. This study aims to explore the pollen-dispensing mechanism triggered by special anther appendages in Incarvillea arguta.

Methods

Field studies were conducted to record floral characteristics, pollinator visitations, and flower–pollinator interactions. Measurements of flowers and pollinators were analysed statistically. Pollen counts following a series of floral manipulations were used to evaluate pollen dispensing efficiency and function of the anther appendages.

Key Results

Field observations determined that two species of Bombus (bumble-bees) were the primary pollinators of I. arguta with a mean visiting frequency of 1·42 visitations per flower h−1. The results display a diminishing pollen dispensing pattern; the proportion of remaining pollen removed by pollinators decreased from 27 % to 10 % and 7 % in subsequent visits. Anther appendages act as a trigger mechanism to dispense pollen. The arrangement of the anthers and appendages function to control pollen load and timing. Mechanical stimulation experiments revealed that one set of appendages is only triggered by stimulation in the direction moving into the flower, while the other set is only triggered by stimulation in the opposite direction (exiting the flower).

Conclusions

The anther appendage is a pollen-dispensing trigger mechanism. The configuration of the stamens and duel trigger system has evolved to allocate pollen in allotments to enhance male function.Key words: Incarvillea arguta, anther appendage, pollination biology, Bignoniaceae, stamen morphology, pollen dispensing  相似文献   

5.

Background and Aims

Floral rewards may be associated with certain morphological floral traits and thus act as underlying factors promoting selection on these traits. This study investigates whether some traits that are under pollinator-mediated selection (flower number, stalk height, corolla diameter, corolla tube length and corolla tube width) in the Mediterranean herb E. mediohispanicum (Brassicaceae) are associated with rewards (pollen and nectar).

Methods

During 2005 the phenotypic traits and the visitation rate of the main pollinator functional groups were quantified in 720 plants belonging to eight populations in south-east Spain, and during 2006 the same phenotypic traits and the reward production were quantified in 400 additional plants from the same populations.

Key Results

A significant correlation was found between nectar production rate and corolla tube length, and between pollen production and corolla diameter. Visitation rates of large bees and butterflies were significantly higher in plants exhibiting larger flowers with longer corolla tubes.

Conclusions

The association between reward production and floral traits may be a factor underlying the pattern of visitation rate displayed by some pollinators.Key words: Erysimum, floral traits, nectar, pollen, pollinator visitation rate, reward  相似文献   

6.

Background and Aims

Plants surrounded by individuals of other co-flowering species may suffer a reproductive cost from interspecific pollen transfer (IPT). However, differences in floral architecture may reduce or eliminate IPT.

Methods

A study was made of Pedicularis densispica (lousewort) and its common co-flowering species, Astragalus pastorius, to compare reproductive and pollination success of lousewort plants from pure and mixed patches. Floral architecture and pollinator behaviour on flowers of the two plants were compared along with the composition of stigmatic pollen load of the louseworts. The extent of pollen limitation of plants from pure and mixed patches was also explored through supplemental pollination with self- and outcross pollen (PLs and PLx).

Key Results

Mixed patches attracted many more nectar-searching individuals of Bombus richardsi. These bumble-bees moved frequently between flowers of the two species. However, they pollinated P. densispica with their dorsum and A. pastorius with their abdomen. This difference in handling almost completely eliminated IPT. Lousewort plants from mixed patches yielded more seeds, and seeds of higher mass and germinability, than those from pure patches. Moreover, louseworts from mixed patches had lower PLs and PLx compared with those from pure patches.

Conclusions

Differences in floral architecture induced differences in pollinator behaviour that minimized IPT, such that co-flowering plants significantly enhanced quantity and quality of pollinator visits for the lousewort plants in patchy habitat. These findings add to our understanding of the mechanisms of pollination facilitation.  相似文献   

7.

Background and Aims

Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient.

Methods

Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations.

Key Results

The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers.

Conclusions

Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds.  相似文献   

8.

Background and Aims

A number of different types of flower-visiting animals coexist in any given habitat. What evolutionary and ecological factors influence the subset of these that a given plant relies on for its pollination? Addressing this question requires a mechanistic understanding of the importance of different potential pollinators in terms of visitation rate (pollinator ‘quantity’) and effectiveness at transferring pollen (pollinator ‘quality’) is required. While bat-pollinated plants typically are highly specialized to bats, there are some instances of bat-pollinated plants that use other pollinators as well. These generalized exceptions tend to occur in habitats where bat ‘quantity’ is poor due to low or fluctuating bat densities.

Methods

Aphelandra acanthus occurs in tropical cloud forests with relatively high densities of bat visitors, yet displays a mix of floral syndrome characteristics, suggesting adaptation to multiple types of pollinators. To understand its pollination system better, aspects of its floral phenology and the ‘quantity’ and ‘quality’ components of pollination by its floral visitors are studied here.

Key Results

Flowers were found to open and senesce throughout the day and night, although anther dehiscence was restricted to the late afternoon and night. Videotaping reveals that flowers are visited nocturnally by bats and moths, and diurnally by hummingbirds. Analysis of pollen deposition shows that bats regularly transfer large amounts of conspecific pollen, while hummingbirds occasionally transfer some pollen, and moths rarely do so.

Conclusions

Hummingbirds and bats were comparable in terms of pollination ‘quantity’, while bats were the most effective in terms of ‘quality’. Considering these components together, bats are responsible for approx. 70 % of A. acanthus pollination. However, bats also transferred remarkably large amounts of foreign pollen along with the conspecific grains (three of four grains were foreign). It is suggested that the negative effects of interspecific pollen transfer may decrease bat ‘quality’ for A. acanthus, and thus select for generalization on multiple pollinators instead of specialization on bats.Key words: Specialization, generalization, pollinator effectiveness, hummingbirds, floral syndrome, bat pollination, chiropterophily, ornithophily, cloud forest, heterospecific pollen transfer  相似文献   

9.

Background

It is normally thought that deep corolla tubes evolve when a plant''s successful reproduction is contingent on having a corolla tube longer than the tongue of the flower''s pollinators, and that pollinators evolve ever-longer tongues because individuals with longer tongues can obtain more nectar from flowers. A recent model shows that, in the presence of pollinators with long and short tongues that experience resource competition, coexisting plant species can diverge in corolla-tube depth, because this increases the proportion of pollen grains that lands on co-specific flowers.

Methodology/Principal Findings

We have extended the model to study whether resource competition can trigger the co-evolution of tongue length and corolla-tube depth. Starting with two plant and two pollinator species, all of them having the same distribution of tongue length or corolla-tube depth, we show that variability in corolla-tube depth leads to divergence in tongue length, provided that increasing tongue length is not equally costly for both species. Once the two pollinator species differ in tongue length, divergence in corolla-tube depth between the two plant species ensues.

Conclusions/Significance

Co-evolution between tongue length and corolla-tube depth is a robust outcome of the model, obtained for a wide range of parameter values, but it requires that tongue elongation is substantially easier for one pollinator species than for the other, that pollinators follow a near-optimal foraging strategy, that pollinators experience competition for resources and that plants experience pollination limitation.  相似文献   

10.

Background and Aims

Pollinator landscapes, as determined by pollinator morphology/behaviour, can vary inter- or intraspecifically, imposing divergent selective pressures and leading to geographically divergent floral ecotypes. Assemblages of plants pollinated by the same pollinator (pollinator guilds) should exhibit convergence of floral traits because they are exposed to similar selective pressures. Both convergence and the formation of pollination ecotypes should lead to matching of traits among plants and their pollinators.

Methods

We examined 17 floral guild members pollinated in all or part of their range by Prosoeca longipennis, a long-proboscid fly with geographic variation in tongue length. Attractive floral traits such as colour, and nectar properties were recorded in populations across the range of each species. The length of floral reproductive parts, a mechanical fit trait, was recorded in each population to assess possible correlation with the mouthparts of the local pollinator. A multiple regression analysis was used to determine whether pollinators or abiotic factors provided the best explanation for variation in floral traits, and pollinator shifts were recorded in extralimital guild member populations.

Key Results

Nine of the 17 species were visited by alternative pollinator species in other parts of their ranges, and these displayed differences in mechanical fit and attractive traits, suggesting putative pollination ecotypes. Plants pollinated by P. longipennis were similar in colour throughout the pollinator range. Tube length of floral guild members co-varied with the proboscis length of P. longipennis.

Conclusions

Pollinator shifts have resulted in geographically divergent pollinator ecotypes across the ranges of several guild members. However, within sites, unrelated plants pollinated by P. longipennis are similar in the length of their floral parts, most probably as a result of convergent evolution in response to pollinator morphology. Both of these lines of evidence suggest that pollinators play an important role in selecting for certain floral traits.  相似文献   

11.

Background and Aims

Plant populations experiencing divergent pollination environments may be under selection to modify floral traits in ways that increase both attractiveness to and efficiency of novel pollinators. These changes may come at the cost of reducing overall effectiveness of other pollinators. The goal of this study was to examine differences in attractiveness and efficiency between Clarkia concinna and C. breweri, sister species of annual plants with parapatric distributions.

Methods

An assessment was made as to whether observed differences in visitors between natural populations are driven by differences in floral traits or differences in the local pollination environment. Differences in floral attractiveness were quantified by setting out arrays of both species in the geographical range of each species and exposing both species to nocturnal hawkmoths (Hyles lineata) in flight cages. Differences in visitor efficiency were estimated by measuring stigma–visitor contact frequency and pollen loads for diurnal visitors, and pollen deposition on stigmas for hawkmoths.

Key Results

The composition of visitors to arrayed plants was similar between plant species at any particular site, but highly divergent among sites, and reflected differences in visitors to natural populations. Diurnal insects visited both species, but were more common at C. concinna populations. Hummingbirds and hawkmoths were only observed visiting within the range of C. breweri. Despite attracting similar species when artificially presented together, C. concinna and C. breweri showed large differences in pollinator efficiency. All visitors except hawkmoths pollinated C. concinna more efficiently.

Conclusions

Differences in the available pollinator community may play a larger role than differences in floral traits in determining visitors to natural populations of C. concinna and C. breweri. However, floral traits mediate differences in pollinator efficiency. Increased effectiveness of the novel hawkmoth pollinator on C. breweri comes at relatively little cost in attractiveness to other visitors, but at large cost in their efficiency as pollinators.  相似文献   

12.

Background and Aims

The period between the beginning of anthesis and flower senescence modulates the transport of pollen by pollinators among conspecific flowers, and its length may therefore influence reproductive success. This study evaluated whether floral longevity favours pollen removal from the anthers over fecundity (seed set) in an ornithophilous species that does not undergo pollen limitation.

Methods

Field investigations were conducted on floral longevity, nectar production, pollinator behaviour, and variations in fruit set (FS), mean number of seeds per fruit (MSF) and pollen removal by hummingbirds (PR) during the anthesis of Salvia sellowiana in south-east Brazil.

Key Results

Anthesis of flowers exposed to pollinators lasted 4 d, as well as on flowers with pollen removed from the anthers or deposited on the stigma. The longevity of bagged flowers was significantly higher (approx. 9 d). FS and PR reached 87·2 and 90 %, respectively, in natural conditions. PR increased gradually over the period of anthesis; however, FS and MSF reached their maxima in the first hours of anthesis. Nectar production was continuous, but the secretion rate was reduced after pollination. The removal of nectar from non-pollinated flowers stimulated its production.

Conclusions

The longevity of anthesis in S. sellowiana seems to be related to the mechanism of gradual dispensing of pollen, resulting in greater male reproductive success. This is in agreement with the pollen-donation hypothesis. The small number of ovules (four) of S. sellowiana and the high frequency and the foraging mode of its pollinators may favour the selection for floral longevity driven by male fitness in this system.  相似文献   

13.

Background and Aims

Although urban gardens provide opportunities for pollinators in an otherwise inhospitable environment, most garden plants are not native to the recipient biogeographical region and their value to local pollinators is disputed. This study tested the hypothesis that bumblebees foraging in English urban gardens preferentially visited sympatric Palaearctic-range plants over species originating outside their native range.

Methods

Twenty-seven surveys of flower availability and bumblebee visitation (Bombus spp.) were conducted over a 3-month summer period. Plants were categorized according to whether they were native British, Palaearctic or non-Palaearctic in origin. A phylogeny of the 119 plant species recorded was constructed and the relationship between floral abundance and the frequency of pollinator visits investigated by means of phylogenetically independent contrasts. Differentiation in utilization of plant species by the five bumblebee species encountered was investigated using niche overlap analyses.

Key Results

There was conflicting evidence for preferential use of native-range Palaearctic plant species by bumblebees depending on which plants were included in the analysis. Evidence was also found for niche partitioning between species based on respective preferences for native and non-native biogeographical range plants. Two bumblebees (Bombus terrestris and B. pratorum) concentrated their foraging activity on non-Palaearctic plants, while two others (B. hortorum and B. pascourum) preferred Palaearctic species.

Conclusions

The long-running debate about the value of native and non-native garden plants to pollinators probably stems from a failure to properly consider biogeographical overlap between plant and pollinator ranges. Gardeners can encourage pollinators without consideration of plant origin or bias towards ‘local’ biogeographical species. However, dietary specialist bumblebees seem to prefer plants sympatric with their own biogeographical range and, in addition to the cultivation of these species in gardens, provision of native non-horticultural (‘weed’) species may also be important for pollinator conservation.  相似文献   

14.

Background and Aims

Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae).

Methods

Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively.

Key Results

All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees'' bodies.

Conclusions

The Pedicularis species studied in the eastern Himalayan region did not conform with Grant''s ‘Pedicularis Model’ of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners.  相似文献   

15.

Backgrounds and Aims

A current challenge in coevolutionary biology is to understand how suites of traits vary as coevolving lineages diverge. Floral scent is often a complex, variable trait that attracts a suite of generalized pollinators, but may be highly specific in plants specialized on attracting coevolved pollinating floral parasites. In this study, floral scent variation was investigated in four species of woodland stars (Lithophragma spp.) that share the same major pollinator (the moth Greya politella, a floral parasite). Three specific hypotheses were tested: (1) sharing the same specific major pollinator favours conservation of floral scent among close relatives; (2) selection favours ‘private channels’ of rare compounds particularly aimed at the specialist pollinator; or (3) selection from rare, less-specialized co-pollinators mitigates the conservation of floral scent and occurrence of private channels.

Methods

Dynamic headspace sampling and solid-phase microextraction were applied to greenhouse-grown plants from a common garden as well as to field samples from natural populations in a series of experiments aiming to disentangle the genetic and environmental basis of floral scent variation.

Key Results

Striking floral scent divergence was discovered among species. Only one of 69 compounds was shared among all four species. Scent variation was largely genetically based, because it was consistent across field and greenhouse treatments, and was not affected by visits from the pollinating floral parasite.

Conclusions

The strong divergence in floral scents among Lithophragma species contrasts with the pattern of conserved floral scent composition found in other plant genera involved in mutualisms with pollinating floral parasites. Unlike some of these other obligate pollination mutualisms, Lithophragma plants in some populations are occasionally visited by generalist pollinators from other insect taxa. This additional complexity may contribute to the diversification in floral scent found among the Lithophragma species pollinated by Greya moths.  相似文献   

16.

Background and Aims

The number of flowers blooming simultaneously on a plant may have profound consequences for reproductive success. Large floral displays often attract more pollinator visits, increasing outcross pollen receipt. However, pollinators frequently probe more flowers in sequence on large displays, potentially increasing self-pollination and reducing pollen export per flower. To better understand how floral display size influences male and female fitness, we manipulated display phenotypes and then used paternity analysis to quantify siring success and selfing rates.

Methods

To facilitate unambiguous assignment of paternity, we established four replicate (cloned) arrays of Mimulus ringens, each consisting of genets with unique combinations of homozygous marker genotypes. In each array, we trimmed displays to two, four, eight or 16 flowers. When fruits ripened, we counted the number of seeds per fruit and assigned paternity to 1935 progeny.

Key Results

Siring success per flower declined sharply with increasing display size, while female success per flower did not vary with display. The rate of self-fertilization increased for large floral displays, but siring losses due to geitonogamous pollen discounting were much greater than siring gains through increased self-fertilization. As display size increased, each additional seed sired through geitonogamous self-pollination was associated with a loss of 9·7 seeds sired through outcrossing.

Conclusions

Although total fitness increased with floral display size, the marginal return on each additional flower declined steadily as display size increased. Therefore, a plant could maximize fitness by producing small displays over a long flowering period, rather than large displays over a brief flowering period.  相似文献   

17.

Background and Aims

Plant–pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia.

Methods

Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population.

Key Results

Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site.

Conclusions

The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts.  相似文献   

18.

Background and Aims

If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome.

Methods

Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations.

Key Results

Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus.

Conclusions

This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome.  相似文献   

19.
Modelling pollination services across agricultural landscapes   总被引:2,自引:0,他引:2  

Background and Aims

Crop pollination by bees and other animals is an essential ecosystem service. Ensuring the maintenance of the service requires a full understanding of the contributions of landscape elements to pollinator populations and crop pollination. Here, the first quantitative model that predicts pollinator abundance on a landscape is described and tested.

Methods

Using information on pollinator nesting resources, floral resources and foraging distances, the model predicts the relative abundance of pollinators within nesting habitats. From these nesting areas, it then predicts relative abundances of pollinators on the farms requiring pollination services. Model outputs are compared with data from coffee in Costa Rica, watermelon and sunflower in California and watermelon in New Jersey–Pennsylvania (NJPA).

Key Results

Results from Costa Rica and California, comparing field estimates of pollinator abundance, richness or services with model estimates, are encouraging, explaining up to 80 % of variance among farms. However, the model did not predict observed pollinator abundances on NJPA, so continued model improvement and testing are necessary. The inability of the model to predict pollinator abundances in the NJPA landscape may be due to not accounting for fine-scale floral and nesting resources within the landscapes surrounding farms, rather than the logic of our model.

Conclusions

The importance of fine-scale resources for pollinator service delivery was supported by sensitivity analyses indicating that the model''s predictions depend largely on estimates of nesting and floral resources within crops. Despite the need for more research at the finer-scale, the approach fills an important gap by providing quantitative and mechanistic model from which to evaluate policy decisions and develop land-use plans that promote pollination conservation and service delivery.Key words: Agriculture, bees, ecosystem services, landscape ecology, model, land use, pollinators  相似文献   

20.

Background and Aims

The effect of pollination on flower life span has been widely studied, but so far little attention has been paid to the reproductive consequences of delayed pollination in plants with long floral life spans. In the present study, Polygala vayredae was used to answer the following questions. (1) How does male and female success affect the floral longevity of individual flowers? (2) How does delaying fertilization affect the female fitness of this species?

Methods

Floral longevity was studied after experimental pollinations involving male and/or female accomplishment, bagging and open pollination. The reproductive costs of a delay in the moment of fertilization were evaluated through fruit set, seed–ovule ratio and seed weight, after pollination of flowers that had been bagged for 2–18 d.

Key Results

Senescence of the flowers of P. vayredae was activated by pollen reception on the stigmatic papillae, while pollen removal had no effect on floral longevity. Nonetheless, a minimum longevity of 8 d was detected, even after successful pollination and pollen dissemination. This period may be involved with the enhancement of male accrual rates, as the female accomplishment is generally achieved after the first visit. Floral life span of open-pollinated flowers was variable and negatively correlated with pollinator visitation rates. Delayed pollination had a major impact on the reproductive success of the plant, with fruit set, seed–ovule ratio and seed weight being significantly diminished with the increase of flower age at the moment of fertilization.

Conclusions

A strong relationship between pollination and floral longevity was observed. Flowers revealed the ability to extend or reduce their longevity, within some limits, in response to the abundance of efficient pollinators (i.e. reproductive fulfilment rates). Furthermore, with scarce or unpredictable pollinators, a long floral life span could maintain the opportunity for fertilization but would also have reproductive costs on production of offspring. Reduced female fitness late in the flower''s life could shift the cost–benefit balance towards a shorter life span, partially counteracting the selection for longer floral life span potentially mediated by scarce pollination services.Key words: Delayed pollination, endemic species, flower longevity, life span, pollen limitation, pollination, pollinator scarcity, Polygala vayredae, Polygalaceae, reproductive consequences, secondary pollen presentation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号