首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Helicobacter spp. are some of the most prevalent bacterial contaminants of laboratory mice. Although abundant data regarding the diseases associated with H. hepaticus infection are available, little is known about the pathogenicity of H. ganmani, which was first isolated in 2001 from the intestines of laboratory mice. The objective of this study was to evaluate the host response to H. ganmani colonization in H. hepaticus disease-resistant C57BL/6 and disease-susceptible A/J and IL10-deficient mice. Mice were inoculated with H. ganmani, H. hepaticus, or Brucella broth. Cecal lesion scores, cecal gene expression, and Helicobacter load were measured at 4 and 90 d after inoculation. At both time points, mice inoculated with H. ganmani had similar or significantly more copies of cecum-associated Helicobacter DNA than did mice inoculated with H. hepaticus. When compared with those of sham-inoculated control mice, cecal lesion scores at 4 and 90 d after inoculation were not significantly greater in H. ganmani-inoculated A/J, C57BL/6, or IL10-deficient mice. Analysis of cecal gene expression demonstrated that H. ganmani infection failed to cause significant elevations of IFNγ in A/J, C57BL/6, or IL10-deficient mice. However, in IL10-deficient mice, H. ganmani infection was associated with a significant increase in the expression of the proinflammatory cytokine IL12/23p40. Although H. ganmani infection in this study failed to induce the typhlitis that is the hallmark of H. hepaticus infection, infection with H. ganmani was associated with alterations in inflammatory cytokines in IL10-deficient mice.Abbreviations: B6, C57BL/6NCr; HPRT, hypoxanthine guanine phosphoribosyl transferase; IL10 KO, B6129P2-IL10tm1Cgn/JSince the discovery of the link between Helicobacter pylori and chronic gastritis in 1982,17 Helicobacter spp. in humans and animals have become a field of extensive study. Due to improved detection methods, there has been a rapid expansion in our understanding and ability to detect native Helicobacter spp. in mouse models. Several reports investigating their prevalence in mice housed in research institutions have found Helicobacter spp. to be some of the most common bacterial contaminants of laboratory rodents.2,3,12,16,23 Helicobacter hepaticus is perhaps the most notorious of the murine helicobacters, by virtue of the early realization of its pathogenicity in adult mice.8,24 The hallmarks of infection by H. hepaticus are typhlitis, colitis, and hepatitis.10 In addition, H. hepaticus is commonly used as a microbial trigger in susceptible mouse strains used as models of inflammatory bowel disease.5,9,19,21,28 In 2001, less than 10 y after H. hepaticus was discovered, H. ganmani was isolated from the intestines of laboratory mice.26 During its initial characterization, 16S rDNA sequence analysis placed H. ganmani phylogenetically closest to H. rodentium, a urease-negative helicobacter that had been previously isolated from mouse intestines.26Despite the reported endemic presence of H. ganmani in many research colonies,2,3,12 only a few reports to date have attempted to address H. ganmani’s potential pathogenicity.22,30 One report describes an outbreak of inflammatory bowel-like disease associated with H. ganmani infection in an otherwise Helicobacter-free conventional colony of IL10-deficient mice.22 The findings from another report describe the effect of natural colonization of IL10-deficient mice with H. ganmani, H. hepaticus, or both.30 In that study, 8- to 20-wk-old mice monoinfected with H. ganmani had significantly lower lesion scores than did mice monoinfected with H. hepaticus, suggesting that infection with H. ganmani alone was not sufficient to cause severe typhlocolitis.30 However, by 34 wk of age, clinical typhlocolitis (diarrhea) and grossly enlarged ceca were observed at necropsy in 2 of the 6 mice monoinfected with H. ganmani.30Although these reports of naturally occurring infections have provided a glimpse into H. ganmani’s potential to produce intestinal disease in immunodeficient mice, a controlled study in immunocompetent and immunodeficient mice had not been conducted previously. The objectives of the current study were to evaluate the effect of H. ganmani infection on intestinal disease and to characterize alterations of inflammatory gene expression associated with infection. To this end, we selected A/J and IL10-deficient mice for this study because of their known susceptibility to H. hepaticus-induced typhlocolitis.9,13,14,19,21,28 In contrast, although C57BL/6 mice show an initial spike in inflammatory cytokines after H. hepaticus infection, they do not typically develop chronic disease.19 We did not expect C57BL/6 mice to develop H. hepaticus-induced disease, but we deemed it prudent to characterize the possible effects—through unknown mechanisms—of H. ganmani on this common strain.Previous studies characterizing cecal gene expression during H. hepaticus induced typhlocolitis demonstrated that IFNγ and IL12/23p40 (IL12/23) are key proinflammatory cytokines that drive typhlitis.19 Expression of these cytokines was increased in H. hepaticus-inoculated A/J mice but not in H. hepaticus-inoculated C57BL/6 mice.19 In addition, treatment with neutralizing monoclonal antibodies against these cytokines significantly decreased cecal lesion severity, implicating the roles of IFNγ and IL12/23 in modulating the pathogenesis of typhlitis.19 We hypothesized that characterizing the effect of H. ganmani infection on expression of IFNγ and IL12/23 would uncover aspects of the host response that are not readily apparent by histologic evaluation of cecal tissue alone.To date, our understanding of the potential for H. ganmani to cause intestinal disease has been limited to reports that focused on the evaluation of histologic disease in naturally infected IL10-deficient mice. Despite the reported endemic presence of H. ganmani in many research colonies,2,3,12 there are no published reports of disease associated with H. ganmani infection in immunocompetent mice. In addition, H. ganmani shares close sequence homology with H. rodentium, which has been found to be nonpathogenic in monoinfected immunodeficient and immunocompetent mice.20 Therefore, we hypothesized that experimental infection with H. ganmani would not produce disease in H. hepaticus-susceptible or -resistant mice.  相似文献   

2.
Mycoplasmosis is a frequent causative microbial agent of community-acquired pneumonia and has been linked to exacerbation of chronic obstructive pulmonary disease. The macrophage class A scavenger receptor (SRA) facilitates the clearance of noxious particles, oxidants, and infectious organisms by alveolar macrophages. We examined wildtype and SRA−/− mice, housed in either individually ventilated or static filter-top cages that were cycled with fresh bedding every 14 d, as a model of gene–environment interaction on the outcome of pulmonary Mycoplasma pulmonis infection. Intracage NH3 gas measurements were recorded daily prior to infection. Mice were intranasally infected with 1 × 107 cfu M. pulmonis UAB CT and evaluated at 3, 7, and 14 d after inoculation. Wildtype mice cleared 99.5% of pulmonary M. pulmonis by 3 d after infection but remained chronically infected through the study. SRA−/− mice were chronically infected with 40-fold higher mycoplasma numbers than were wildtype mice. M. pulmonis caused a chronic mixed inflammatory response that was accompanied with high levels of IL1β, KC, MCP1, and TNFα in SRA−/− mice, whereas pulmonary inflammation in WT mice was represented by a monocytosis with elevation of IL1β. Housing had a prominent influence on the severity and persistence of mycoplasmosis in SRA−/− mice. SRA-/- mice housed in static cages had an improved recovery and significant changes in surfactant proteins SPA and SPD compared with baseline levels. These results indicate that SRA is required to prevent chronic mycoplasma infection of the lung. Furthermore, environmental conditions may exacerbate chronic inflammation in M. pulmonis-infected SRA−/− mice.Abbreviations: BAL, bronchoalveolar lavage; COPD, chronic obstructive pulmonary disease; KC, keratinocyte-derived chemokine (CXCL1); MCP1, monocyte chemotactic protein 1; SPA, surfactant protein A (SFTPA1); SPB, surfactant protein B (SFTPB); SPD, surfactant protein D (SFTPD); SRA, class A scavenger receptor (MSR1); WT, wildtypeThere are numerous options for the housing and husbandry of rodents in the laboratory setting. Various available choices in caging, bedding material, and cage-change frequency have the potential to effect physiologic values and thus experimental outcomes.20,108 In many facilities, current practices involve performing cage changes every 1 to 2 wk, with some facilities exploring the possibility of extending these practices to every 4 wk.97 Cage-change frequency practices are established at various institutions after consideration of several variables that affect animal health, welfare, and cost. Ideally, an appropriate sanitation program provides clean and dry bedding, adequate air quality, and clean cage surfaces and accessories.44 When establishing performance standards for a sanitation program that are different from those which are recommended in the Guide for the Care and Use of Animals in Research,44 microenvironmental conditions, including intracage humidity, temperature, animal behavior and appearance, microbiologic loads, and levels of pollutants such as CO2 and NH3, should be evaluated and verified. Although there are currently no established NH3 exposure limits for laboratory animals, the human occupational exposure limit of 25 ppm as an 8-h time-weighted average, established by the National Institute for Occupational Safety and Health, is often referenced as a guideline for animals.95 Multiple factors, such as animal cage density, sex, age, bedding type, reusable compared with disposable caging, static caging compared with IVC, and cage-change frequency, influence intracage and ambient NH3 levels.82,83,97 Only limited information is available that addresses the effect of natural intracage NH3 levels on respiratory function in experimental rodents and whether exposure to high NH3 levels under current standard practices affects the results of respiratory disease research.Ammonia is an alkaline, corrosive, and irritant gas that is very water soluble. It reacts with the moisture of the mucous membranes of the eyes, mouth, and respiratory tract to form ammonium hydroxide in an exothermic reaction, resulting in thermal and chemical burns.68 Clinical symptoms in humans exposed to high levels of NH3 include eye irritation, headaches, and multiple acute and chronic respiratory symptoms, such as irritation of the nose, pharynx, and sinuses, and in severe cases, development of bronchitis and hyper-reactive airway disease.79 Animals are similarly susceptible to NH3-induced pulmonary disease.23,31,48Mice exposed to naturally increasing levels of intracage NH3 can develop lesions in the rostral nasal cavity, with decreasing severity of the lesions moving caudally into the nasopharynx, and no lesions in the lung.97 However, dust is another common environmental pollutant that is often present in animal settings. Dust particles readily absorb NH3, which then serve as a source of NH3 deposition into the lower respiratory tract. Dust particulate can range from large (300 µm), minimally respirable particles to very fine (< 50 µm) particulate matter, which can settle deep within the alveoli.10,102 The mucociliary system of the respiratory tract is the first line of defense against inspired noxious stimuli and pathogens. Exposure of the ciliated respiratory epithelium to the damaging effects of NH3 are known to cause decreased mucociliary beating.56 Disruption of the respiratory mucociliary escalator initiated by NH3 exposure can then promote establishment of chronic infections and inflammation of the airway mucosa.11,87 Therefore, NH3 potentially can cause pathophysiologic changes of the lung in the absence of histopathologic lesions.Our primary goal was to analyze the effect of 2 housing modalities, which result in different intracage NH3 concentrations, on mice that were challenged with a respiratory pathogen. Mycoplasma pulmonis was chosen as a model because it is a well-established model in rodents which causes chronic mycoplasmosis and reproduces the features of M. pneumoniae in humans.22,41 M. pneumoniae infection is a frequent and contagious etiology of community-acquired pneumonia causing tracheobronchitis, sneezing, cough, and inflammation of the respiratory tract.8,12,47,63 Moreover, atypical and difficult-to-detect respiratory pathogens such as Chlamydophila pneumoniae and Mycoplasma pneumoniae that can establish chronic asymptomatic infections may contribute to both the development and exacerbation of COPD26,45,57,58,62,63,66,72,96,103 and asthma.8,51,65 Infection with M. pulmonis in rodents causes rhinitis, otitis media, tracheitis, and pneumonia, which can be exacerbated by housing conditions and genetic background.14,32,85 The mechanism of pathogenicity of mycoplasmas continues to be an area of interest in the research.The innate host factors protecting against pulmonary mycoplasmosis include the secreted surfactant protein opsonins SPA and SPD, surfactant phospholipids, and the molecular pattern-recognition receptor TLR2.15,16,54,74 Therefore, compared with their wildtype (WT) counterparts, SPA-deficient mice infected with either M. pulmonis or M. pneumoniae develop more severe inflammation and have decreased capacity to clear these infections from the lungs.43 In addition, TLR2-deficient mice exhibit decreased clearance and increased inflammation in response to mycoplasma infection.60,104Second, we wanted to study the effects of SRA deficiency in mycoplasmosis. The class A scavenger receptor (SRA) modulates inflammatory responses and mediates the clearance of airborne oxidants, particulates, and respiratory pathogens.3,17,18,49,88,101 Inhibition of SRA expression in alveolar macrophages in an elastase–LPS model of COPD was associated with decreased clearance of Haemophilus influenzae.33 Lack of SRA similarly impaired alveolar macrophage-mediated clearance of Streptococcus pneumoniae,5 environmental particles,6 and ozone-oxidized lipids18 by alveolar macrophages. Absence of SRA also enhanced hyperoxia-induced lung injury49 and exacerbated inflammation in response to Staphylococcus aureus infection.88 SRA appears to have antiinflammatory properties with the capacity to modify macrophage phenotype and suppress polarization toward the M1 alternative macrophage activation state.13 The SRA gene (MSR1) is polymorphic in both mice and humans.19,29,105 Genetic association studies in humans, however, showed that subjects with truncations or point mutations in MSR1 have significantly increased risk for the development of pulmonary diseases such as COPD33,38,71,94 and asthma.5 Our understanding of the immune factors that contribute to mycoplasmosis is far from complete.In the present study, by investigating the role of SRA in mycoplasmosis jointly with the effects of housing, we demonstrated that genetic and environmental factors both serve as critical players in disease progression. We show that SRA-deficient mice are susceptible to chronic colonization with M. pulmonis and development of chronic mycoplasma-induced bronchopneumonia characterized by persistent multicellular inflammation. Furthermore, we show that housing conditions influence the effect of SRA deficiency on the severity of mycoplasmosis. Taken together, these results indicate that lack of SRA function impairs host protection against both infectious and environmental insults.  相似文献   

3.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

4.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

5.
Enterohepatic Helicobacter species (EHS) often are associated with typhlocolitis and rectal prolapse in mice. We sought to describe rectal prolapses histologically, relate lesions to mouse genotype and EHS infection status, and characterize EHS pathogens on our campus. Our mouse population was housed among 6 facilities on our main campus and a seventh, nearby facility. We investigated cases of rectal prolapse over 1 y and included 76 mice, which were broadly categorized according to genotype. Microscopically, lesions ranged from mild to severe typhlocolitis, often with hyperplastic and dysplastic foci. Neoplastic foci tended to occur at the ileocecal–colic junction. Lesions were most severe in strains that had lower-bowel inflammatory disease, notably IL10, Rag1, and Rag2 knockout strains; prolapses occurred in these strains when housed both in areas with endemic EHS and in our Helicobacter-free barrier facility. Most mice with rectal prolapses were immunocompromised genetically modified mice; however, the most frequently sampled strain, the lamellipodin knockout, was noteworthy for its high incidence of rectal prolapse, localized distal colonic and rectal lesions, and lack of known immunodeficiency. This strain is being explored as a model of rectal carcinoma. Most of the colons examined tested PCR-positive for EHS, often with coinfections. Although H. bilis is prevalent on our campus, we did not find this organism in any mice exhibiting clinical signs of rectal prolapse. Identification of H. apodemus in 22% of cases has fueled increased surveillance on our campus to characterize this organism and differentiate it from the closely related H. rodentium.Abbreviations: EHS, enterohepatic Helicobacter species; IBD, inflammatory bowel disease; RFLP, restriction-fragment–length polymorphism; RP, rectal prolapseRectal prolapse (RP) occurs commonly in laboratory mice and is often associated with lower-bowel inflammation. Mice have a relatively short and poorly supported distal colon, which lacks a serosal covering.30 This anatomic weakness, coupled with a microbial insult, toxic injury, or space-occupying neoplastic masses within the gastrointestinal tract, are the predisposing factors for tenesmus and RP (Figure 1). In the context of microbial insults, the pathogenesis involves diffuse or multifocal inflammation in the more proximal segments of colon or distal colon, which can result in thickened edematous tissue and tenesmus, triggering a prolapse.6,30,40 Bacteria most often associated with this condition are the enterohepatic Helicobacter species (EHS) and Citrobacter rodentium; although in theory any pathogenic bacteria causing colitis may predispose mice to RP.1,11,13,38Open in a separate windowFigure 1.Mouse rectal prolapse. An example of the clinical presentation of rectal prolapse in laboratory mice. Note the attachment of bedding and nesting material in the film of mucous that frequently is seen covering the exposed rectal tissue. Generally the tissue becomes severely erythematous, as can be appreciated in this photograph.Although the clinical presentation of RP may occur in immunocompetent mice, it is most often associated with mice that have a spontaneous or transgenic mutation causing immunodeficiency.11,13,38 Indeed, these naturally occurring murine pathogens are used to model inflammatory bowel disease in strains that are highly susceptible to typhlocolitis with EHS infection; examples include Il10−/− and Rag-deficient mice.3,5,8,9,13,16,19,20,22,40 In addition, H. hepaticus and other EHS including H. typhlonius, H. rodentium, and H. bilis, which are known to persistently colonize the intestinal crypt of the lower bowel, have been shown to induce colitis-associated cancer in susceptible immunodeficient strains of mice.4,7,9,23,24,27,29,31In 1999, our institution introduced a rodent importation policy to reduce the introduction of murine pathogens. As part of this program, all approved commercial vendors were screened to ensure animals were SPF for EHS. Any random-source mice (typically imported from other academic institutions for collaborative projects) were required to be rederived by embryo transfer. In comparing PCR data between 1999 (prior to implementing the ET policy) and 2009, we found that after more than a decade of strict rederivation and husbandry practices that reduce fecal–oral transmission, EHS prevalence was markedly reduced.21 Despite this success, these practices did not completely eradicate rodent EHS. Of particular note, 2 facilities on campus house well-established long-term breeding colonies, many of which are unique transgenic lines with various immunodeficiencies, that are used primarily for immunology and cancer research. Rederivation of each of these strains was considered to be cost-prohibitive; thus EHS has remained endemic in these breeding colonies for more than a decade, as evident by our recent surveillance for EHS prevalence.21 The species known to be prevalent on our campus prior to the current study included H. hepaticus, H. rodentium, H. typhlonius, and H. bilis; in a few isolated areas, H. mastomyrinus was identified also.21Although EHS infections often are subclinical, we sought to correlate the presence of EHS-endemic areas with clinical lower-bowel inflammation (evident by rectal prolapse). In this survey of laboratory mice at our institution, we identified patterns in mouse strain susceptibility to RP, RP association with EHS, and histopathologic findings and correlated specific EHS species with clinical disease. Because we sought to study spontaneous infections, we excluded any mice on study with experimentally induced inflammatory bowel disease (IBD), including Helicobacter-induced IBD and chemically induced colitis models.From July 2011 to July 2012, a total of 63 mice with RP from these 6 facilities at our institution were necropsied as part of this investigation. In addition, 13 mice with RP were identified at a nearby research institute housing mice known to have endemic EHS.  相似文献   

6.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

7.
Infection of laboratory mice with murine noroviruses (MNV) is widely prevalent. MNV alters various mouse models of disease, including the Helicobacter bilis-induced mouse model of inflammatory bowel disease (IBD) in Mdr1a−/− mice. To further characterize the effect of MNV on IBD, we used mice deficient in the immunoregulatory cytokine IL10 (Il10−/− mice). In vitro infection of Il10−/− bone marrow-derived macrophages (BMDM) with MNV4 cocultured with H. bilis antigens increased the gene expression of the proinflammatory cytokines IL1β, IL6, and TNFα as compared with that of BMDM cultured with H. bilis antigens only. Therefore, to test the hypothesis that MNV4 infection increases inflammation and alters disease phenotype in H. bilis-infected Il10−/− mice, we compared the amount and extent of inflammation in Il10−/− mice coinfected with H. bilis and MNV4 with those of mice singly infected with H. bilis. IBD scores, incidence of IBD, or frequency of severe IBD did not differ between mice coinfected with H. bilis and MNV4 and those singly infected with H. bilis. Mice infected with MNV4 only had no appreciable IBD, comparable to uninfected mice. Our findings suggest that, unlike in Mdr1a−/− mice, the presence of MNV4 in Il10−/− mouse colonies is unlikely to affect the IBD phenotype in a Helicobacter-induced model. However, because MNV4 altered cytokine expression in vitro, our results highlight the importance of determining the potential influence of MNV on mouse models of inflammatory disease, given that MNV has a tropism for macrophages and dendritic cells and that infection is widely prevalent.Abbreviations: BMDM, bone marrow-derived macrophages; IBD, inflammatory bowel disease; MLN, mesenteric lymph node; MNV, murine norovirusInflammatory bowel disease (IBD), which includes both ulcerative colitis and Crohn disease, is a chronic and relapsing inflammatory disorder of the gastrointestinal tract. In addition, patients with IBD may be at increased risk of developing colorectal cancer.15,46 Although the exact mechanisms of disease are still not understood fully, the pathogenesis of disease is likely multifactorial, with components of the innate and adaptive immune systems, host genetics, and environmental factors (for example, the commensal gut microflora) all playing a role.4,37,55Animal models of IBD have been used to advance our knowledge and understanding of IBD pathogenesis and treatment.16,20,37,38,52 One such model that has been widely used to elucidate the mechanisms of IBD is the interleukin10–deficient (Il10−/−) mouse.3,5,6,20,21,29,33,57 The antiinflammatory cytokine IL10 modulates both innate and adaptive immune responses.41 Produced mainly by dendritic cells, monocytes, macrophages, and T regulatory cells, IL10 exerts its immunomodulatory effects by various mechanisms including decreasing secretion of proinflammatory cytokines (for example, interferon γ, IL1, IL2, IL6, IL12 and TNFα) and downregulating important components of innate immune responses and T-cell activation (for example, MHC class II, costimulatory molecules, and nitric oxide production) in antigen presenting cells.14,41 As a consequence, Il10−/− mice, which lack the suppressive effects of IL10, develop IBD in response to their commensal gut microflora or to certain microbial triggers such as Helicobacter infections.5,6,11,21,29,52,57Antigen-presenting cells such as macrophages and dendritic cells play key roles in the inflammatory responses in IBD.32,47,50 In 2003, a newly discovered murine norovirus (MNV) in laboratory mice was shown to infect macrophages and dendritic cells.27,53 Subsequent studies indicated widespread MNV infection in laboratory mice used for biomedical research, with a serologic prevalence as high as 32%.25,43 Members of the genus Norovirus are regarded as gastrointestinal pathogens in humans and animals, eliciting both innate and adaptive immune responses.19 Therefore, in light of the cellular (macrophages and dendritic cells) and tissue (gastrointestinal) tropisms of MNV as well as the high prevalence of MNV infection in laboratory mice, we hypothesized that MNV infection could be a potential confounder in mouse models of inflammatory diseases including IBD. In support of this idea, our laboratory recently reported that MNV infection in Mdr1a−/− mice (FVB.129P2-Abcb1atm1Bor) accelerated weight loss and exacerbated IBD progression initiated by H. bilis infection.31 This effect potentially was mediated in part through modulating dendritic cell and cytokine responses. In addition, others have reported gastrointestinal abnormalities as a result of MNV infection in some strains of mice,7,26,36 whereas others have described the importance of both innate and adaptive immune responses during MNV infection.8,9,10,28,34,36,48 Collectively, these data indicate that MNV could alter inflammatory responses in laboratory mice.Here we extended our studies of MNV beyond Mdr1a−/− mice to Il10−/− mice, another common animal model of IBD, to further examine the potential effect of MNV on IBD research. Disease was initiated in Il10−/− mice with H. bilis, and we determined whether coinfection with MNV altered disease development, incidence, and severity and the production of cytokines. We demonstrated that although MNV stimulates a Th1 skewing of cytokines in Il10−/− bone marrow-derived macrophages (BMDM) in vitro, MNV does not alter the development, incidence, or severity of disease in vivo. Therefore, although MNV may not affect disease in Il10−/− mouse models, the virus may influence in vitro cytokine phenotypes and thus complicate interpretation of such data. To our knowledge, this report is the first to describe the evaluation of MNV infection in the Helicobacter-induced Il10−/− mouse model of IBD.  相似文献   

8.
In the central nervous system (CNS), hyperglycemia leads to neuronal damage and cognitive decline. Recent research has focused on revealing alterations in the brain in hyperglycemia and finding therapeutic solutions for alleviating the hyperglycemia-induced cognitive dysfunction. Adiponectin is a protein hormone with a major regulatory role in diabetes and obesity; however, its role in the CNS has not been studied yet. Although the presence of adiponectin receptors has been reported in the CNS, adiponectin receptor-mediated signaling in the CNS has not been investigated. In the present study, we investigated adiponectin receptor (AdipoR)-mediated signaling in vivo using a high-fat diet and in vitro using neural stem cells (NSCs). We showed that AdipoR1 protects cell damage and synaptic dysfunction in the mouse brain in hyperglycemia. At high glucose concentrations in vitro, AdipoR1 regulated the survival of NSCs through the p53/p21 pathway and the proliferation- and differentiation-related factors of NSCs via tailless (TLX). Hence, we suggest that further investigations are necessary to understand the cerebral AdipoR1-mediated signaling in hyperglycemic conditions, because the modulation of AdipoR1 might alleviate hyperglycemia-induced neuropathogenesis.Adiponectin secreted by the adipose tissue1, 2 exists in either a full-length or globular form.3, 4, 5, 6 Adiponectin can cross the blood–brain barrier, and various forms of adiponectin are found in the cerebrospinal fluid.7, 8, 9, 10, 11 Adiponectin exerts its effect by binding to the adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2)12, 13 that have different affinities for the various circulating adiponectins.12, 14, 15, 16, 17 Several studies reported that both receptor subtypes are expressed in the central nervous system (CNS).7, 12, 18 As adiponectin modulates insulin sensitivity and inflammation,19 its deficiency induces insulin resistance and glucose intolerance in animals fed a high-fat diet (HFD).19, 20, 21 In addition, adiponectin can ameliorate the glucose homeostasis and increase insulin sensitivity.22, 23, 24 Adiponectin, which is the most well-known adipokine, acts mainly as an anti-inflammatory regulator,25, 26 and is associated with the onset of neurological disorders.27 In addition, a recent study reported that adiponectin promotes the proliferation of hippocampal neural stem cells (NSCs).28 Considering that adiponectin acts by binding to the adiponectin receptors, investigation of the adiponectin receptor-mediated signaling in the brain is crucial to understand the cerebral effects of adiponectin and the underlying cellular mechanisms.The prevalence of type II diabetes mellitus (DM2) and Alzheimer''s disease increases with aging.29 According to a cross-sectional study, in people with DM2, the risk of dementia is 2.5 times higher than that in the normal population.30, 31 A study performed between 1980 and 2002 suggested that an elevated blood glucose level is associated with a greater risk for dementia in elderly patients with DM2.32 In addition, according to a 9-year-long longitudinal cohort study, the risk of developing Alzheimer''s disease was 65% higher in people with diabetes than in control subjects.33 A community-based cohort study also reported that higher plasma glucose concentrations are associated with an increased risk for dementia, because the higher glucose level has detrimental effects on the brain.31 High blood glucose level causes mitochondria-dependent apoptosis,34, 35, 36 and aggravates diverse neurological functions.37, 38 Inflammation and oxidative stress, which are commonly observed in people with diabetes, inhibit neurogenesis.39, 40, 41 Similarly, neurogenesis is decreased in mice and rats with genetically induced type I diabetes.42, 43 In addition, diabetic rodents have a decreased proliferation rate of neural progenitors.43, 44 Furthermore, several studies suggested that an HFD leads to neuroinflammation, the impairment of synaptic plasticity, and cognitive decline.45, 46Here, we investigated whether AdipoR1-mediated signaling is associated with cell death in the brain of mice on a HFD, and whether high glucose level modifies the proliferation and differentiation capacity of NSCs in vitro. Our study provides novel findings about the role of AdipoR1-mediated signaling in hyperglycemia-induced neuropathogenesis.  相似文献   

9.
10.
Plasminogen-deficient (FVB/NPan-plgtm1Jld, plgtm1Jld) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plgtm1Jld mice for features that might contribute to the development of rectal prolapses and colonic inflammation and 2) to assess the relevance of the inflammatory phenotype to the variability in wound healing in this model. The plgtm1Jld mice exhibited delayed wound healing, and they could be divided into 3 distinct groups that differed according to the time until wound closure. Colonic lesions in plgtm1Jld mice, which were characterized by necrotizing ulcerations and cystically dilated glands, were restricted to the intermediate and distal parts of the colon. The cytokine profile was indicative of chronic tissue damage, but the genetic modification did not change the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition.Several studies using plasminogen-deficient (plgtmJld) mice have demonstrated that plasminogen, the proenzyme of plasmin, can degrade fibrin and other extracellular matrix proteins.44 Plasminogen is essential for wound healing in skin,40 which begins with inflammation, followed by epithelial proliferation, and thereafter tissue remodeling. Because the migrating keratinocytes of plgtm1Jld mice have a decreased ability to dissect the platelet-rich fibrin matrix, they exhibit severely impaired wound healing.15,40 In addition, plasmin mediates various pathologic processes, such as tumor growth and cancer metastasis,8 and therapeutic intervention related to plasminogen has shown encouraging results in experimental tumors.31 Therefore, one important application of these mice is the induction of wound healing to study basic mechanistic functions of plasmin, such as the clearance of the extracellular matrix and activation of tumor growth factors.31Spontaneous rectal prolapse and colonic ulceration in plgtm1Jld mice compromise studies using these mice by leading to loss of body weight (wasting disease)6 and wellbeing-related, early study termination.6 Like other inflammatory conditions, rectal prolapse and chronic colonic inflammation might affect wound healing and contribute to the wide interindividual variation in the wound-healing processes of plgtm1Jld mice.28,40The development of rectal prolapses and colonic ulcerations in plgtm1Jld mice reportedly is due to vascular occlusion.6 This pathologic condition is alleviated by superimposing fibrinogen deficiency on plasminogen deficiency, suggesting that fibrin is the primary substrate for plasmin.7,15 The wide variation in effective tissue remodeling during the wound healing of plasminogen-deficient mice remains unexplained.Wound healing depends to a large extent on cells and factors of the immune system.3,53 We previously have shown that disease development in mouse models for various inflammatory conditions, including type 1 diabetes,17-19,35 type 2 diabetes,4,13,42 atopic dermatitis30 and inflammatory bowel disease,20 is influenced by the composition of gut microbiota. Therefore, gut inflammation can be presumed to interfere with wound healing and thus may increase the uncontrolled interindividual variation in these models. In addition, gut inflammatory conditions in humans, such as inflammatory bowel disease43 and irritable bowel syndrome,23 are linked to dysbiosis in the intestine. In mice deficient in IL10 or IL2 and in rats carrying HLA-B27,52 inflammatory bowel disease can be alleviated by germ-free status10,49,52 or ampicillin.20 However, the possible role of the gut microbiome in rectal prolapse, colonic lesions, and wound healing in plasminogen-deficient mice has not previously been assessed.The aims of the current study were 1) to evaluate the fecal microbiome of plgtm1Jld mice and their unaffected WT littermates for features that might contribute to their rectal prolapse and colonic inflammation phenotypes and 2) to assess the relevance of the inflammatory phenotype to the variability in wound healing in this model.  相似文献   

11.
12.
13.
Neutral sphingomyelinase (nSMase) activation in response to environmental stress or inflammatory cytokine stimuli generates the second messenger ceramide, which mediates the stress-induced apoptosis. However, the signaling pathways and activation mechanism underlying this process have yet to be elucidated. Here we show that the phosphorylation of nSMase1 (sphingomyelin phosphodiesterase 2, SMPD2) by c-Jun N-terminal kinase (JNK) signaling stimulates ceramide generation and apoptosis and provide evidence for a signaling mechanism that integrates stress- and cytokine-activated apoptosis in vertebrate cells. An nSMase1 was identified as a JNK substrate, and the phosphorylation site responsible for its effects on stress and cytokine induction was Ser-270. In zebrafish cells, the substitution of Ser-270 for alanine blocked the phosphorylation and activation of nSMase1, whereas the substitution of Ser-270 for negatively charged glutamic acid mimicked the effect of phosphorylation. The JNK inhibitor SP600125 blocked the phosphorylation and activation of nSMase1, which in turn blocked ceramide signaling and apoptosis. A variety of stress conditions, including heat shock, UV exposure, hydrogen peroxide treatment, and anti-Fas antibody stimulation, led to the phosphorylation of nSMase1, activated nSMase1, and induced ceramide generation and apoptosis in zebrafish embryonic ZE and human Jurkat T cells. In addition, the depletion of MAPK8/9 or SMPD2 by RNAi knockdown decreased ceramide generation and stress- and cytokine-induced apoptosis in Jurkat cells. Therefore the phosphorylation of nSMase1 is a pivotal step in JNK signaling, which leads to ceramide generation and apoptosis under stress conditions and in response to cytokine stimulation. nSMase1 has a common central role in ceramide signaling during the stress and cytokine responses and apoptosis.The sphingomyelin pathway is initiated by the hydrolysis of sphingomyelin to generate the second messenger ceramide.1 Sphingomyelin hydrolysis is a major pathway for stress-induced ceramide generation. Neutral sphingomyelinase (nSMase) is activated by a variety of environmental stress conditions, such as heat shock,1, 2, 3 oxidative stress (hydrogen peroxide (H2O2), oxidized lipoproteins),1 ultraviolet (UV) radiation,1 chemotherapeutic agents,4 and β-amyloid peptides.5, 6 Cytokines, including tumor necrosis factor (TNF)-α,7, 8, 9 interleukin (IL)-1β,10 Fas ligand,11 and their associated proteins, also trigger the activation of nSMase.12 Membrane-bound Mg2+-dependent nSMase is considered to be a strong candidate for mediating the effects of stress and inflammatory cytokines on ceramide.3Among the four vertebrate nSMases, nSMase1 (SMPD2) was the first to be cloned and is localized in the endoplasmic reticulum (ER) and Golgi apparatus.13 Several studies have focused on the potential signaling roles of nSMase1, and some reports have suggested that nSMase1 is important for ceramide generation in response to stress.5, 6, 14, 15 In addition, nSMase1 is responsible for heat-induced apoptosis in zebrafish embryonic cultured (ZE) cells, and a loss-of-function study showed a reduction in ceramide generation, caspase-3 activation, and apoptosis in zebrafish embryos.16 However, nSMase1-knockout mice showed no lipid storage diseases or abnormalities in sphingomyelin metabolism.17 Therefore, the molecular mechanisms by which nSMase1 is activated have yet to be elucidated.Environmental stress and inflammatory cytokines1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 stimulate stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) signaling, which involves the sequential activation of members of the mitogen-activated protein kinase (MAPK) family, including MAPK/ERK kinase kinase (MEKK)1/MAPK kinase (MKK)4, and/or SAPK/ERK kinase (SEK)1/MKK7, JNK, and c-jun. Both the JNK and sphingomyelin signaling pathways coordinately mediate the induction of apoptosis.1 However, possible crosstalk between the JNK and sphingomyelin signaling pathways has not yet been characterized. Previously, we used SDS-PAGE to determine that nSMase1 polypeptides migrated at higher molecular masses,16 suggesting that the sphingomyelin signaling pathway might cause the production of a chemically modified phosphorylated nSMase1, which is stimulated under stressed conditions in ZE cells.16 Here, we demonstrate that JNK signaling results in the phosphorylation of Ser-270 of nSMase1, which initiates ceramide generation and apoptosis. We also provide evidence for a signaling mechanism that integrates cytokine- and stress-activated apoptosis in vertebrate cells. We studied stress-induced ceramide generation in two cell types: ZE cells and human leukemia Jurkat T-lymphoid cells. Stress-induced apoptosis has been investigated in these systems previously.16, 28  相似文献   

14.
15.
16.
17.
Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity.Obesity, a medical condition predisposing to diabetes, cardiovascular diseases, cancer, and complicating other life-threatening diseases, is becoming an increasingly important social problem.1, 2, 3 Development of pharmacological approaches to reduction of body fat has remained a daunting task.4 Approved obesity treatments typically produce only moderate and temporary effects.2,5 White adipocytes are the differentiated cells of white adipose tissue (WAT) that store triglycerides in lipid droplets.6,7 In contrast, adipocytes of brown adipose tissue (BAT) dissipate excess energy through adaptive thermogenesis. Under certain conditions, white adipocytes can become partially replaced with brown-like ‘beige'' (‘brite'') adipocytes that simulate the thermogenic function of BAT adipocytes.7,8 Obesity develops in the context of positive energy balance as a result of hypertrophy and hyperplasia of white adipocytes.9Expansion and renewal of the white adipocyte pool in WAT continues in adulthood.10,11 This process is believed to rely on proliferation and self-renewal of mesenchymal precursor cells12 that we term white adipocyte progenitors (WAPs). WAPs reside within the population of adipose stromal cells (ASCs)13 and are functionally similar to bone marrow mesenchymal stem cells (MSCs).14, 15, 16 ASCs can be isolated from the stromal/vascular fraction (SVF) of WAT based on negativity for hematopoietic (CD45) and endothelial (CD31) markers.17,18 ASCs support vascularization as mural/adventitial cells secreting angiogenic factors5,19 and, unlike bone marrow MSCs, express CD34.19,20 WAPs have been identified within the ASC population based on expression of mesenchymal markers, such as platelet-derived growth factor receptor-β (PDGFRβ, aka CD140b) and pericyte markers.17,18 Recently, a distinct ASC progenitor population capable of differentiating into both white and brown adipocytes has been identified in WAT based on PDGFRα (CD140a) expression and lack of PDGFRβ expression.21,22 The physiological relevance of the two precursor populations residing in WAT has not been explored.We have previously established an approach to isolate peptide ligands binding to receptors selectively expressed on the surface of cell populations of interest.23, 24, 25, 26, 27 Such cell-targeted peptides can be used for targeted delivery of experimental therapeutic agents in vivo. A number of ‘hunter-killer'' peptides28 composed of a cell-homing domain binding to a surface marker and of KLAKLAK2 (sequence KLAKLAKKLAKLAK), a moiety inducing apoptosis upon receptor-mediated internalization, has been described by our group.26,29 Such bimodal peptides have been used for depletion of malignant cells and organ-specific endothelial cells in preclinical animal models.26,30,31 Recently, we isolated a cyclic peptide WAT7 (amino acid sequence CSWKYWFGEC) based on its specific binding to ASCs.20 We identified Δ-decorin (ΔDCN), a proteolytic cleavage fragment of decorin, as the WAT7 receptor specifically expressed on the surface of CD34+PDGFRβ+CD31-CD45- WAPs and absent on MSCs in other organs.20Here, we investigated whether WAPs are required for obesity development in adulthood. By designing a new hunter-killer peptide that directs KLAKLAK2 to WAPs through WAT7/ΔDCN interaction, we depleted WAP in the mouse diet-induced obesity model. We demonstrate that WAP depletion suppresses WAT growth. We show that, in response to WAP deficiency, WAT becomes populated with beige adipocytes. Consistent with the reported thermogenic function of beige adipocytes,32,33 the observed WAT remodeling is associated with increased energy expenditure. We identify a population of PDGFRα-positive, PDGFRβ-negative ASCs reported recently22 as a population surviving WAP depletion and responsible for WAT browning.  相似文献   

18.
Although most viral infections of the upper respiratory tract can predispose to bacterial otitis media, human respiratory syncytial virus (HRSV) is the predominant viral copathogen of this highly prevalent pediatric polymicrobial disease. Rigorous study of the specific mechanisms by which HRSV predisposes to otitis media has been hindered by lack of a relevant animal model. We recently reported that the chinchilla, the preferred rodent host for studying otitis media, is semipermissive for upper-airway HRSV infection. In the current study, we defined the anatomy and kinetics of HRSV infection and spread in the upper airway of chinchilla hosts. Chinchillas were challenged intranasally with a fluorescent-protein–expressing HRSV. Upper-airway tissues were recovered at multiple time points after viral challenge and examined by confocal microscopy and immunohistochemistry. HRSV replication was observed from the rostral- to caudalmost regions of the nasal cavity as well as throughout the Eustachian tube in a time-dependent manner. Although fluorescence was not observed and virus was not detected in nasopharyngeal lavage fluids 14 d after infection, the latest time point examined in this study, occasional clusters of immunopositive cells were present, suggesting that the nasal cavity may serve as a reservoir for HRSV. These data provide important new information concerning the time course of HRSV infection of the uppermost airway and suggest that chinchillas may be useful for modeling the HRSV-induced changes that predispose to secondary bacterial infection.Abbreviations: HRSV, human respiratory syncytial virus; rrHRSV, recombinant red fluorescent human respiratory syncytial virus; URT, upper respiratory tractHuman respiratory syncytial virus (HRSV), an enveloped, negative-strand, nonsegmented RNA virus of the family Paramyxoviridae, is the single greatest causative agent of acute respiratory tract infections in infants and children worldwide.23 Although HRSV infection generally is limited to the upper respiratory tract (URT), in the United States, primary HRSV infection is associated with a 0.5% hospitalization rate for those children who develop severe bronchiolitis or pneumonia.9 One of the most interesting aspects of HRSV is its ubiquity: there are annual winter–spring outbreaks in temperate climates,5 and approximately 90% of all children have experienced infection by their second birthday.9 Although immunity to HRSV is sufficient to prevent reinfection of the lower airway in most human patients, this response is incomplete, resulting in reinfection of the upper airway throughout life.9 Although URT infection by HRSV alone does not constitute a serious problem for healthy adults, its association with the development of bacterial otitis media in children11-13,17-19,21,25,28,29,34 and exacerbation of asthma in all age groups16 make it an important health concern.Despite the ubiquity of the virus, the epidemiology of HRSV is not well understood. There is no known animal reservoir, and although new strains emerge over time, many remain in circulation over several seasons or reappear many years after they were first detected.27,33 Therefore, although antigenic variation driven by development of HRSV immunity in a given population is possible, this hypothesis has not yet been proven. In fact, in one study,10 human subjects could be infected repeatedly with the same HRSV strain, and the presence of virus-specific antibody provided only short-lived and incomplete protection. Therefore, HRSV may circulate among seropositive persons, and it has been suggested that persistently infected persons may harbor the virus between seasonal outbreaks.30,32 Therefore, in addition to the important clinical issues surrounding the prevention of HRSV disease, basic scientific questions regarding HRSV circulation and mechanisms of viral immunoevasion remain unanswered.A key hurdle in the study of HRSV pathogenesis has been the lack of a suitable animal model. Most published studies have used BALB/c mice, which have the advantage of many reagents available for the study of immune responses but the disadvantage of relative resistance to HRSV infection.22 Although pulmonary infection is easily detected in HRSV-infected mice, primary infection of the upper airway in this species is minimal6,7 and secondary infection of the URT does not occur. More susceptible rodent species include the cotton rat (Sigmidon hispidus)26 and chinchilla (Chinchilla lanigera),6 which are both relatively permissive for HRSV infection of the upper airway. Given the paucity of URT specimens encountered in general pathology practice, the development of a robust small animal model for the study of HRSV infection and spread in the uppermost airway is particularly important. Moreover, effective vaccine development depends on a better understanding of why this compartment remains susceptible to reinfection in immune hosts.Here we describe the anatomy of HRSV infection in the chinchilla URT over a 2-wk period, using confocal microscopy to monitor the retrograde spread of a recombinant red fluorescent protein-expressing HRSV construct (rrHRSV)8 from the site of inoculation. Although rrHRSV has previously been used to study the susceptibility of various cell types to virus infection in vitro,8,36 our current report is the first wherein this biologic agent has been used to trace the route and extent of infection after intranasal instillation of virus in vivo. To establish the usefulness of our approach, immunohistochemistry and plaque assay were used to verify the sensitivity and specificity of fluorescence detected at 2, 3, 5, and 14 d after infection. By these combined methods, we were able to follow the retrograde spread of virus infection from the respiratory epithelium of the nasoturbinates and nasopharynx (at the earliest time point) to the Eustachian tubes and ethmoid turbinates at later time points. The ability to visualize the anatomy and kinetics of HRSV replication in the uppermost airway can now form the basis for future studies of upper-airway susceptibility to virus reinfection and bacterial coinfection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号