首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin resistance (IR) is associated with elevated plasma levels of triglyceride-rich lipoproteins (TRLs) of intestinal origin. However, the mechanisms underlying the overaccumulation of apolipoprotein (apo)B-48-containing TRLs in individuals with IR are not yet fully understood. This study examined the relationships between apoB-48-containing TRL kinetics and the expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism in 14 obese nondiabetic men with IR compared with 10 insulin-sensitive (IS) men matched for waist circumference. The in vivo kinetics of TRL apoB-48 were assessed using a primed-constant infusion of L-[5,5,5-D3]leucine for 12 h with the participants in a constantly fed state. The expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism was assessed by performing real-time PCR quantification and LC-MS/MS on duodenal biopsy specimens. The TRL apoB-48 pool size and production rate were 102% (P < 0.0001) and 87% (P = 0.01) greater, respectively, in the men with IR versus the IS men. On the other hand, intestinal mRNA levels of sterol regulatory element binding factor-2, hepatocyte nuclear factor-4α, and microsomal triglyceride transfer protein were significantly lower in the men with IR than in the IS men. These data indicate that IR is associated with intestinal overproduction of lipoproteins and significant downregulation of key intestinal genes involved in lipid/lipoprotein metabolism.  相似文献   

2.
Human apolipoprotein B100 (apoB100) has 19 potential N-glycosylation sites, and 16 asparagine residues were reported to be occupied by high-mannose type, hybrid type, and monoantennary and biantennary complex type oligosaccharides. In the present study, a site-specific glycosylation analysis of apoB100 was carried out using reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI MS/MS). ApoB100 was reduced, carboxymethylated, and then digested by trypsin or chymotrypsin. The complex mixture of peptides and glycopeptides was subjected to LC/ESI MS/MS, where product ion spectra of the molecular ions were acquired data-dependently. The glycopeptide ions were extracted and confirmed by the presence of carbohydrate-specific fragment ions, such as m/z 204 (HexNAc) and 366 (HexHexNAc), in the product ion spectra. The peptide moiety of glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the product ion spectrum, and the oligosaccharide moiety was deduced from the calculated molecular mass of the oligosaccharide. The heterogeneity of carbohydrate structures at 17 glycosylation sites was determined using this methodology. Our data showed that Asn2212, not previously identified as a site of glycosylation, could be glycosylated. It was also revealed that Asn158, 1341, 1350, 3309, and 3331 were occupied by high-mannose type oligosaccharides, and Asn 956, 1496, 2212, 2752, 2955, 3074, 3197, 3438, 3868, 4210, and 4404 were predominantly occupied by mono- or disialylated oligosaccharides. Asn3384, the nearest N-glycosylation site to the LDL-receptor binding site (amino acids 3359-3369), was occupied by a variety of oligosaccharides, including high-mannose, hybrid, and complex types. These results are useful for understanding the structure of LDL particles and oligosaccharide function in LDL-receptor ligand binding.  相似文献   

3.
This study evaluates changes in cholesterol balance in hypercholesterolemic subjects following treatment with an inhibitor of cholesterol absorption or cholesterol synthesis or coadministration of both agents. This was a randomized, double blind, placebo-controlled, four-period crossover study to evaluate the effects of coadministering 10 mg ezetimibe with 20 mg simvastatin (ezetimibe/simvastatin) on cholesterol absorption and synthesis relative to either drug alone or placebo in 41 subjects. Each treatment period lasted 7 weeks. Ezetimibe and ezetimibe/simvastatin decreased fractional cholesterol absorption by 65% and 59%, respectively (P < 0.001 for both relative to placebo). Simvastatin did not significantly affect cholesterol absorption. Ezetimibe and ezetimibe/simvastatin increased fecal sterol excretion (corrected for dietary cholesterol), which also represents net steady state cholesterol synthesis, by 109% and 79%, respectively (P < 0.001). Ezetimibe, simvastatin, and ezetimibe/simvastatin decreased plasma LDL-cholesterol by 20, 38, and 55%, respectively. The coadministered therapy was well tolerated. The decreases in net cholesterol synthesis and increased fecal sterol excretion yielded nearly additive reductions in LDL-cholesterol for the coadministration of ezetimibe and simvastatin.  相似文献   

4.
Tajiri M  Yoshida S  Wada Y 《Glycobiology》2005,15(12):1332-1340
Isolation of glycopeptides utilizing hydrogen bonding between glycopeptide glycans and a carbohydrate-gel matrix in the organic phase is useful for site-specific characterization of oligosaccharides of glycoproteins, when combined with mass spectrometry. In this study, recovery of glycopeptides was improved by including divalent cations or increasing the organic solvent in the binding solution, without losing specificity, whereas it was still less effective for those with a long peptide backbone exceeding 50 amino acid residues. The method was then applied to the analysis of glycan heterogeneities at seven N-glycosylation sites in each of the plasma and cellular fibronectins (FNs). There was a remarkable site-specific difference in fucosylation between these isoforms; Asn1244 selectively escaped the global fucosylation of cellular FN, whereas only Asn1007 and Asn2108 of the plasma isoform underwent modification. In addition, a new O-glycosylation site was identified at Thr279 in the connecting segment between the fibrin- and heparin-binding domain and the collagen-binding domain, and the glycopeptide was reactive to a peanut agglutinin lectin. Considering that another mucin-type O-glycosylation site lies within a different connecting segment, the O-glycosylation of FN was suggested to play a significant role in segregating the neighboring domains and thus maintaining the topology of FN and the domain functions. In addition, the method was applied to apolipoprotein B-100 (apoB100) whose N-glycan structures at 17 of 19 potential sites have been reported, and characterized the remaining sites. The results also demonstrated that the enriched glycopeptide provides resources for site-specific analysis of oligosaccharides in glycoproteomics.  相似文献   

5.
This analysis evaluates the effects on lipoprotein subfractions and LDL particle size of ezetimibe/simvastatin with or without coadministration of fenofibrate in patients with mixed hyperlipidemia. This multicenter, double-blind, placebo-controlled, parallel-group study included 611 patients aged 18-79 years randomized in 1:3:3:3 ratios to one of four 12 week treatment groups: placebo; ezetimibe/simvastatin 10/20 mg/day; fenofibrate 160 mg/day; or ezetimibe/simvastatin 10/20 mg/day + fenofibrate 160 mg/day. At baseline and study endpoint, cholesterol associated with VLDL, intermediate density lipoprotein (IDL), LDL, and HDL subfractions was quantified using the Vertical Auto Profile II method. LDL particle size was determined using segmented gradient gel electrophoresis. Whereas fenofibrate reduced cholesterol mass within VLDL and IDL, and shifted cholesterol from dense LDL subfractions into the more buoyant subfractions and HDL, ezetimibe/simvastatin reduced cholesterol mass within all apolipoprotein B-containing particles without significantly shifting the LDL particle distribution profile. When administered in combination, the effects of the drugs were complementary, with more-pronounced reductions in VLDL, IDL, and LDL, preferential loss of more-dense LDL subfractions, and increased HDL, although the effects on most lipoprotein subfractions were not additive. Thus, ezetimibe/simvastatin + fenofibrate produced favorable effects on atherogenic lipoprotein subclasses in patients with mixed hyperlipidemia.  相似文献   

6.
Plasma HDL-cholesterol and apolipoprotein A-I (apoA-I) levels are strongly inversely associated with cardiovascular disease. However, the structure and protein composition of HDL particles is complex, as native and synthetic discoidal and spherical HDL particles can have from two to five apoA-I molecules per particle. To fully understand structure-function relationships of HDL, a method is required that is capable of directly determining the number of apolipoprotein molecules in heterogeneous HDL particles. Chemical cross-linking followed by SDS polyacrylamide gradient gel electrophoresis has been previously used to determine apolipoprotein stoichiometry in HDL particles. However, this method yields ambiguous results due to effects of cross-linking on protein conformation and, subsequently, its migration pattern on the gel. Here, we describe a new method based on cross-linking chemistry followed by MALDI mass spectrometry that determines the absolute mass of the cross-linked complex, thereby correctly determining the number of apolipoprotein molecules in a given HDL particle. Using well-defined, homogeneous, reconstituted apoA-I-containing HDL, apoA-IV-containing HDL, as well as apoA-I/apoA-II-containing HDL, we have validated this method. The method has the capability to determine the molecular ratio and molecular composition of apolipoprotein molecules in complex reconstituted HDL particles.  相似文献   

7.
Summary
Sequence differences within the pig apoB gene can be used to identify rapidly four of eight known pig apoB alleles, designated LPB 1- LPB 8. We describe the use of gene amplification, followed by endonuclease digestion and agarose gel electrophoresis, to discern size and restriction site differences. LPB 5, a common allele associated with reduced low density lipoprotein clearance and hypercholesterolaemia in pigs, is identified by a 283-bp insertion in intron 28. LPB 3 and LPB 7 are distinguished by a unique Hind III site; LPB 8 shares a unique Hinc II site with LPB 5. This method facilitates identification of the apoB genotype of pigs used in lipoprotein research and allows for further investigation into the association of particular apoB alleles with lipoprotein metabolism abnormalities.  相似文献   

8.
The modulation of apolipoprotein B synthesis and secretion by fatty acids in rat hepatocytes was studied. Maximum apolipoprotein B production was obtained in the case of oleic acid followed by linoleic, stearic and palmitic/linolenic acid when compared to control which was not supplemented with any fatty acids. Oleic acid was found to exert a concentration dependent increase in the secretion of [3H] apolipoprotein B into the medium while that associated with the cell layer was not affected. Pulse chase experiments in the presence of oleic acid showed that it caused an increase in the secretion of apolipoprotein B into the medium.14C-acetate incorporation into cholesterol and cholesteryl ester associated with the cell layer and secreted very low density lipoproteins also showed an increase in the presence of oleic acid indicating an increase in cholesterogenesis. The effect of oleic acid on [3H] apolipoprotein B and very low density lipoproteins secretion appeared to be mediated through cholesterol as (i) ketoconazole, an inhibitor of cholesterol synthesis caused significant reduction in the stimulatory effect of oleic acid on apolipoprotein secretion and (ii) mevinolin, another inhibitor of cholesterol synthesis also reversed the stimulatory effect of oleic acid on apolipoprotein B secretion. These results indicated that oleic acid may influence apolipoprotein B synthesis and secretion in hepatocytes probably by affecting cholesterol/cholesteryl ester formation which may be a critical component in the secretion of apolipoprotein B as lipoproteins  相似文献   

9.
10.
Transgenic (Tg) mice that overexpress the human apolipoprotein A-V gene (APOA5) yet lack an endogenous mouse apoa5 gene (APOA5 Tg mice) were generated. Subsequently, the effect of human apoA-V expression on plasma triglyceride (TG) concentration and lipoprotein and apolipoprotein distribution was determined and compared with that in mice deficient in apoA-V (apoa5(-/-) mice). NMR analysis of plasma lipoproteins revealed that APOA5 Tg mice had a very low VLDL concentration (26.4 +/- 7.7 nmol/dl), whereas VLDL in apoa5(-/-) mice was 18- fold higher (467 +/- 152 nmol/dl). SDS-PAGE analysis of the d < 1.063 g/ml plasma fraction revealed that the apoB-100/apoB-48 ratio was 14-fold higher in APOA5 Tg versus apoa5(-/-) mice and that the apoE/total apoB ratio was 7-fold greater in APOA5 Tg versus apoa5(-/-) mice. It is anticipated that a reduction in apoB-100/apoB-48 ratio as well as that for apoE/apoB would impair the uptake of VLDL and remnants in apoa5(-/-) mice, thereby contributing to increased plasma TG levels. The concentration of apoA-V in APOA5 Tg mice was 12.5 +/- 2.9 microg/ml, which is approximately 50- to 100-fold higher than that reported for normolipidemic humans. ApoA-V was predominantly associated with HDL but was rapidly and efficiently redistributed to apoA- V-deficient VLDL upon incubation. Consistent with findings reported for human subjects, apoA-V concentration was positively correlated with TG levels in normolipidemic APOA5 Tg mice. It is conceivable that, in a situation in which apoA-V is chronically overexpressed, complex interactions among factors regulating TG homeostasis may result in a positive correlation of apoA-V with TG concentrations.  相似文献   

11.
Serum levels of intestinal alkaline phosphatase (IAP), a protein implicated in transcellular transport of chylomicrons, vary among ABO blood groups. In rat enterocytes, IAP is associated with chylomicron secretion, but the rat expresses only blood group A. It is not known whether chylomicron secretion may be affected in humans who express multiple blood group types. Serum samples from 40 healthy subjects were obtained after overnight fast and 3h after a high-fat meal, and assayed for IAP and apolipoprotein B-48 (apoB-48), both proteins exclusive to intestine, although only apoB-48 is found in chylomicrons. The two proteins were greater in subjects without blood antigen A (B and O) than in those with this antigen (A and AB); 2.4- and 4.7-fold for IAP and 1.5- and 2.0-fold for apoB-48 before and after the meal, respectively. Moreover, IAP and apoB-48 levels were strongly correlated in the subjects with the secretor phenotype (r > 0.81). These results indicate that IAP is strongly involved in chylomicron formation and fatty acid metabolism might change among ABO blood type. In addition, ABO blood type classification in apoB-48 measurement would improve the diagnostic value in the evaluation of metabolic syndrome.  相似文献   

12.
Studies employing human fetal intestine have yielded much interesting information on the role of polarized enterocytes in fat absorption and transport. Using the organ culture model, we examined the influence of hydrocortisone on the synthesis and secretion of lipids and lipoproteins. Human jejunal explants were cultured for 5 days at 37°C in serum-free medium containing either [14C]-oleic acid or [14C]-acetate, alone or supplemented with hydrocortisone (25 or 50 ng/ml). The uptake of [14C]-oleic acid was associated with the production of triglycerides, phospholipids, and cholesteryl esters, which were all affected by hydrocortisone. This hormonal agent (50 μg) led to the marked reduction of secreted triglycerides (43%, P < 0.01), phospholipids (39%, P < 0.01), and cholesteryl esters (36%, P < 0.05) without altering the characteristic distribution of tissue and medium lipid classes. Similarly, hydrocortisone significantly (P < 0.01) decreased (∼60%) the incorporation of [14C]-acetate into secreted free and esterified cholesterol in the medium. With [14C]-oleic acid as a precursor, hydrocortisone significantly diminished the delivery of chylomicrons and very low density lipoproteins to the medium while consistently enhancing the secretion of high density lipoproteins. In parallel, [35S]-methionine pulse-labeling of jejunal explants revealed the concomitant inhibitory effect of hydrocortisone on apo B-100 synthesis and hydrocortisone's stimulatory effect on apo B-48 and apo A-I. These studies suggest that glucocorticoids play a critical role in lipoprotein processing during intestinal development. J. Cell. Biochem. 66:65–76 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
In previous studies, it was shown that lipid microemulsions resembling LDL (LDE) but not containing protein, acquire apolipoprotein E when injected into the bloodstream and bind to LDL receptors (LDLR) using this protein as ligand. Aiming to evaluate the effects of apolipoprotein (apo) B-100 on the catabolism of these microemulsions, LDE with incorporated apo B-100 (LDE-apoB) and native LDL, all labeled with radioactive lipids were studied after intraarterial injection into Wistar rats. Plasma decay curves of the labels were determined in samples collected over 10 h and tissue uptake was assayed from organs excised from the animals sacrificed 24 h after injection. LDE-apo B had a fractional clearance rate (FCR) similar to native LDL (0.40 and 0.33, respectively) but both had FCR pronouncedly smaller than LDE (0.56, P<0.01). Liver was the main uptake site for LDE, LDE-apoB, and native LDL, but LDE-apoB and native LDL had lower hepatic uptake rates than LDE. Pre-treatment of the rats with 17α-ethinylestradiol, known to upregulate LDLR, accelerated the removal from plasma of both LDE and LDE-apoB, but the effect was greater upon LDE than LDE-apoB. These differences in metabolic behavior documented in vivo can be interpreted by the lower affinity of LDLR for apo B-100 than for apo E, demonstrated in in vitro studies. Therefore, our study shows in vivo that, in comparison with apo E, apo B is a less efficient ligand to remove lipid particles such as microemulsions or lipoproteins from the intravascular compartment.  相似文献   

14.
Meat quality of pigs is dependent on biochemical and biophysical processes in the time course post mortem (p.m.) and is associated with the intracellular Ca2+ homeostasis. However, there is little known about changes in the Ca2+ transporting proteins controlling the Ca2+ uptake of sarcoplasmic reticulum (SR) in the time course p.m. In this study changes in the Ca2+ transporting proteins were investigated in homogenates of longissimus muscles of 4 malignant hyperthermia susceptible (MHS) and 6 malignant hyperthermia resistant (MHR) Pietrain pigs. Muscle samples were obtained at different time intervals: biopsy 2 h prior slaughtering and from the carcass immediately after exsanguination (0 h), 45 min, 4 h, and 22 h p.m. The SR Ca2+ uptake rate was measured immediately after homogenization with closed calcium release channel (CRC), with opened CRC and without manipulation of CRC. Additionally the SR Ca2+ ATPase activity was determined.The results show: (i) The ability of SR to sequester Ca2+ declined to about 60% in the first 45 min p.m. in MHS samples irrespective of CRC state, whereas in MHR samples this decline was about 5%; (ii) Ca2+ uptake and Ca2+ ATPase activity were not different between the biopsy and 0 h samples, i.e. the stress of slaughter was of no immediate influence; (iii) The Ca2+ ATPase activity of the SR declined at about the same rate as the Ca2+ uptake in both MHS and MHR pig samples in the course of time p.m.; (iv) In samples, taken immediately after exsanguination, the Ca2+ ATPase activity of MHS pigs was higher than that of MHR pigs. However, in samples taken 4 h p.m. Ca2+ ATPase activity of MHS pigs has declined to about 30% of the value at 0 h; (v) The CRC can be closed and opened in all samples up to 22 h p.m. and seems to be fully functional at all sampling times; (vi) The CRC of MHS pigs is almost fully open, whereas the CRC of MHR pigs is only partially open at all sampling times; (vii) The permeability of the SR membrane to Ca2+ (determined as the ratio of SR Ca2+ ATPase with and without ionophore A23187) is the same in both MHS and MHR and did not change with ongoing time; (viii) No uncoupling of uptake from ATP hydrolysis occurred up to 4 h p.m., but the coupling differed between MHS and MHR for all time intervals with lower values for MHS pigs. The results suggest that the decreasing Ca2+ uptake rate of homogenates, sampled at different times p.m., is essentially caused by changes in the Ca2+ pump and not by changes in the CRC or an increased phospholipid membrane permeability to Ca2+.  相似文献   

15.
Volatile components of Artemisia monosperma and of Artemisia judaica obtained by steam distillation of the fresh plants were analysed by capillary gas chromatography/mass spectrometry. Volatile oil of A. monosperma was found to be made up primarily of highly unsaturated hydrocarbons and aromatic acetylenic compounds with 3-methyl-3-phenyl-1,4-pentadiyne being the major component. Volatile oil of A. judaica, on the other hand, was found to be a mixture of esters, ketones and aldehydes in which pipertone is the major component.  相似文献   

16.
本文对两种载脂蛋白B的相对分子质量及其氨基酸残基数进行了详细的考证,指出国内外常见的生物化学或分子生物学教材/参考书在这些方面的若干疏误,初步分析了个中缘由,并就教材的编写和使用提出一些建议。  相似文献   

17.
Monoterpenes are found in the volatile essence of flowers, plants oils, and herbal medicines. Some are commonly used as food additives and fragrance components, and many are found in cosmetics, soaps, cleaning products, disinfectants, preservatives, and medicines. We have recently discovered a moderate inhibitory effect of borneol and isoborneol toward CYP2B6-catalyzed bupropion hydroxylase activity. Based on that result, we expanded our study to evaluate the inhibitory effects of 22 monoterpenoids on CYP2B6 activity in vitro. Among the monoterpenoids screened, borneol, camphor, cineole, isoborneol, menthol, and perillaldehyde showed slight inhibition of CYP2B6-catalyzed bupropion hydroxylation, displaying greater than 50% inhibition at 50muM. Citral and geraniol strongly inhibited CYP2B6 hydroxylase activity in a competitive manner, with K(i) values of 6.8 and 10.3muM, respectively, which are higher than the K(i) (1.8muM) of the well-known CYP2B6-selective inhibitor thio-TEPA. These in vitro data indicate that high amounts of these two monoterpenoids might interact with drugs that are metabolized by CYP2B6. The in vivo pharmacokinetics of these compounds should be examined to determine whether the inhibition of CYP2B6 activity by monoterpenoids has clinical relevance.  相似文献   

18.
A sensitive and simple liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed for the detection of alginate oligosaccharides (AOs) in mouse plasma and urine after oral administration. In an AO mixture, dimer, trimer, and tetramer were detected by LC-MS/MS equipped with an anion-exchange column with extremely high sensitivity. By this method, we detected certain levels of AOs in samples prepared from mouse plasma and urine after a single oral administration of the AO mixture. Based on a calibration curve made with an AO trimer peak area as a standard, the maximum plasma and urine concentrations of AOs were estimated to be 24.5 μg/ml at 5 min and 425.5 μg/ml at 30 min, respectively. These results suggest that the LC-MS/MS method is well suited to pharmacokinetic analysis of AOs in an in vivo system, and that some of orally administered AOs, at least from dimer to tetramer, are absorbed by digestive organs promptly, and that unaltered, these oligomers were excreted into an urine after a single oral administration to a mouse.  相似文献   

19.
Alkaptonuria (AKU) is one of the first prototypic inborn errors in metabolism and the first human disease found to be transmitted via Mendelian autosomal recessive inheritance. It is caused by HGD mutations, which leads to a deficiency in homogentisate 1,2-dioxygenase (HGD) activity.  相似文献   

20.
We have examined the effect of elevated CO2 on the vasculature and phenolic secondary metabolism on clones of the maritime plant Plantago maritima (L.). Plants were exposed to either ambient (360 μmol CO2 mol−1) or elevated (600 μmol CO2 mol−1) atmospheric CO2 within a Solardome facility and harvested after 12 months' growth. Histochemical analysis of the leaves identified increases in the diameter of the minor leaf vein and associated lignified vessels in plants exposed to elevated CO2. In the roots the number of lignified root vessels and stele width were also increased, but overall the lignified vessel-wall thickness was reduced in plants exposed to elevated CO2, compared to those grown under ambient CO2. To investigate whether or not these subtle changes in lignification were associated with perturbations in phenolic metabolism, aromatic natural products were analysed by HPLC-MS after treatment with cellulase to hydrolyse the respective glycosidic conjugates. The phenylpropanoids p-coumaric acid, caffeic acid, ferulic acid and the flavone luteolin were identified, together with the caffeoyl phenylethanoid glycosides, verbascoside and plantamajoside which were resistant to enzymatic digestion. Exposure to enhanced CO2 resulted in subtle changes in the levels of individual metabolites. In the foliage a one-year exposure to enhanced CO2 resulted in an increased accumulation of caffeic acid, whilst in the roots p-coumaric acid and verbascoside were enhanced. Our results suggest that significant changes in the vasculature of P. maritima on exposure to increased CO2 are associated with only minor changes in the leaves of specific lignin-related metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号