首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Invasive plants are potential agents of disruption in plant–pollinator interactions. They may affect pollinator visitation rates to native plants and modify the plant–pollinator interaction network. However, there is little information about the extent to which invasive pollen is incorporated into the pollination network and about the rates of invasive pollen deposition on the stigmas of native plants.

Methods

The degree of pollinator sharing between the invasive plant Carpobrotus affine acinaciformis and the main co-flowering native plants was tested in a Mediterranean coastal shrubland. Pollen loads were identified from the bodies of the ten most common pollinator species and stigmatic pollen deposition in the five most common native plant species.

Key Results

It was found that pollinators visited Carpobrotus extensively. Seventy-three per cent of pollinator specimens collected on native plants carried Carpobrotus pollen. On average 23 % of the pollen on the bodies of pollinators visiting native plants was Carpobrotus. However, most of the pollen found on the body of pollinators belonged to the species on which they were collected. Similarly, most pollen on native plant stigmas was conspecific. Invasive pollen was present on native plant stigmas, but in low quantity.

Conclusions

Carpobrotus is highly integrated in the pollen transport network. However, the plant-pollination network in the invaded community seems to be sufficiently robust to withstand the impacts of the presence of alien pollen on native plant pollination, as shown by the low levels of heterospecific pollen deposition on native stigmas. Several mechanisms are discussed for the low invasive pollen deposition on native stigmas.Key words: Alien plant, Carpobrotus aff. acinaciformis, competition for pollinators, invasion, Mediterranean shrubland, plant-pollinator network, pollen loads, pollinator visits, stigma  相似文献   

2.

Background and Aims

Plant–pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia.

Methods

Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population.

Key Results

Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site.

Conclusions

The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts.  相似文献   

3.

Background and Aims

Plants surrounded by individuals of other co-flowering species may suffer a reproductive cost from interspecific pollen transfer (IPT). However, differences in floral architecture may reduce or eliminate IPT.

Methods

A study was made of Pedicularis densispica (lousewort) and its common co-flowering species, Astragalus pastorius, to compare reproductive and pollination success of lousewort plants from pure and mixed patches. Floral architecture and pollinator behaviour on flowers of the two plants were compared along with the composition of stigmatic pollen load of the louseworts. The extent of pollen limitation of plants from pure and mixed patches was also explored through supplemental pollination with self- and outcross pollen (PLs and PLx).

Key Results

Mixed patches attracted many more nectar-searching individuals of Bombus richardsi. These bumble-bees moved frequently between flowers of the two species. However, they pollinated P. densispica with their dorsum and A. pastorius with their abdomen. This difference in handling almost completely eliminated IPT. Lousewort plants from mixed patches yielded more seeds, and seeds of higher mass and germinability, than those from pure patches. Moreover, louseworts from mixed patches had lower PLs and PLx compared with those from pure patches.

Conclusions

Differences in floral architecture induced differences in pollinator behaviour that minimized IPT, such that co-flowering plants significantly enhanced quantity and quality of pollinator visits for the lousewort plants in patchy habitat. These findings add to our understanding of the mechanisms of pollination facilitation.  相似文献   

4.

Background and Aims

Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences.

Methods

Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia.

Key Results

Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types.

Conclusions

The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.  相似文献   

5.

Background and Aims

The extreme complexity of asclepiad flowers (Asclepiadoideae–Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators.

Methods

Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index.

Key Results

The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts.

Conclusions

Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South Africa. A putative new function of nectar in asclepiads is presented, as it would be contributing to the pollination mechanism.  相似文献   

6.
Sun HQ  Huang BQ  Yu XH  Kou Y  An DJ  Luo YB  Ge S 《Annals of botany》2011,107(1):39-47

Background and Aims

Increasing evidence challenges the conventional perception that orchids are the most distinct example of floral diversification due to floral or prezygotic isolation. Regarding the relationship between co-flowering plants, rewarding and non-rewarding orchids in particular, few studies have investigated whether non-rewarding plants affect the pollination success of rewarding plants. Here, floral isolation and mutual effects between the rewarding orchid Galearis diantha and the non-rewarding orchid Ponerorchis chusua were investigated.

Methods

Flowering phenological traits were monitored by noting the opening and wilting dates of the chosen individual plants. The pollinator pool and pollinator behaviour were assessed from field observations. Key morphological traits of the flowers and pollinators were measured directly in the field. Pollinator limitation and interspecific compatibility were evaluated by hand-pollination experiments. Fruit set was surveyed in monospecific and heterospecific plots.

Key Results

The species had overlapping peak flowering periods. Pollinators of both species displayed a certain degree of constancy in visiting each species, but they also visited other flowers before landing on the focal orchids. A substantial difference in spur size between the species resulted in the deposition of pollen on different regions of the body of the shared pollinator. Hand-pollination experiments revealed that fruit set was strongly pollinator-limited in both species. No significant difference in fruit set was found between monospecific plots and heterospecific plots.

Conclusions

A combination of mechanical isolation and incomplete ethological isolation eliminates the possibility of pollen transfer between the species. These results do not support either the facilitation or competition hypothesis regarding the effect of nearby rewarding flowers on non-rewarding plants. The absence of a significant effect of non-rewarding P. chusua on rewarding G. diantha can be ascribed to low levels of overlap between the pollinator pools of two species.  相似文献   

7.

Background and Aims

Pollinator landscapes, as determined by pollinator morphology/behaviour, can vary inter- or intraspecifically, imposing divergent selective pressures and leading to geographically divergent floral ecotypes. Assemblages of plants pollinated by the same pollinator (pollinator guilds) should exhibit convergence of floral traits because they are exposed to similar selective pressures. Both convergence and the formation of pollination ecotypes should lead to matching of traits among plants and their pollinators.

Methods

We examined 17 floral guild members pollinated in all or part of their range by Prosoeca longipennis, a long-proboscid fly with geographic variation in tongue length. Attractive floral traits such as colour, and nectar properties were recorded in populations across the range of each species. The length of floral reproductive parts, a mechanical fit trait, was recorded in each population to assess possible correlation with the mouthparts of the local pollinator. A multiple regression analysis was used to determine whether pollinators or abiotic factors provided the best explanation for variation in floral traits, and pollinator shifts were recorded in extralimital guild member populations.

Key Results

Nine of the 17 species were visited by alternative pollinator species in other parts of their ranges, and these displayed differences in mechanical fit and attractive traits, suggesting putative pollination ecotypes. Plants pollinated by P. longipennis were similar in colour throughout the pollinator range. Tube length of floral guild members co-varied with the proboscis length of P. longipennis.

Conclusions

Pollinator shifts have resulted in geographically divergent pollinator ecotypes across the ranges of several guild members. However, within sites, unrelated plants pollinated by P. longipennis are similar in the length of their floral parts, most probably as a result of convergent evolution in response to pollinator morphology. Both of these lines of evidence suggest that pollinators play an important role in selecting for certain floral traits.  相似文献   

8.

Background and Aims

If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome.

Methods

Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations.

Key Results

Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus.

Conclusions

This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome.  相似文献   

9.

Background and Aims

Convergent floral traits hypothesized as attracting particular pollinators are known as pollination syndromes. Floral diversity suggests that the Australian epacrid flora may be adapted to pollinator type. Currently there are empirical data on the pollination systems for 87 species (approx. 15 % of Australian epacrids). This provides an opportunity to test for pollination syndromes and their important morphological traits in an iconic element of the Australian flora.

Methods

Data on epacrid–pollinator relationships were obtained from published literature and field observation. A multivariate approach was used to test whether epacrid floral attributes related to pollinator profiles. Statistical classification was then used to rank floral attributes according to their predictive value. Data sets excluding mixed pollination systems were used to test the predictive power of statistical classification to identify pollination models.

Key Results

Floral attributes are correlated with bird, fly and bee pollination. Using floral attributes identified as correlating with pollinator type, bird pollination is classified with 86 % accuracy, red flowers being the most important predictor. Fly and bee pollination are classified with 78 and 69 % accuracy, but have a lack of individually important floral predictors. Excluding mixed pollination systems improved the accuracy of the prediction of both bee and fly pollination systems.

Conclusions

Although most epacrids have generalized pollination systems, a correlation between bird pollination and red, long-tubed epacrids is found. Statistical classification highlights the relative importance of each floral attribute in relation to pollinator type and proves useful in classifying epacrids to bird, fly and bee pollination systems.  相似文献   

10.

Background and Aims

Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant''s reproductive success.

Methods

Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted.

Key Results

Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors.

Conclusions

The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer efficiencies of particular pollinator species also vary between study sites and result in differing reproductive success.  相似文献   

11.

Background and Aims

Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico.

Methods

The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined.

Key Results

Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae).

Conclusions

This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.  相似文献   

12.

Background and Aims

Abolboda (Xyridaceae) belongs to the Poales, a predominantly wind-pollinated order whose phylogeny has been widely studied in recent years. The reproductive biology of Abolboda pulchella and A. poarchon was studied to determine the main pollination system of these species, providing the first experimental data on reproduction in the Xyridaceae.

Methods

A field study was conducted, including observations on the morphology and biology of the flowers, insect visits and pollinator behaviour. Experimental pollination treatments were performed to assess agamospermy, spontaneous self-pollination and self-compatibility. Pollination success was determined by pollen tube growth, and reproductive success was assessed by fruit- and seed-set.

Key Results

Abolboda pulchella and A. poarchon were pollinated by Apidae, Megachilidae and Halictidae bees. The floral resources were pollen and nectar that was produced by stylar appendages, an uncommom nectary type for monocotyledons. The species were self-compatible, and pollen tube growth from self-pollen was similar to that of cross-pollen. However, herkogamy prevented spontaneous selfing, rendering the plants dependent on the pollinator''s activity. There was no production of seeds by agamospermy.

Conclusions

Melittophily is the main pollination system of these two Abolboda species. Nectar production was first recorded here for Xyridaceae, and along with self-compatibility, herkogamy and bee pollination, is an informative characteristic that can be used in future phylogenetic analyses of the family as well as Poales.  相似文献   

13.

Background and Aims

How generalist plants diverge in response to pollinator selection without becoming specialized is still unknown. This study explores this question, focusing on the evolution of the pollination system in the pollination generalist Erysimum mediohispanicum (Brassicaceae).

Methods

Pollinator assemblages were surveyed from 2001 to 2010 in 48 geo-referenced populations covering the entire geographic distribution of E. mediohispanicum. Bipartite modularity, a complex network tool, was used to find the pollination niche of each population. Evolution of the pollination niches and the correlated evolution of floral traits and pollination niches were explored using within-species comparative analyses.

Key Results

Despite being generalists, the E. mediohispanicum populations studied can be classified into five pollination niches. The boundaries between niches were not sharp, the niches differing among them in the relative frequencies of the floral visitor functional groups. The absence of spatial autocorrelation and phylogenetic signal indicates that the niches were distributed in a phylogeographic mosaic. The ancestral E. mediohispanicum populations presumably belonged to the niche defined by a high number of beetle and ant visits. A correlated evolution was found between pollination niches and some floral traits, suggesting the existence of generalist pollination ecotypes.

Conclusions

It is conjectured that the geographic variation in pollination niches has contributed to the observed floral divergence in E. mediohispanicum. The process mediating this floral divergence presumably has been adaptive wandering, but the adaptation to the local pollinator faunas has been not universal. The outcome is a landscape where a few populations locally adapted to their pollination environment (generalist pollination ecotypes) coexist with many populations where this local adaptation has failed and where the plant phenotype is not primarily shaped by pollinators.  相似文献   

14.

Background

Some species of long-spurred orchids achieve pollination by a close association with long-tongued hawkmoths. Among them, several Habenaria species present specialized mechanisms, where pollination success depends on the attachment of pollinaria onto the heads of hawkmoths with very long proboscises. However, in the Neotropical region such moths are less abundant than their shorter-tongued relatives and are also prone to population fluctuations. Both factors may give rise to differences in pollinator-mediated selection on floral traits through time and space.

Methodology/Principal Findings

We characterized hawkmoth assemblages and estimated phenotypic selection gradients on orchid spur lengths in populations of three South American Habenaria species. We examined the match between hawkmoth proboscis and flower spur lengths to determine whether pollinators may act as selective agents on flower morphology. We found significant directional selection on spur length only in Habenaria gourlieana, where most pollinators had proboscises longer than the mean of orchid spur length.

Conclusions/Significance

Phenotypic selection is dependent on the mutual match between pollinator and flower morphologies. However, our findings indicate that pollinator-mediated selection may vary through time and space according to local variations in pollinator assemblages.  相似文献   

15.

Background and Aims

Cucumis melo subsp. agrestis (Cucurbitaceae) is cultivated in many African regions for its edible kernels used as a soup thickener. The plant, an annual, andromonoecious, trailing-vine species, is of high social, cultural and economic value for local communities. In order to improve the yield of this crop, the first step and our aim were to elucidate its breeding system.

Methods

Eight experimental pollination treatments were performed during three growing seasons to assess spontaneous selfing, self-compatibility and effects of pollen source (hermaphroditic vs. male flowers). Pollination success was determined by pollen tube growth and reproductive success was assessed by fruit, seed and seedling numbers and characteristics. The pollinator guild was surveyed and the pollination distance determined both by direct observations and by indirect fluorescent dye dispersal.

Key Results

The species is probably pollinated by several Hymenoptera, principally by Hypotrigona para. Pollinator flight distances varied from 25 to 69 cm. No evidence for apomixis or spontaneous self-pollination in the absence of insect visitors was found. The self-fertility index (SFI = 0) indicated a total dependence on pollinators for reproductive success. The effects of hand pollination on fruit set, seed number and seedling fitness differed among years. Pollen tube growth and reproductive success did not differ between self- and cross-pollinations. Accordingly, a high self-compatibility index for the fruit set (SCI = 1·00) and the seed number (SCI = 0·98) and a low inbreeding depression at all developmental stages (cumulative δ = 0·126) suggest a high selfing ability. Finally, pollen origin had no effect on fruit and seed sets.

Conclusions

This andromonoecious species has the potential for a mixed mating system with high dependence on insect-mediated pollination. The selfing rate through geitonogamy should be important.  相似文献   

16.

Background and Aims

Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure.

Methods

The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed.

Key Results

The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis.

Conclusion

Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations.  相似文献   

17.

Background and Aims

A report is made on a new species of Clusia related to C. sellowiana that dominates the vegetation of the Nouragues inselberg in French Guiana. The focus is on the pollination biology and on the remarkable relationship of this plant species to Amazonina platystylata, its cockroach pollinator. This appears to be only the second record of pollination by cockroaches.

Methods

Pollination ecology was investigated by combining morphological studies, field observations and additional experiments. Floral scent was analysed by gas chromatography–mass spectrometry. The role of acetoin, the major component of the scent of this species of Clusia, in attracting pollinators was examined in field attraction experiments. The ability of cockroaches to perceive acetoin was investigated by electroantennography (EAG).

Key Results

The Clusia species studied produces seeds only sexually. Its nocturnal flowers are visited by crickets, ants, moths and cockroaches. A species of cockroach, Amazonina platystylata, is the principal pollinator. The reward for the visit is a liquid secretion produced by tissues at the floral apex and at the base of the ovary. Although the cockroaches have no structures specialized for pollen collection, their body surface is rough enough to retain pollen grains. The cockroaches show significant EAG reactions to floral volatiles and acetoin, suggesting that the floral scent is a factor involved in attracting the cockroaches to the flowers.

Conclusions

The results suggest that the plant–cockroach interaction may be quite specialized and the plant has probably evolved a specific strategy to attract and reward its cockroach pollinators. Acetoin is a substance involved in the chemical communication of several other cockroach species and it seems plausible that the plant exploits the sensitivity of cockroaches to this compound to attract them to the flowers as part of the pollination syndrome of this species.Key words: Clusia, cockroaches, acetoin, pollination, floral scent, floral reward, plant–animal interaction, inselberg, French Guiana, Amazonina platystylata  相似文献   

18.
19.

Background and Aims

Adjacent flowers on Mimulus ringens floral displays often vary markedly in selfing rate. We hypothesized that this fine-scale variation in mating system reflects the tendency of bumble-bee pollinators to probe several flowers consecutively on multiflower displays. When a pollinator approaches a display, the first flower probed is likely to receive substantial outcross pollen. However, since pollen carryover in this species is limited, receipt of self pollen should increase rapidly for later flowers. Here the first direct experimental test of this hypothesis is described.

Methods

In order to link floral visitation sequences with selfing rates of individual flowers, replicate linear arrays were established, each composed of plants with unique genetic markers. This facilitated unambiguous assignment of paternity to all sampled progeny. A single wild bumble-bee was permitted to forage on each linear array, recording the order of floral visits on each display. Once fruits had matured, 120 fruits were harvested (four flowers from each of five floral displays in each of six arrays). Twenty-five seedlings from each fruit were genotyped and paternity was unambiguously assigned to all 3000 genotyped progeny.

Key Results

The order of pollinator probes on Mimulus floral displays strongly and significantly influenced selfing rates of individual fruits. Mean selfing rates increased from 21 % for initial probes to 78 % for the fourth flower probed on each display.

Conclusions

Striking among-flower differences in selfing rate result from increased deposition of geitonogamous (among-flower, within-display) self pollen as bumble-bees probe consecutive flowers on each floral display. The resulting heterogeneity in the genetic composition of sibships may influence seedling competition and the expression of inbreeding depression.Key words: Autogamy, bee, Bombus fervidus, floral display, geitonogamy, mating system, monkeyflower, Mimulus ringens, paternity analysis, pollen carryover, pollinator visitation sequence, self-fertilization  相似文献   

20.

Background

It is normally thought that deep corolla tubes evolve when a plant''s successful reproduction is contingent on having a corolla tube longer than the tongue of the flower''s pollinators, and that pollinators evolve ever-longer tongues because individuals with longer tongues can obtain more nectar from flowers. A recent model shows that, in the presence of pollinators with long and short tongues that experience resource competition, coexisting plant species can diverge in corolla-tube depth, because this increases the proportion of pollen grains that lands on co-specific flowers.

Methodology/Principal Findings

We have extended the model to study whether resource competition can trigger the co-evolution of tongue length and corolla-tube depth. Starting with two plant and two pollinator species, all of them having the same distribution of tongue length or corolla-tube depth, we show that variability in corolla-tube depth leads to divergence in tongue length, provided that increasing tongue length is not equally costly for both species. Once the two pollinator species differ in tongue length, divergence in corolla-tube depth between the two plant species ensues.

Conclusions/Significance

Co-evolution between tongue length and corolla-tube depth is a robust outcome of the model, obtained for a wide range of parameter values, but it requires that tongue elongation is substantially easier for one pollinator species than for the other, that pollinators follow a near-optimal foraging strategy, that pollinators experience competition for resources and that plants experience pollination limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号