首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

2.
Recently, two cellular membrane proteins, the membrane cofactor protein CD46 and the membrane-organizing external spike protein, moesin, have been identified to be functionally associated with measles virus (MV) infectivity of cells. We investigated the functional consequences of binding of monoclonal antibodies to both molecules individually and combined on MV attachment, fusion, and plaque formation and the putative direct physical interaction of moesin and CD46. We found that antibodies to moesin or CD46 separately inhibited MV-cell interactions to a high percentage in the plaque test, by approximately 85 and 75%, respectively. The inhibition by combinations of antibodies was additive at low concentrations and complete at high concentrations. This indicates that similar sites of interaction were blocked by steric hindrance. Furthermore, antimoesin antibodies blocked the infection of CD46-negative mouse cell lines with MV. Chemical cross-linking of cell surface proteins indicated the close proximity of CD46 and moesin in the membrane of human cells, and coimmunoprecipitation of moesin with CD46 suggested their physical interaction. Immunohistochemically by electron microscopy, CD46 and moesin were found to be localized at sites of the cellular membrane where MV particles adsorbed. These data support a model of direct interaction of CD46 and moesin in the cellular membrane and suggest that this complex is functionally involved in the uptake of MV into cells.  相似文献   

3.
CD46 is a cellular receptor for bovine viral diarrhea virus   总被引:7,自引:0,他引:7       下载免费PDF全文
Various monoclonal antibodies (MAbs) that recognize cell surface proteins on bovine cells were previously shown to efficiently block infection with bovine viral diarrhea virus (BVDV) (C. Schelp, I. Greiser-Wilke, G. Wolf, M. Beer, V. Moennig, and B. Liess, Arch. Virol. 140:1997-2009, 1995). With one of these MAbs, a 50- to 58-kDa protein was purified from calf thymus by immunoaffinity chromatography. Microchemical analysis of two internal peptides revealed significant sequence homology to porcine and human CD46. The cDNA of bovine CD46 (CD46(bov)) was cloned and further characterized. Heterologously expressed CD46(bov) was detected by the MAb used for purification. A putative function of CD46(bov) as a BVDV receptor was studied with respect to virus binding and susceptibility of nonpermissive cells. While the expression of CD46(bov) correlated well with the binding of [(3)H]uridine-labeled BVDV, the susceptibility of cells nonpermissive for BVDV was not observed. However, the expression of CD46(bov) resulted in a significant increase in the susceptibility of porcine cells to BVDV. These results provide strong evidence that CD46(bov) serves as a cellular receptor for BVDV.  相似文献   

4.
Adenovirus type 11 uses CD46 as a cellular receptor   总被引:6,自引:0,他引:6       下载免费PDF全文
The 51 human adenovirus serotypes are divided into six species (A to F). Many adenoviruses use the coxsackie-adenovirus receptor (CAR) for attachment to host cells in vitro. Species B adenoviruses do not compete with CAR-binding serotypes for binding to host cells, and it has been suggested that species B adenoviruses use a receptor other than CAR. Species B adenoviruses mainly cause disease in the respiratory tract, the eyes, and in the urinary tract. Here we demonstrate that adenovirus type 11 (Ad11; of species B) binds to Chinese hamster ovary (CHO) cells transfected with CD46 (membrane cofactor protein)-cDNA at least 10 times more strongly than to CHO cells transfected with cDNAs encoding CAR or CD55 (decay accelerating factor). Nonpermissive CHO cells were rendered permissive to Ad11 infection upon transfection with CD46-cDNA. Soluble Ad11 fiber knob but not Ad7 or Ad5 knob inhibited binding of Ad11 virions to CD46-transfected cells, and anti-CD46 antibodies inhibited both binding of and infection by Ad11. From these results we conclude that CD46 is a cellular receptor for Ad11.  相似文献   

5.
Both CD46 and signaling lymphocytic activation molecule (SLAM) have been shown to act as cellular receptors for measles virus (MV). The viruses on throat swabs from nine patients with measles in Japan were titrated on Vero cells stably expressing human SLAM. Samples from all but two patients produced numerous plaques on SLAM-expressing Vero cells, whereas none produced any plaques on Vero cells endogenously expressing CD46. The Edmonston strain of MV, which can use either CD46 or SLAM as a receptor, produced comparable titers on these two types of cells. The results strongly suggest that the viruses in the bodies of measles patients use SLAM but probably not CD46 as a cellular receptor.  相似文献   

6.
7.
Recently, we found that several lymphotropic wild-type isolates of measles virus (MV) did not lead to the downregulation of CD46 following infection. We hypothesized that either the site of virus isolation, e.g., throat swab versus peripheral blood mononuclear cells, or the cell type used for the isolation may exert selective pressure on a mixed population of viruses, resulting in isolates with the differential properties observed. This hypothesis has been tested by simultaneously isolating MV from a throat swab and peripheral blood mononuclear cells from a single patient by cultivation on B95 and Vero cells. We report that neither the source of MV nor the cell type used for isolation directly influenced the capacity for CD46 modulation of these MV isolates.  相似文献   

8.
CD46 is a cellular receptor for group B adenoviruses   总被引:21,自引:0,他引:21  
Group B adenoviruses, a subgenus of human Adenoviridae, are associated with a variety of often-fatal illnesses in immunocompromised individuals, including bone marrow transplant recipients and cancer and AIDS patients. Recently, group B adenovirus derivatives have gained interest as attractive gene therapy vectors because they can transduce target tissues, such as hematopoietic stem cells, dendritic cells and malignant tumor cells, that are refractory to infection by commonly used adenoviral vectors. Whereas many adenoviruses infect cells through the coxsackievirus and adenovirus receptor (CAR), group B adenoviruses use an alternate, as-yet-unidentified cellular attachment receptor. Using mass spectrometric analysis of proteins interacting with a group B fiber, we identified human CD46 as a cellular attachment receptor for most group B adenoviruses. We show that ectopic expression of human CD46 rendered nonhuman cells susceptible to infection with group B viruses in vitro and in vivo. In addition, both siRNA-mediated knockdown of CD46 and a soluble form of CD46 blocked infection of human cell lines and primary human cells. The discovery that group B adenoviruses use CD46, a ubiquitously expressed complement regulatory protein, as a cellular attachment receptor elucidates the diverse clinical manifestation of group B virus infections, and bears directly on the application of these vectors for gene therapy.  相似文献   

9.
CD46 is a cellular receptor for human herpesvirus 6   总被引:29,自引:0,他引:29  
Human herpesvirus 6 (HHV-6) is the etiologic agent of exanthema subitum, causes opportunistic infections in immunocompromised patients, and has been implicated in multiple sclerosis and in the progression of AIDS. Here, we show that the two major HHV-6 subgroups (A and B) use human CD46 as a cellular receptor. Downregulation of surface CD46 was documented during the course of HHV-6 infection. Both acute infection and cell fusion mediated by HHV-6 were specifically inhibited by a monoclonal antibody to CD46; fusion was also blocked by soluble CD46. Nonhuman cells that were resistant to HHV-6 fusion and entry became susceptible upon expression of recombinant human CD46. The use of a ubiquitous immunoregulatory receptor opens novel perspectives for understanding the tropism and pathogenicity of HHV-6.  相似文献   

10.
A chimeric fusion protein encompassing the CD46 ectodomain linked to the C-terminal part of the C4b binding protein (C4bp) alpha chain (sCD46-C4bpalpha) was produced in eukaryotic cells. This protein, secreted as a disulfide-linked homo-octamer, was recognized by a panel of anti-CD46 antibodies with varying avidities. Unlike monomeric sCD46, the octameric sCD46-C4bpalpha protein was devoid of complement regulatory activity. However, sCD46-C4bpalpha was able to bind to the measles virus hemagglutinin protein expressed on murine cells with a higher avidity than soluble monomeric sCD46. Moreover, the octameric sCD46-C4bpalpha protein was significantly more efficient than monomeric sCD46 in inhibiting virus binding to CD46, in blocking virus induced cell-cell fusion, and in neutralizing measles virus in vitro. In addition, the octameric sCD46-C4bpalpha protein, but not the monomeric sCD46, fully protected CD46 transgenic mice against a lethal intracranial measles virus challenge.  相似文献   

11.
The pestivirus bovine viral diarrhea virus (BVDV) was shown to bind to the bovine CD46 molecule, which subsequently promotes entry of the virus. To assess the receptor usage of BVDV type 1 (BVDV-1) and BVDV-2, 30 BVDV isolates including clinical samples were assayed for their sensitivity to anti-CD46 antibodies. With a single exception the infectivity of all tested strains of BVDV-1 and BVDV-2 was inhibited by anti-CD46 antibodies, which indicates the general usage of CD46 as a BVDV receptor. Molecular analysis of the interaction between CD46 and the BVD virion was performed by mapping the virus binding site on the CD46 molecule. Single complement control protein modules (CCPs) within the bovine CD46 were either deleted or replaced by analogous CCPs of porcine CD46, which does not bind BVDV. While the epitopes recognized by anti-CD46 monoclonal antibodies which block BVDV infection were attributed to CCP1 and CCP2, in functional assays only CCP1 turned out to be essential for BVDV binding and infection. Within CCP1 two short peptides on antiparallel beta strands were identified as crucial for the binding of BVDV. Exchanges of these two peptide sequences were sufficient for a loss of function in bovine CD46 as well as a gain of function in porcine CD46. Determination of the size constraints of CD46 revealed that a minimum length of four CCPs is essential for receptor function. An increase of the distance between the virus binding domain and the plasma membrane by insertion of one to six CCPs of bovine C4 binding protein exhibited only a minor influence on susceptibility to BVDV.  相似文献   

12.
Measles virus (MV) possesses two envelope glycoproteins, namely, the receptor-binding hemagglutinin (H) and fusion proteins. Wild-type MV strains isolated in B-lymphoid cell lines use signaling lymphocyte activation molecule (SLAM), but not CD46, as a cellular receptor, whereas MV vaccine strains of the Edmonston lineage use both SLAM and CD46 as receptors. Studies have shown that the residue at position 481 of the H protein is critical in determining the use of CD46 as a receptor. However, the wild-type IC-B strain with a single N481Y substitution in the H protein utilizes CD46 rather inefficiently. In this study, a number of chimeric and mutant H proteins, and recombinant viruses harboring them, were generated to determine which residues of the Edmonston H protein are responsible for its efficient use of CD46. Our results show that three substitutions (N390I and E492G plus N416D or T446S), in addition to N481Y, are necessary for the IC-B H protein to use CD46 efficiently as a receptor. The N390I, N416D, and T446S substitutions are present in the H proteins of all strains of the Edmonston lineage, whereas the E492G substitution is found only in the H protein of the Edmonston tag strain generated from cDNAs. The T484N substitution, found in some of the Edmonston-lineage strains, resulted in a similar effect on the use of CD46 to that caused by the E492G substitution. Thus, multiple residues in the H protein that have not previously been implicated have important roles in the interaction with CD46.  相似文献   

13.
We analyzed the roles of the individual measles virus (MV) surface glycoproteins in mediating functional and structural interactions with human CD46, the primary MV receptor. On one cell population, recombinant vaccinia virus vectors were used to produce the MV hemagglutinin (H) and fusion (F) glycoproteins. As fusion partner cells, various cell types were examined, without or with human CD46 (endogenous or recombinant vaccinia virus encoded). Fusion between the two cell populations was monitored by a quantitative reporter gene activation assay and by syncytium formation. MV glycoproteins promoted fusion with primate cells but not with nonprimate cells; recombinant CD46 rendered nonprimate cells competent for MV glycoprotein-mediated fusion. Markedly different fusion specificity was observed for another morbillivirus, canine distemper virus (CDV): recombinant CDV glycoproteins promoted fusion with primate and nonprimate cells independently of CD46. Fusion by the recombinant MV and CDV glycoproteins required coexpression of H plus F in either homologous or heterologous combinations. To assess the role of H versus F in determining the CD46 dependence of MV fusion, we examined the fusion specificities of cells producing heterologous glycoprotein combinations. The specificity of HMV plus FCDV paralleled that observed for the homologous MV glycoproteins: fusion occurred with primate cells but not with nonprimate cells unless they produced recombinant CD46. By contrast, the specificity of HCDV plus FMV paralleled that for the homologous CDV glycoproteins: fusion occurred with either primate or nonprimate cells with no dependence on CD46. Thus, for both MV and CDV, fusion specificity was determined by H. In particular, the results demonstrate a functional interaction between HMV and CD46. Flow cytometry and antibody coprecipitation studies provided a structural correlate to this functional interaction: CD46 formed a molecular complex with HMV but not with FMV or with either CDV glycoprotein. These results highlight the critical role of the H glycoprotein in determining MV specificity for CD46-positive cells.  相似文献   

14.
Measles virus (MV) infection causes acute childhood disease, associated in certain cases with infection of the central nervous system (CNS) and development of neurological disease. To develop a murine model of MV-induced pathology, we generated several lines of transgenic mice ubiquitously expressing as the MV receptor a human CD46 molecule with either a Cyt1 or Cyt2 cytoplasmic tail. All transgenic lines expressed CD46 protein in the brain. Newborn transgenic mice, in contrast to nontransgenic controls, were highly sensitive to intracerebral infection by the MV Edmonston strain. Signs of clinical illness (lack of mobility, tremors, and weight loss) appeared within 5 to 7 days after infection, followed by seizures, paralysis, and death of the infected animals. Virus replication was detected in neurons from infected mice, and virus was reproducibly isolated from transgenic brain tissue. MV-induced apoptosis observed in different brain regions preceded the death of infected animals. Similar results were obtained with mice expressing either a Cyt1 or Cyt2 cytoplasmic tail, demonstrating the ability of different isoforms of CD46 to function as MV receptors in vivo. In addition, maternally transferred immunity delayed death of offspring given a lethal dose of MV. These results document a novel CD46 transgenic murine model where MV neuronal infection is associated with the production of infectious virus, similarly to progressive infectious measles encephalitis seen in immunocompromised patients, and provide a new means to study pathogenesis of MV infection in the CNS.  相似文献   

15.
Membrane cofactor protein (MCP) (CD46), a complement-regulatory protein, serves as a cellular receptor for measles virus. Its amino-terminal portion is composed of four short consensus repeats (SCR), three of which (SCR1, SCR2, and SCR4) carry an N-linked oligosaccharide. In order to determine the importance of the three N-glycans for the function of MCP as a measles virus receptor, we established Chinese hamster ovary (CHO) cell lines that stably express mutant MCPs lacking one of the three motifs for N glycosylation (NQ1, NQ2, and NQ4). In an additional mutant (NQ1-2), two glycosylation motifs were altered, allowing the addition of an N-linked oligosaccharide only in SCR4. The abilities of the mutant MCPs to function as measles virus receptors were analyzed with three different assays: (i) binding of measles virus hemagglutinin to MCP immobilized on nitrocellulose; (ii) binding of measles virus to CHO cells expressing wild-type or mutant MCP; and (iii) infection of the transfected CHO cells by measles virus. In all three assays, the abilities of the NQ2 and NQ1-2 mutants to serve as measles virus receptors were drastically impaired. The NQ1 and NQ4 mutants were recognized by measles virus almost as efficiently as the wild-type protein. These results indicate that the N-glycan attached to SCR2 is essential for MCP to serve as a measles virus receptor, while the oligosaccharides attached to SCR1 and SCR4 are of only minor importance.  相似文献   

16.
The acetylcholine receptor as a cellular receptor for rabies virus   总被引:3,自引:0,他引:3  
Characterization of specific host cell receptors for enveloped viruses is a difficult problem because many enveloped viruses bind to a variety of substrates which are not obviously related to tissue tropisms in the intact host. Viruses with a limited cellular tropism in infected animals present useful models for studying the mechanisms by which virus attachment regulates the disease process. Rabies virus is a rhabdovirus which exhibits a marked neuronotropism in infected animals. Limited data suggest that spread occurs by transsynaptic transfer of virus. The results of recent experiments at Yale suggest that viral antigen is localized very soon after injection at neuromuscular junctions, the motor nerve endings on muscle tissue. On cultured muscle cells, similar co-localization with the acetylcholine receptor is seen both before and after virus multiplication. Pretreatment of these cells with some ligands of the acetylcholine receptor results in reduced viral infection. These findings suggest that a neurotransmitter receptor or a closely associated molecule may serve as a specific host cell receptor for rabies virus and thus may be responsible for the tissue tropism exhibited by this virus. In addition to clarifying aspects of rabies virus pathogenesis, these studies have broad implications regarding the mechanism by which other viruses or viral immunizations might mediate autoimmune diseases such as myasthenia gravis.  相似文献   

17.
The role of the measles virus (MV) receptor, human CD46, in the uptake of MV and antigen presentation by Major Histocompatibility Complex (MHC) class II molecules was investigated. Expression of CD46 in murine B cells resulted in cells highly efficient in capturing UV-inactivated MV particles and presenting both envelope hemagglutinin H and nucleoprotein N to specific T cell hybridomas. Although MV fuse with the plasma membrane of its target cells, presentation of both MV-H and -N was sensitive to inhibition by chloroquine but was not affected by a tripeptide which prevents virus-cell fusion. Whereas 50 μM of chloroquine was required to inhibit presentation of MV-H, purified H or soluble N, only a two-fold lower concentration was required to inhibit that of MV-N. This shows that some CD46-mediated captured MV particles are endocytosed, then disrupted and processed in an endosome/lysosome compartment.  相似文献   

18.
S Yant  A Hirano    T C Wong 《Journal of virology》1997,71(1):766-770
To investigate the sequence requirements for measles virus (MV)-induced receptor down regulation, we transfected the human CD46 gene into simian cells persistently infected by the Biken strain of MV. Surface expression of CD46 is drastically reduced in these cells. Deletion analysis has shown that the juxtamembrane region of the CD46 cytoplasmic domain is essential for down regulation. Deleting a Tyr-Arg-Tyr-Leu sequence in this region or changing these residues to Ala prevents CD46 down regulation from the infected cell surface. Alanine-scanning mutagenesis has identified two amino acid residues, Tyr and Leu, forming a Tyr-X-X-Leu motif critical for CD46 down regulation. Mutations that prevent CD46 down regulation enhance syncytium formation. These results indicate that CD46 down regulation limits the cytopathic effects in a persistent MV infection and that CD46 down regulation requires a cytoplasmic Tyr-X-X-Leu sequence which resembles known motifs for membrane protein trafficking and receptor signalling.  相似文献   

19.
Monkey cells persistently infected by measles virus (MV) Biken strain (Biken-CV-1 cells) showed no cytopathic effects and lacked surface expression of a homolog of human cell receptor, membrane cofactor protein CD46. Transfection of a human CD46 gene into these cells induced extensive cell fusion, indicating that down regulation of the endogenous CD46 homolog was essential for the maintenance of a noncytopathic mode of infection. Surface expression of the exogenously introduced human CD46 was also drastically down regulated in the persistently infected cells compared with uninfected cells. The down regulation was specific for CD46 and did not affect surface expression of exogenously introduced CD4. Exogenous human CD46 was synthesized efficiently in the persistently infected cells, but it did not accumulate on the cell surface. Fusion of Biken-CV-1 cells required the extracellular hemagglutinin (H-protein)-binding domain but not the cytoplasmic domain. Replacing the transmembrane and cytoplasmic domains of CD46 with a glycosylphosphatidylinositol anchor did not prevent cell fusion but completely alleviated down regulation of the glycosylphosphatidylinositol-anchored CD46 in Biken-CV-1 cells. Deletion analyses revealed that the membrane-distal sequences of the CD46 cytoplasmic domain were not only unnecessary but also inhibitory for CD46 down regulation. By contrast, the six amino acid residues proximal to the membrane contained a sequence required for CD46 down regulation in the persistently infected cells. These results indicate that CD46 is down regulated in the persistently infected cells by a mechanism that recognizes a membrane-proximal sequence in the CD46 cytoplasmic domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号