首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PKB and the mitochondria: AKTing on apoptosis   总被引:8,自引:0,他引:8  
Cellular homeostasis depends upon the strict regulation of responses to external stimuli, such as signalling cascades triggered by nutrients and growth factors, and upon cellular metabolism. One of the major molecules coordinating complex signalling pathways is protein kinase B (PKB), a serine/threonine kinase also known as Akt. The number of substrates known to be phosphorylated by PKB and its interacting partners, as well as our broad understanding of how PKB is implicated in responses to growth factors, metabolic pathways, proliferation, and cell death via apoptosis is constantly increasing. Activated by the insulin/growth factor-phosphatidylinositol 3-kinase (PI3K) cascade, PKB triggers events that promote cell survival and prevent apoptosis. It is also now widely accepted that mitochondria are not just suppliers of ATP, but that they participate in regulatory and signalling events, responding to multiple physiological inputs and genetic stresses, and regulate both cell proliferation and death. Thus, mitochondria are recognized as important players in apoptotic events and it is logical to predict some form of interplay with PKB. In this review, we will summarize mechanisms by which PKB mediates its anti-apoptotic activities in cells and survey recent developments in understanding mitochondrial dynamics and their role during apoptosis.  相似文献   

2.
The protein kinase B/Akt signalling pathway in human malignancy   总被引:34,自引:0,他引:34  
Protein kinase B or Akt (PKB/Akt) is a serine/threonine kinase, which in mammals comprises three highly homologous members known as PKBalpha (Akt1), PKBbeta (Akt2), and PKBgamma (Akt3). PKB/Akt is activated in cells exposed to diverse stimuli such as hormones, growth factors, and extracellular matrix components. The activation mechanism remains to be fully characterised but occurs downstream of phosphoinositide 3-kinase (PI-3K). PI-3K generates phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), a lipid second messenger essential for the translocation of PKB/Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase-1 (PDK-1) and possibly other kinases. PKB/Akt phosphorylates and regulates the function of many cellular proteins involved in processes that include metabolism, apoptosis, and proliferation. Recent evidence indicates that PKB/Akt is frequently constitutively active in many types of human cancer. Constitutive PKB/Akt activation can occur due to amplification of PKB/Akt genes or as a result of mutations in components of the signalling pathway that activates PKB/Akt. Although the mechanisms have not yet been fully characterised, constitutive PKB/Akt signalling is believed to promote proliferation and increased cell survival and thereby contributing to cancer progression. This review surveys recent developments in understanding the mechanisms and consequences of PKB/Akt activation in human malignancy.  相似文献   

3.
The activation of Akt/PKB signaling pathway and cell survival   总被引:22,自引:0,他引:22  
Akt/PKB is a serine/threonine protein kinase that functions as a critical regulator of cell survival and proliferation. Akt/PKB family comprises three highly homologous members known as PKBalpha/Akt1, PKBbeta/Akt2 and PKBgamma/Akt3 in mammalian cells. Similar to many other protein kinases, Akt/PKB contains a conserved domain structure including a specific PH domain, a central kinase domain and a carboxyl-terminal regulatory domain that mediates the interaction between signaling molecules. Akt/PKB plays important roles in the signaling pathways in response to growth factors and other extracellular stimuli to regulate several cellular functions including nutrient metabolism, cell growth, apoptosis and survival. This review surveys recent developments in understanding the molecular mechanisms of Akt/PKB activation and its roles in cell survival in normal and cancer cells.  相似文献   

4.
5.
There is accumulating evidence that cell survival and metabolism are inexorably linked. As a majormediator of both the metabolic and anti-apoptotic effects of growth factors, the serine/threonine kinaseAkt (also known as protein kinase B or PKB) is particularly well-suited to coordinate the regulation ofthese interrelated processes. Recent demonstrations that growth factors and Akt require glucose (Glc) toprevent apoptosis and promote cell survival are compatible with this contention, as is a positivecorrelation between Akt-regulated mitochondrial hexokinase (mtHK) association and apoptoticresistance. From a phylogenetic perspective, the ability of Akt to regulate cellular metabolismapparently preceded the capacity to control cell survival, suggesting an evolutionary basis for the Glcdependent anti-apoptotic effects of Akt. We speculate that, somewhere in the course of evolution, themetabolic regulatory function of Akt evolved into an adaptive sensing system involving mtHK thatensures mitochondrial homeostasis, thereby coupling metabolism to cell survival. We also propose thatthis “guardian” function of mtHK may be specifically exploited for therapeutic purposes.  相似文献   

6.
In multicellular organisms, constituent cells depend on extracellular signals for growth, proliferation, and survival. When cells are withdrawn from growth factors, they undergo apoptosis. Expression of constitutively active forms of the serine/threonine kinase Akt/PKB can prevent apoptosis upon growth factor withdrawal. Akt-mediated survival depends in part on the maintenance of glucose metabolism, suggesting that reduced glucose utilization contributes to growth factor withdrawal-induced death. However, it is unclear how restricting access to extracellular glucose alone would lead to the metabolic collapse observed after growth factor withdrawal. We report herein that growth factor withdrawal results in the loss of surface transporters for not only glucose but also amino acids, low-density lipoprotein, and iron. This coordinated decline in transporters and receptors for extracellular molecules creates a catabolic state characterized by atrophy and a decline in the mitochondrial membrane potential. Activated forms of Akt maintained these transporters on the cell surface in the absence of growth factor through an mTOR-dependent mechanism. The mTOR inhibitor rapamycin diminished Akt-mediated increases in cell size, mitochondrial membrane potential, and cell survival. These results suggest that growth factors control cellular growth and survival by regulating cellular access to extracellular nutrients in part by modulating the activity of Akt and mTOR.  相似文献   

7.
8.
AKT/PKB signaling: navigating downstream   总被引:49,自引:0,他引:49  
Manning BD  Cantley LC 《Cell》2007,129(7):1261-1274
The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration.  相似文献   

9.
Insulin signaling through protein kinase Akt/protein kinase B (PKB), a downstream element of the phosphatidylinositol 3-kinase (PI3K) pathway, regulates diverse cellular functions including metabolic pathways, apoptosis, mitogenesis, and membrane trafficking. To identify Akt/PKB substrates that mediate these effects, we used antibodies that recognize phosphopeptide sites containing the Akt/PKB substrate motif (RXRXX(p)S/T) to immunoprecipitate proteins from insulin-stimulated adipocytes. Tryptic peptides from a 250-kDa immunoprecipitated protein were identified as the protein kinase WNK1 (with no lysine) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, consistent with a recent report that WNK1 is phosphorylated on Thr60 in response to insulin-like growth factor I. Insulin treatment of 3T3-L1 adipocytes stimulated WNK1 phosphorylation, as detected by immunoprecipitation with antibody against WNK1 followed by immunoblotting with the anti-phosphoAkt substrate antibody. WNK1 phosphorylation induced by insulin was unaffected by rapamycin, an inhibitor of p70 S6 kinase pathway but abolished by the PI3K inhibitor wortmannin. RNA interference-directed depletion of Akt1/PKB alpha and Akt2/PKB beta attenuated insulin-stimulated WNK1 phosphorylation, but depletion of protein kinase C lambda did not. Whereas small interfering RNA-induced loss of WNK1 protein did not significantly affect insulin-stimulated glucose transport in 3T3-L1 adipocytes, it significantly enhanced insulin-stimulated thymidine incorporation by about 2-fold. Furthermore, depletion of WNK1 promoted serum-stimulated cell proliferation of 3T3-L1 preadipocytes, as evidenced by a 36% increase in cell number after 48 h in culture. These data suggest that WNK1 is a physiologically relevant target of insulin signaling through PI3K and Akt/PKB and functions as a negative regulator of insulin-stimulated mitogenesis.  相似文献   

10.
The serine/threonine kinase Akt, or protein kinase B (PKB), has recently been a focus of intense research. It appears that Akt/PKB lies in the crossroads of multiple cellular signaling pathways and acts as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI 3-kinase). Akt/PKB is particularly important in mediating several metabolic actions of insulin. Another major activity of Akt/PKB is to mediate cell survival. In addition, the recent discovery of the tumor suppressor PTEN as an antagonist of PI 3-kinase and Akt/PKB kinase activity suggests that Akt/PKB is a critical factor in the genesis of cancer. Thus, elucidation of the mechanisms of Akt/PKB regulation and its physiological functions should be important for the understanding of cellular metabolism, apoptosis, and cancer.  相似文献   

11.
Protein kinase B (PKB/Akt)--a key regulator of glucose transport?   总被引:14,自引:0,他引:14  
The serine/threonine kinase protein kinase B (PKB/Akt) has been shown to play a crucial role in the control of diverse and important cellular functions such as cell survival and glycogen metabolism. There is also convincing evidence that PKB plays a role in the insulin-mediated regulation of glucose transport. Furthermore, states of cellular insulin resistance have been shown to involve impaired PKB activation, and this usually coincides with a loss of glucose transport activation. However, evidence to the contrary is also available, and the role of PKB in the control of glucose transport remains controversial. Here we provide an overview of recent findings, discuss the potential importance of PKB in the regulation of glucose transport and metabolism, and comment on future directions.  相似文献   

12.
13.
The three mammalian members of the protein kinase B/Akt (PKB/Akt) family have been implicated in a plethora of cellular signaling processes with key functions in control of cellular metabolism, growth, proliferation and apoptosis. As a major target of phosphatidylinositol (PI) 3-kinase signaling, the PKB/Akt isoforms also have central roles in a variety of human cancers, with effects on tumor initiation, progression and metastasis. It has been shown that isoform-specific functions of PKB/Akt family members can contribute to tumorigenesis on multiple levels. A series of recent studies documents the isoform-specific functions of PKB/Akt family members in regulation of cellular motility and migration by influencing numerous cellular targets involved in organization of the actin cytoskeleton, cellular interaction with the extracellular matrix, expression of motility genes and establishment of cellular polarity. A thorough insight into the isoform-specific roles of PKB/Akt proteins is essential for a full understanding of the complex biological outcomes elicited by PI 3-kinase and PKB/Akt signaling.  相似文献   

14.
Protein kinase B (PKB/Akt) plays a pivotal role in signaling pathways downstream of phosphatidylinositol 3-kinase, regulating fundamental processes such as cell survival, cell proliferation, differentiation, and metabolism. PKB/Akt activation is regulated by phosphoinositide phospholipid-mediated plasma membrane anchoring and by phosphorylation on Thr-308 and Ser-473. Whereas the Thr-308 site is phosphorylated by PDK-1, the identity of the Ser-473 kinase has remained unclear and controversial. The integrin-linked kinase (ILK) is a potential regulator of phosphorylation of PKB/Akt on Ser-473. Utilizing double-stranded RNA interference (siRNA) as well as conditional knock-out of ILK using the Cre-Lox system, we now demonstrate that ILK is essential for the regulation of PKB/Akt activity. ILK knock-out had no effect on phosphorylation of PKB/Akt on Thr-308 but resulted in almost complete inhibition of phosphorylation on Ser-473 and significant inhibition of PKB/Akt activity, accompanied by significant stimulation of apoptosis. The inhibition of PKB/Akt Ser-473 phosphorylation was rescued by kinase-active ILK but not by a kinase-deficient mutant of ILK, suggesting a role for the kinase activity of ILK in the stimulation of PKB/Akt phosphorylation. ILK knock-out also resulted in the suppression of phosphorylation of GSK-3beta on Ser-9 and cyclin D1 expression. These data establish ILK as an essential upstream regulator of PKB/Akt activation.  相似文献   

15.
Protein kinase B (PKB or Akt) is a mitogen-regulated protein kinase involved in the protection of cells from apoptosis, the promotion of cell proliferation and diverse metabolic responses [1]. Its activation is initiated by the binding of 3' phosphorylated phosphoinositide lipids to its pleckstrin homology (PH) domain, resulting in the induction of activating phosphorylation at residues Thr308 and Ser473 by upstream kinases such as phosphoinositide-dependent protein kinase-1 (PDK1) [2]. Adhesion of epithelial cells to extracellular matrix leads to protection from apoptosis via the activation of phosphoinositide (PI) 3-kinase and Akt/PKB through an unknown mechanism [3] [4]. Here, we use the localisation of Akt/PKB within the cell to probe the sites of induction of PI 3-kinase activity. In fibroblasts, immunofluorescence microscopy showed that endogenous Akt/PKB localised to membrane ruffles at the outer edge of the cell following mitogen treatment as did green fluorescent protein (GFP) fusions with full-length Akt/PKB or its PH domain alone. In epithelial cells, the PH domain of Akt/PKB localised to sites of cell-cell and cell-matrix contact, distinct from focal contacts, even in the absence of serum. As this localisation was disrupted by PI 3-kinase inhibitory drugs and by mutations that inhibit interaction with phosphoinositides, it is likely to represent the sites of constitutive 3' phosphoinositide generation that provide a cellular survival signal. We propose that the attachment-induced, PI-3-kinase-mediated survival signal in epithelial cells is generated not only by cell-matrix interaction but also by cell-cell interaction.  相似文献   

16.
Nuclear/cytoplasmic localization of Akt activity in the cell cycle   总被引:1,自引:0,他引:1  
Summary. The serine/threonine protein kinase Akt (also known as PKB) is a proto-oncogene and one of the most frequently hyperactivated kinases in human cancer. Its activation downstream of growth-factor-stimulated phosphatidylinositide-3′-OH kinase activity plays a role in the control of cell cycle, cell growth, apoptosis and cell energy metabolism. Akt phosphorylates some thousand downstream substrates, including typical cytoplasmic as well as nuclear proteins. Accordingly, it is not surprising that Akt activity can be found in both, the cytoplasm and the nucleus. Here we report the cell cycle regulation of nuclear and cytoplasmic Akt activity in mammalian cells. These data provide new insights into the regulation of Akt activity and have implications for future studies on the regulation of the wide variety of different nuclear and cytoplasmic Akt substrates.  相似文献   

17.
Protein kinase B (PKB/Akt) is an important mediator of signals that control various cellular processes including cell survival, growth, proliferation, and metabolism. PKB promotes these processes by phosphorylating many cellular targets, which trigger distinct downstream signaling events. However, how PKB is able to selectively target its substrates to induce specific cellular functions remains elusive. Here we perform a systematic study to dissect mechanisms that regulate intrinsic kinase activity versus mechanisms that specifically regulate activity toward specific substrates. We demonstrate that activation loop phosphorylation and the C-terminal hydrophobic motif are essential for high PKB activity in general. On the other hand, we identify membrane targeting, which for decades has been regarded as an essential step in PKB activation, as a mechanism mainly affecting substrate selectivity. Further, we show that PKB activity in cells can be triggered independently of PI3K by initial hydrophobic motif phosphorylation, presumably through a mechanism analogous to other AGC kinases. Importantly, different modes of PKB activation result in phosphorylation of distinct downstream targets. Our data indicate that specific mechanisms have evolved for signaling nodes, like PKB, to select between various downstream events. Targeting such mechanisms selectively could facilitate the development of therapeutics that might limit toxic side effects.  相似文献   

18.
Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3beta (GSK-3beta) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.  相似文献   

19.
Liver regeneration is controlled by multiple signaling pathways induced by a variety of growth factors, hormones, and cytokines. Here we report that protein kinase B (PKB)/Akt, part of a key cell survival signaling pathway, is markedly activated after partial hepatectomy (PHX). The antiapoptotic protein Bad, a downstream target of PKB/Akt, is also phosphorylated. This cascade can be activated by various factors in primary hepatocytes, with the strongest activation by insulin and the alpha1-adrenergic agonist phenylephrine (PE), followed by IL-6, epidermal growth factor (EGF), and hepatocyte growth factor (HGF). Pretreatment of cells with the specific PI3 kinase inhibitor LY294002 abolished insulin- or PE-activation of PKB/Akt, suggesting that activation of PKB/Akt is mediated by a PI3 kinase-dependent mechanism. In vivo administration of PE, insulin, IL-6, HGF, or EGF to mice markedly stimulated PKB/Akt in the liver, with the strongest stimulation induced by insulin and PE. Moreover, HGF and insulin were able to attenuate transforming growth factor beta-induced apoptosis in hepatic cells, and these effects were antagonized by LY294002. Taken together, these findings suggest that rapid activation of PKB/Akt is a key antiapoptotic signaling pathway involved in liver regeneration.  相似文献   

20.
PKB binding proteins. Getting in on the Akt   总被引:23,自引:0,他引:23  
Brazil DP  Park J  Hemmings BA 《Cell》2002,111(3):293-303
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号