首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Watillon  R Kettmann  P Boxus    A Burny 《Plant physiology》1993,101(4):1381-1384
cDNA fragments corresponding to an apple (Malus domestica [L.] Borkh) calmodulin-binding polypeptide have been isolated and characterized. The protein encoded by this messenger contains a serine/threonine protein kinase catalytic domain followed by a calcium/calmodulin-binding regulatory domain, both exhibiting significant sequence similarities to the corresponding regions of the mammalian calcium/calmodulin-dependent protein kinase II subunits. These results confirm a potential regulatory role for calmodulin in phosphorylation-mediated signal transduction events.  相似文献   

2.
3.

Background

Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca2+/calmodulin-dependent kinase (CaMK) family involved in adiposity regulation, glucose homeostasis and cancer. This upstream activator of CaMKI, CaMKIV and AMP-activated protein kinase is inhibited by phosphorylation, which also triggers an association with the scaffolding protein 14-3-3. However, the role of 14-3-3 in the regulation of CaMKK2 remains unknown.

Methods

The interaction between phosphorylated CaMKK2 and the 14-3-3γ protein, as well as the architecture of their complex, were studied using enzyme activity measurements, small-angle x-ray scattering (SAXS), time-resolved fluorescence spectroscopy and protein crystallography.

Results

Our data suggest that the 14-3-3 protein binding does not inhibit the catalytic activity of phosphorylated CaMKK2 but rather slows down its dephosphorylation. Structural analysis indicated that the complex is flexible and that CaMKK2 is located outside the phosphopeptide-binding central channel of the 14-3-3γ dimer. Furthermore, 14-3-3γ appears to interact with and affect the structure of several regions of CaMKK2 outside the 14-3-3 binding motifs. In addition, the structural basis of interactions between 14‐3-3 and the 14-3-3 binding motifs of CaMKK2 were elucidated by determining the crystal structures of phosphopeptides containing these motifs bound to 14-3-3.

Conclusions

14-3-3γ protein directly interacts with the kinase domain of CaMKK2 and the region containing the inhibitory phosphorylation site Thr145 within the N-terminal extension.

General significance

Our results suggested that CaMKK isoforms differ in their 14-3-3-mediated regulations and that the interaction between 14-3-3 protein and the N-terminal 14-3-3-binding motif of CaMKK2 might be stabilized by small-molecule compounds.  相似文献   

4.
5.
The mechanisms of NO inhibition of CaMK [Ca(2+)/CaM (calmodulin)-dependent protein kinase] II activity were studied. In rat pituitary tumour GH3 cells, TRH [thyrotrophin (TSH)-releasing hormone]-stimulated phosphorylation of nNOS [neuronal NOS (NO synthase)] at Ser(847) was sensitive to an inhibitor of CaMKs, KN-93, and was enhanced by inhibition of nNOS with 7NI (7-nitroindazole). Enzyme activity of CaMKII following in situ treatment with 7NI was also increased. The in vitro activity of CaMKII was inhibited by co-incubation either with nNOS and L-arginine or with NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) and DEA-NONOate [diethylamine-NONOate (diazeniumdiolate)]. Once inhibited by these treatments, CaMKII was observed to undergo full reactivation on the addition of a reducing reagent, DTT (dithiothreitol). In transfected cells expressing CaMKII and nNOS, treatment with the calcium ionophore A23187 further revealed nNOS phosphorylation at Ser(847), which was enhanced by 7NI and CaMKII S-nitrosylation. Mutated CaMKII (C6A), in which Cys(6) was substituted with an alanine residue, was refractory to 7NI-induced enhancement of nNOS phosphorylation or to CaMKII S-nitrosylation. Furthermore, we could identify Cys(6) as a direct target for S-nitrosylation of CaMKII using MS. In addition, treatment with glutamate caused an increase in CaMKII S-nitrosylation in rat hippocampal slices. This glutamate-induced S-nitrosylation was blocked by 7NI. These results suggest that inactivation of CaMKII mediated by S-nitrosylation at Cys(6) may contribute to NO-induced neurotoxicity in the brain.  相似文献   

6.
Calcium (Ca(2+))/calmodulin-dependent protein kinase kinase (CaMKK) is a novel member of Ca(2+)/calmodulin-dependent protein kinase (CaMK) family, whose physiological roles in regulating meiotic cell cycle needs to be determined. We showed by Western blot that CaMKK was expressed in pig oocytes at various maturation stages. Confocal microscopy was employed to observe CaMKK distribution. In oocytes at the germinal vesicle (GV) or prometaphase I (pro-MI) stage, CaMKK was distributed in the nucleus, around the condensed chromatin and the cortex of the cell. At metaphase I (MI) stage, CaMKK was concentrated in the cortex of the cell. After transition to anaphase I or telophase I stage, CaMKK was detected around the separating chromosomes and in the cortex of the cell. At metaphase II (MII) stage, CaMKK was localized to the cortex of the cell, with a thicker area near the first polar body (PB1). Treatment of pig cumulus-enclosed oocytes with STO-609, a membrane-permeable CaMKK inhibitor, resulted in the delay/inhibition of the meiotic resumption and the inhibition of first polar body emission. The correlation between CaMKK and microfilaments during meiotic maturation of pig oocytes was then studied. CaMKK and microfilaments were colocalized from MI to MII during porcine oocyte maturation. After oocytes were treated with STO-609, microfilaments were depolymerized, while in oocytes exposed to cytochalasin B (CB), a microfilament polymerization inhibitor, CaMKK became diffused evenly throughout the cell. These data suggest that CaMKK is involved in regulating the meiotic cell cycle probably by interacting with microfilaments in pig oocytes.  相似文献   

7.
8.
Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.  相似文献   

9.
The existence of two molecular switches regulating plant chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK), namely the C-terminal visinin-like domain acting as Ca(2+)-sensitive molecular switch and calmodulin binding domain acting as Ca(2+)-stimulated autophosphorylation-sensitive molecular switch, has been described (Sathyanarayanan, P. V., Cremo, C. R., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 30417-30422). Here we report the identification of Ca(2+)-stimulated autophosphorylation site of CCaMK by matrix-assisted laser desorption ionization time of flight-mass spectrometry. Thr(267) was confirmed as the Ca(2+)-stimulated autophosphorylation site by post-source decay experiments and by site-directed mutagenesis. The purified T267A mutant form of CCaMK did not show Ca(2+)-stimulated autophosphorylation, autophosphorylation-dependent variable calmodulin affinity, or Ca(2+)/calmodulin stimulation of kinase activity. Sequence comparison of CCaMK from monocotyledonous plant (lily) and dicotyledonous plant (tobacco) suggests that the autophosphorylation site is conserved. This is the first identification of a phosphorylation site specifically responding to activation by second messenger system (Ca(2+) messenger system) in plants. Homology modeling of the kinase and calmodulin binding domain of CCaMK with the crystal structure of calcium/calmodulin-dependent protein kinase 1 suggests that the Ca(2+)-stimulated autophosphorylation site is located on the surface of the kinase and far from the catalytic site. Analysis of Ca(2+)-stimulated autophosphorylation with increasing concentration of CCaMK indicates the possibility that the Ca(2+)-stimulated phosphorylation occurs by an intermolecular mechanism.  相似文献   

10.
Ma L  Liang S  Jones RL  Lu YT 《Plant physiology》2004,135(3):1280-1293
A cDNA encoding a calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CaMK) from tobacco (Nicotiana tabacum), NtCaMK1, was isolated by protein-protein interaction-based screening of a cDNA expression library using 35S-labeled CaM as a probe. The genomic sequence is about 24.6 kb, with 21 exons, and the full-length cDNA is 4.8 kb, with an open reading frame for NtCaMK1 consisting of 1,415 amino acid residues. NtCaMK1 has all 11 subdomains of a kinase catalytic domain, lacks EF hands for Ca2+-binding, and is structurally similar to other CaMKs in mammal systems. Biochemical analyses have identified NtCaMK1 as a Ca2+/CaMK since NtCaMK1 phosphorylated itself and histone IIIs as substrate only in the presence of Ca2+/CaM with a Km of 44.5 microm and a Vmax of 416.2 nm min(-1) mg(-1). Kinetic analysis showed that the kinase not previously autophosphorylated had a Km for the synthetic peptide syntide-2 of 22.1 microm and a Vmax of 644.1 nm min(-1) mg(-1) when assayed in the presence of Ca2+/CaM. Once the autophosphorylation of NtCaMK1 was initiated, the phosphorylated form displayed Ca2+/CaM-independent behavior, as many other CaMKs do. Analysis of the CaM-binding domain (CaMBD) in NtCaMK1 with truncated and site-directed mutated forms defined a stretch of 20 amino acid residues at positions 913 to 932 as the CaMBD with high CaM affinity (Kd = 5 nm). This CaMBD was classified as a 1-8-14 motif. The activation of NtCaMK1 was differentially regulated by three tobacco CaM isoforms (NtCaM1, NtCaM3, and NtCaM13). While NtCaM1 and NtCaM13 activated NtCaMK1 effectively, NtCaM3 did not activate the kinase.  相似文献   

11.
A protein fraction containing neurofilaments was prepared from rat brain cytosol by differential centrifugation and gel filtration chromatography. These preparations were enriched for a calcium/calmodulin-dependent kinase activity that phosphorylated endogenous neurofilament proteins. The enzyme incorporated approximately 1 mol PO4/mol of each neurofilament triplet polypeptide. These data suggest that a calmodulin-dependent kinase may mediate some of the effects of calcium on cytoskeletal function by phosphorylation of neurofilament proteins.  相似文献   

12.
13.
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine-protein kinase belonging to the Ca2+/calmodulin-dependent protein kinase subfamily. CAMKK2 has an autocatalytic site, which gets exposed when Ca2+/calmodulin (CAM) binds to it. This results in autophosphorylation and complete activation of CAMKK2. The three major known downstream targets of CAMKK2 are 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPKα), calcium/calmodulin-dependent protein kinase 1 (CAMK1) and calcium/calmodulin-dependent protein kinase 4 (CAMK4). Activation of these targets by CAMKK2 is important for the maintenance of different cellular and physiological processes within the cell. CAMKK2 is found to be important in neuronal development, bone remodeling, adipogenesis, and systemic glucose homeostasis, osteoclastgensis and postnatal myogensis. CAMKK2 is reported to be involved in pathologies like Duchenne muscular dystrophy, inflammation, osteoporosis and bone remodeling and is also reported to be overexpressed in prostate cancer, hepatic cancer, ovarian and gastric cancer. CAMKK2 is involved in increased cell proliferation and migration through CAMKK2/AMPK pathway in prostate cancer and activation of AKT in ovarian cancer. Although CAMKK2 is a molecule of great importance, a public resource of the CAMKK2 signaling pathway is currently lacking. Therefore, we carried out detailed data mining and documentation of the signaling events associated with CAMKK2 from published literature and developed an integrated reaction map of CAMKK2 signaling. This resulted in the cataloging of 285 reactions belonging to the CAMKK2 signaling pathway, which includes 33 protein–protein interactions, 74 post-translational modifications, 7 protein translocation events, and 22 activation/inhibition events. Besides, 124 gene regulation events and 25 activator/inhibitors involved in CAMKK2 activation were also cataloged. The CAMKK2 signaling pathway map data is made freely accessible through WikiPathway database (https://www.wikipathways.org/index.php/Pathway:WP4874). We expect that data on a signaling map of CAMKK2 will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on CAMKK2 and its utility in the development of biomarkers and therapeutic targets.Electronic supplementary materialThe online version of this article (10.1007/s12079-020-00592-1) contains supplementary material, which is available to authorized users.  相似文献   

14.
The establishment and maintenance of cellular polarity are critical for the development of multicellular organisms. PAR (partitioning-defective) proteins were identified in Caenorhabditis elegans as determinants of asymmetric cell division and polarized cell growth. Recently, vertebrate orthologues of two of these proteins, ASIP/PAR-3 and PAR-6, were found to form a signalling complex with the small GTPases Cdc42/Rac1 and with atypical protein kinase C (PKC). Here we show that ASIP/PAR-3 associates with the tight-junction-associated protein junctional adhesion molecule (JAM) in vitro and in vivo. No binding was observed with claudin-1, -4 or -5. In fibroblasts and CHO cells overexpressing JAM, endogenous ASIP is recruited to JAM at sites of cell-cell contact. Over expression of truncated JAM lacking the extracellular part disrupts ASIP/PAR-3 localization at intercellular junctions and delays ASIP/PAR-3 recruitment to newly formed cell junctions. During junction formation, JAM appears early in primordial forms of junctions. Our data suggest that the ASIP/PAR-3-aPKC complex is tethered to tight junctions via its association with JAM, indicating a potential role for JAM in the generation of cell polarity in epithelial cells.  相似文献   

15.
Nuclear Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) is an enzyme that dephosphorylates and downregulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) as well as AMP-dependent protein kinase. In our previous study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing and translocated to cytosol in a proteasome inhibitor-sensitive manner. In the present study, we found that zCaMKP-N is regulated by phosphorylation at Ser-480. When zCaMKP-N was incubated with the activated CaMKI, time-dependent phosphorylation of the enzyme was observed. This phosphorylation was significantly reduced when Ser-480 was replaced by Ala, suggesting that CaMKI phosphorylates Ser-480 of zCaMKP-N. Phosphorylation-mimic mutants, S480D and S480E, showed higher phosphatase activities than those of wild type and S480A mutant in solution-based phosphatase assay using various substrates. Furthermore, autophosphorylation of CaMKII after ionomycin treatment was more severely attenuated in Neuro2a cells when CaMKII was cotransfected with the phosphorylation-mimic mutant of zCaMKP-N than with the wild-type or non-phosphorylatable zCaMKP-N. These results strongly suggest that phosphorylation of zCaMKP-N at Ser-480 by CaMKI activates CaMKP-N catalytic activity and thereby downregulates multifunctional CaMKs in the cytosol.  相似文献   

16.
17.
In a continuing search for proteins that target calcium/calmodulin-dependent protein kinase II (CaMKII) to postsynaptic density (PSD) substrates important in synaptic plasticity, we showed that the PSD protein densin-180 binds CaMKII. Four putative splice variants (A-D) of the cytosolic tail of densin-180 are shown to be differentially expressed during brain development. Densin-180 splicing affects CaMKII phosphorylation of specific serine residues. Variants A, B, and D, but not C, bind CaMKII stoichiometrically and with high affinity, mediated by a differentially spliced domain. Densin-180 differs from the previously identified CaMKII-binding protein NR2B in that binding does not strictly require CaMKII autophosphorylation. Binding of densin-180 and NR2B to CaMKII is noncompetitive, indicating different interaction sites on CaMKII. Expression of the membrane-targeted CaMKII-binding domain of densin-180 confers membrane localization to coexpressed CaMKII without requiring calcium mobilization, suggesting that densin-180 plays a role in the constitutive association of CaMKII with PSDs.  相似文献   

18.
19.
Ca2+-sensitive protein kinases are thought to play a pivotal role in Ca2+-mediated neuronal communication. We describe here the cloning, purification, and characterization of a major Ca2+/calmodulin-dependent, brain-specific protein kinase which is particularly enriched in cerebellar granule cells. The enzyme is comprised of Mr 65,000 and 67,000 polypeptides which copurify to homogeneity and phosphorylate synapsin I. The protein kinase is coded for by two poly(A+) RNAs of 2.0 and 3.5 kilobases which probably derive from a single gene. Two cDNA inserts, one of 198 base pairs and one of 1225 base pairs, contain a total of 677 base pairs of the protein coding sequence which includes sequences homologous to other calmodulin-dependent protein kinases including part of the calmodulin-binding domain. The surprising presence of extended sequences which are enriched in glutamate residues may influence the subcellular distribution of this kinase. Immunohistochemical localization with an affinity-purified antibody reveals that whereas the enzyme is expressed in several neuronal subpopulations, it is exceptionally enriched in the granule cells of the cerebellum. The relevance of the biochemical, molecular, and histologic properties of this enzyme is discussed in the context of neuronal Ca2+ signaling.  相似文献   

20.
Insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding proteins-2 (IGFBP-2) function coordinately to stimulate osteoblast differentiation. Induction of AMP-activated protein kinase (AMPK) is required for differentiation and is stimulated by these two factors. These studies were undertaken to determine how these two peptides lead to activation of AMPK. Enzymatic inhibitors and small interfering RNA were utilized to attenuate calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) activity in osteoblasts, and both manipulations resulted in failure to activate AMPK, thereby resulting in inhibition of osteoblast differentiation. IGFBP-2 and IGF-I stimulated an increase in CaMKK2, and inhibition of IGFBP-2 binding its receptor resulted in failure to induce CaMKK2 and AMPK activation. Injection of a peptide that contained the IGFBP-2 receptor-binding domain into IGFBP-2−/− mice activated CaMKK2 and injection of a CaMKK2 inhibitor into normal mice inhibited both CamKK2 and AMPK activation in osteoblasts. We conclude that induction of CaMKK2 by IGFBP-2 and IGF-I in osteoblasts is an important signaling event that occurs early in differentiation and is responsible for activation of AMPK, which is required for optimal osteoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号