首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ovaries of 3-month-old Booroola lambs which were heterozygous carriers of a major gene (F) influencing the ovulation rate in mature ewes (i.e. F + lambs) were compared to those ofsimilarly-aged Booroola lambs which were non-carriers of the F-gene (i.e. ++ lambs). The ovaries of the F + Booroola lambs were significantly lighter (P less than 0.01) than those of ++ lambs even though the mean +/- s.e.m. number of follicles (greater than or equal to 1 mm diam.) in the F + lambs was greater than that in the ++ lambs (i.e. F + lambs, 30.2 +/- 2.5 follicles; ++ lambs, 18.4 +/- 1.2 follicles; P less than 0.01). In granulosa cells from non-atretic follicles (greater than or equal to 1 mm diam.) from F + and ++ Booroola lambs, FSH (NIAMDD-FSH-S16) doses of 100 and 1000 ng/ml caused significant stepwise increases (P less than 0.05) in cyclic adenosine 3',5'-monophosphate (cAMP) production compared to that achieved at FSH doses of 0 and 1 ng/ml or at any FSH dose in cells from atretic follicles. However, no significant differences in FSH-induced cAMP production were noted with regard to Booroola genotype or follicular diameter. None of the granulosa cell preparations from non-atretic follicles of 1-2.5 mm diameter from F + lambs (N = 13) or from non-atretic follicles of 1-4.5 mm diameter from ++ lambs (N = 16) responded to LH (NIAMDD-LH-S24; 10 or 1000 ng/ml) to produce significantly more cAMP than did the controls. In contrast, the granulosa cell preparations from non-atretic follicles of 3-4.5 mm diameter from F + lambs (N = 4) and from non-atretic follicles of greater than or equal to 5 mm diameter of ++ lambs (N = 4) produced significantly more cAMP (P less than 0.05) in response to LH (1000 and/or 10 ng/ml) relative to that in the controls. The theca interna from follicles of lambs of both genotypes had functional LH receptors as judged by the androstenedione responses to exogenous LH although no genotypic differences were noted. In F + lambs, the follicular fluid concentrations of testosterone but not oestradiol (i.e. in 1-4.5 mm diam. follicles) and granulosa cell aromatase activity (i.e. in 3-3.5 mm diam. follicles) were significantly higher (both P less than 0.05) than in corresponding follicles or cells from ++ lambs. Collectively the results suggest that the Booroola F-gene influences the composition and function of sheep ovaries before puberty.  相似文献   

2.
The common brushtail possum (Trichosurus vulpecula) is a pest of considerable economic importance in New Zealand. Attempts to develop methods of suppressing reproduction in this species are currently hampered by the lack of reliable methods to synchronise oestrus and ovulation in this species. The objective of this study was to compare antral follicle populations in anoestrous and cyclic brushtail possums and to assess the efficacy of exogenous FSH to induce follicle development in anoestrous animals. Ovaries were recovered from anoestrous possums after administration of either exogenous FSH (1.0 mg/injection) or the saline vehicle alone (0.5 ml/injection) at 12-h intervals for 3 days (n = 6/group), and from cyclic animals (n = 6) that were euthanised in mid-follicular phase (5 days after removal of their pouch young). All antral follicles > or =1.0 mm in diameter were dissected free of extraneous tissue, incubated in vitro to measure oestradiol production, and then processed for histological assessment of health status. Mean weight of ovaries and vaginal cul-de-sac tissues were both significantly greater (P<0.001) in FSH-treated anoestrous females (24.2+/-5.1 mg and 6.50+/-1.34 g, respectively), but did not differ significantly between saline-treated anoestrous possums (12.4+/-3.0 mg and 1.31+/-0.27 g) and cyclic animals (13.5+/-1.6 mg and 2.62+/-0.95 g). Mean uterine weights in both cyclic (889+/-161 mg) and FSH-treated (1098+/-184 mg) animals were significantly heavier(P<0.001) than those of anoestrous possums (414+/-61 mg). The mean number of follicles (> or =1.0-mm diameter) present was significantly greater (P<0.001) in FSH-treated, than in cyclic and anoestrous possums (38.0+/-4.4, 23.2+/-3.2 and 10.7+/-3.4 follicles/animal, respectively). Cyclic animals had significantly more (P<0.01) follicles than anoestrous possums. The proportion of follicles that were classified as healthy, was significantly lower (P<0.01) in cyclic possums(38%) than in anoestrous (69%) and FSH-treated (88%) animals. The mean diameter of the largest healthy follicle present was 2.5+/-0.41, 2.1+/-0.08, and 3.1+/-0.15 mm for cyclic, anoestrous and FSH-treated animals, respectively. None of the follicles harvested from saline-treated anoestrous possums produced measurable levels of oestradiol in vitro, whereas 7% and 59% of those from cyclic and FSH-treated animals did so. In summary, cyclic possums had more antral follicles present than anoestrous animals, but a lower percentage of these follicles were healthy. Less than 10% of healthy follicles from cyclic possums, and none of those from anoestrous animals, were capable of producing oestradiol when incubated in vitro. Treatment with ovine FSH promoted follicle development in anoestrous possums, to significantly increase the number of follicles present, the proportion that were healthy and the percentage capable of producing oestradiol.  相似文献   

3.
The objective of this study was to investigate the possible effect of recombinant bovine somatotropin (BST) on ovarian folliculogenesis and ovulation rate. Twelve Hereford x Friesian heifers received daily injections of either 25 mg BST (6 heifers) or vehicle (6 heifers) for a period of two estrous cycles until slaughter. Blood samples were collected three times a week for measurements of peripheral growth hormone (GH), insulin-like growth factor I (IGF-I), FSH, LH, estradiol, and progesterone. Serial blood samples were also taken every 10 min for 8 h on Days 12 and 19 of the second estrous cycle to monitor GH, IGF-I, FSH, and LH profiles. At the end of treatment (Day 7 of the third estrous cycle), the heifers were killed and their ovaries were collected. Ovulation rate was determined by counting the number of fresh corpora lutea (CL). All antral follicles greater than or equal to 2 mm in diameter were dissected to assess antral follicle populations. Granulosa and thecal cells from the three largest follicles and CL from each heifer were collected for FSH and LH binding measurements. All heifers had a single ovulation. The treated heifers had significantly more antral follicles (60.2 +/- 6.7) than did the animals in the control group (33.2 +/- 3.2) (p less than 0.001). When follicles were grouped according to diameter, the mean numbers of follicles greater than 10 mm, 5-10 mm, and 2-5 mm in diameter were 0.8 +/- 0.2, 6.8 +/- 1.4, and 52.5 +/- 6.5 for the treated group, and 0.8 +/- 0.2, 6.5 +/- 1.0, and 25.8 +/- 2.7 for controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Radioactive microspheres (15 microns diameter) were used to measure capillary blood flow rates in the ovaries and ovarian follicles (Qf) in high fecund Romanov and low fecund Préalpes-du-Sud ewes at the preovulatory stage of the oestrous cycle. Additionally, assessments of the percentage of arterial blood passing through ovarian arterio-venous anastomoses were obtained. The mean +/- s.e.m. Qf per unit volume of theca [ml/min) x 10(4)/mm3) for non-atretic follicles in Romanov ewes was significantly greater (P less than 0.05) than that in Préalpes ewes (365.8 +/- 42.4, n = 19, compared with 241.3 +/- 30.1, n = 14). For each breed, the mean Qf value for non-atretic follicles was 8-10 times greater than that for atretic follicles. In Romanov ewes, total Qf [ml/min) x 10(4) and Qf per unit volume of theca was greatest in small-sized follicles (3.1-5.0 mm) while in Préalpes ewes, maximum flow was attained in larger-sized follicles (5.1-7.0 mm). The elevated Qf in small-sized follicles in Romanov ewes may be conducive to more follicles achieving maturation at a smaller diameter in this breed than occurs in the Préalpes ewes. The absence of flow through ovarian arterio-venous anastomoses in the Romanov, but not in the Préalpes, ewes suggests different mechanisms for controlling the distribution of the total ovarian blood supply in the 2 breeds.  相似文献   

5.
Five Dutch-Friesian heifers were injected i.m. with 3000 iu pregnant mares' serum gonadotrophin (PMSG) on day 10 of the oestrous cycle, to study the effects on the number and micromorphological quality of antral follicles (> or = 0.3 mm in diameter). The ovaries were collected 48 h after PMSG injection. As well as the presence of mitotic figures and the absence of pyknotic nuclei in the granulosa, atypical granulosa cells were found in nonatretic follicles. These cells had an oblong nucleus and stained with toluidine blue. They were characterized by their dark cell matrix, and the presence of numerous free ribosomes and intermediate filaments of varying quantity. Atypical granulosa cells were micromorphologically similar to fibroblast-like cells in the theca. Their presence coincided with the occurrence of degenerative changes in the cytoplasm of nearby granulosa cells and they were more frequent in atretic follicles. The presence of atypical granulosa cells in follicles hitherto called nonatretic is therefore probably associated with the onset of follicular atresia. In the PMSG-treated heifers, the mean number of large (> or = 6.0 mm in diameter) antral follicles was greater than in the control group (18.4 +/- 4.0 versus 3.0 +/- 1.0), because of an increase in the number of large nonatretic follicles (11.8 +/- 4.4 versus 0.4 +/- 0.2). After hormone treatment, the mean number of medium-sized (3.0-5.9 mm) nonatretic follicles also increased (6.4 +/- 1.3 versus 1.8 +/- 1.0). PMSG did not change the mean number of nonatretic follicles < 3.0 mm or that of atretic follicles in the different size categories. However, when follicles hitherto called nonatretic, with atypical granulosa cells, were taken together with the group of atretic follicles, PMSG appeared to increase the mean number of large atretic follicles (13.6 +/- 2.4 versus 3.0 +/- 1.0). The mean number of medium-sized and large nonatretic follicles without atypical granulosa cells was markedly increased (3.8 +/- 1.0 versus 0.2 +/- 0.2 and 4.6 +/- 1.9 versus 0.0, respectively). The data demonstrate that PMSG stimulates the formation not only of nonatretic follicles > or = 3.0 mm, but also of atretic follicles > or = 6.0 mm.  相似文献   

6.
《Theriogenology》1986,25(6):795-808
The total ovarian follicular populations were determined in ewes at Day 140 of pregnancy and at Day 5 postpartum. The right and left ovaries of five pregnant and five non-suckling ewes of the Préalpes-du-Sud breed were used in this study. All the ovaries were serially sectioned at a thickness of 7 μm, and every section was examined microscopically.The mean numbers of preantral follicles per ovary increased (P<0.005) at Day 5 postapartum as compared to Day 140 of pregnancy. The distribution of preantral non-atretic follicles into different size classes clearly showed a sharp increase in the mean number of follicles per size class at Day 5 postpartum, especially those leaving the reserve of primordial follicles.No difference was detected between both groups of ewes in the mean number of antral follicles. The diameter of the largest antral follicle at Day 140 of pregnancy does not exceed 1.5 mm. However, at Day 5 postpartum, a population of large follicles ≥ 1.5 mm was observed, reaching 2–4 mm in diameter.We conclude that although the pattern of normal follicular development is inhibited during late pregnancy, the ovary at this time is not quiescent, and ovarian follicular development starts well before parturition. The increasing number of preantral follicles, as well as the enlargement of antral follicle diameter observed at Day 5 postpartum, may be correlated with increasing secretion of FSH after lambing.  相似文献   

7.
Growth rates of follicles in the ovary of the cow   总被引:4,自引:0,他引:4  
Follicular growth rates were studied in 5 Hereford-Holstein cross heifers on Day 14 of the oestrous cycle. The granulosa cell mitotic index (MI) was measured in non-atretic antral follicles of various diameters (0.13-8.57 mm) from Bouin-fixed ovaries collected before (199, control) and 2 h after colchicine treatment (189, treated). In control ovaries, follicles of 0.68-1.52 mm had a higher MI than those of other size classes (P less than 0.05). In colchicine-treated ovaries, the MI of follicles ranging from 0.68 to 8.57 mm increased more than that of other sized follicles, so that the mitotic time was shorter (0.78 h vs 1.32 h) in medium and large sized follicles (0.68-8.57 mm) than in smaller follicles (0.13-0.67 mm). Calculations based on the number of granulosa cells in follicles of various classes and from the time required to double the number of cells within a follicle indicate that a follicle takes 27 days to grow from 0.13 to 0.67 mm, 6.8 days from 0.68 to 3.67 mm and 7.8 days from 3.68 to 8.56 mm, indicating that growth rates varied with the size of the follicle. A period equivalent to 2 oestrous cycles would therefore be required for a follicle to grow through the antral phase, i.e. from 0.13 mm to preovulatory size. Increased MI, decreased mitotic time and increased atresia found in follicles larger than 0.68 mm could indicate a change in the follicular metabolism during its maturation.  相似文献   

8.
Prolonged stimulation by human chorionic gonadotropin (hCG) induces ovarian follicular cysts in progesterone-synchronized immature rats [Bogovich, Endocrinology 1989; 124:1646-1653]. To determine if unabated stimulation by hCG has a similar effect on follicular development in adult ovaries, pregnant rats were given either 0 (control), 1, or 3 IU hCG twice daily for 9 days beginning on Day 13 of pregnancy. By Day 22 of pregnancy, rats treated with 1 IU hCG possessed large antral follicles at least 1 mm in diameter: approximately 33% larger than the diameters of preovulatory follicles observed in control rats (0 IU hCG). In contrast, rats treated with 3 IU hCG displayed ovarian follicular cysts up to 5 mm in diameter, with well-developed thecae and just a remnant of granulosa cells. Progesterone, androstenedione, and estradiol accumulation was greater in follicular incubates from hCG-treated rats than in incubates from control rats. Progesterone increased in response to cAMP in incubates from all treatment groups on all days tested. Androstenedione increased in response to cAMP on Day 22 of pregnancy for follicles from control animals, on all days tested for follicles from rats treated with 1 IU hCG, and on Days 15-19 for follicles from rats treated with 3 IU hCG. Androstenedione production in the presence of 300 ng of exogenous testosterone was significantly greater in follicular incubates from animals treated with 1 and 3 IU hCG than incubates from control animals on Days 19-22 of pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Endocrine control of follicular growth was studied in mature Romanov ewes carrying (RF+) or not carrying (R+2) the Booroola Fec gene during an oestrous cycle after gonadotrophin-dependent follicles were suppressed by treatment with an antagonist of GnRH (Antarelix, 0.5 mg per day) and superovulatory treatment was administered. The left ovary was removed after 10 days of treatment (saline or Antarelix) and the right ovary was removed at the end of the superovulatory treatment. Ewes of both genotypes treated with Antarelix had lower plasma LH concentrations than did controls from day 0 to day 10. The inhibitory effect of Antarelix on LH concentration increased with day of treatment. The variability in FSH concentrations during the initial 10 days was reduced by Antarelix treatment in both genotypes. Plasma FSH concentrations were higher in RF+ ewes than in R+2 ewes. In both genotypes, FSH concentrations varied significantly with day of treatment, with the lowest concentrations at day 8 and the highest concentrations at day 5. RF+ ewes had a greater total and atretic number of antral follicles 0.62-1.12, 1.12-2.00 and 2.00-3.00 mm in diameter (classes 2, 3 and 4) than did R+2 ewes before and after superovulatory treatment. After superovulatory treatment, the total number of atretic and non-atretic follicles > 3.00 mm in diameter (class 5) increased in both genotypes. Superovulatory treatment also increased the number of total and atretic class 4 follicles in RF+ only. Conversely, superovulatory treatment decreased the mean number of class 3 follicles in both genotypes, while the number of atretic follicles was decreased only in R+2 ewes. Antarelix treatment significantly reduced the percentage of follicles > 2.00 mm in diameter in RF+ but not in R+2 ewes. Antarelix treatment before superovulatory treatment increased the total number of class 4 follicles in both genotypes but the increase was more significant in RF+ than in R+2 ewes. These results indicate that Antarelix pretreatment favours a greater superovulatory response in Romanov ewes carrying the Fec gene because ovulatory follicles are recruited from a wider range of follicular size classes.  相似文献   

10.
Action of PMSG on follicular populations in the heifer   总被引:2,自引:0,他引:2  
The short-term action of PMSG on the population of growing follicles in cattle was studied using histological methods. On Day 7 of a synchronized oestrous cycle 10 Friesian heifers were unilaterally ovariectomized. The remaining ovary was immediately stimulated by an injection of PMSG (2000 i.u.) and was removed 48 h after the preovulatory discharge of LH. Control animals did not receive any injection of PMSG. In all ovaries, follicles greater than 70 micron diameter were counted, measured and checked for atresia. The mitotic index in granulosa cells of follicles of different sizes was estimated in both ovaries of all the PMSG-injected animals. Unilateral ovariectomy alone had no significant effect on follicular populations. In the interval between PMSG injection and removal of the second ovary (148 +/- 22.7 h), PMSG significantly increased the number of normal preantral follicles but did not change the number of normal antral follicles. The mitotic index doubled in preantral and early antral follicles but remained unchanged in large antral follicles. PMSG stimulated slightly the growth of the antrum in large antral follicles but did not stimulate its formation in preantral follicles. The incidence of atresia among antral follicles, particularly the largest ones (diam. greater than 1.7 mm), was significantly reduced after PMSG, suggesting some 'rescue' of follicles from atresia.  相似文献   

11.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

12.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Summary The cumulus and membrana granulosa of non-atretic ovarian follicles from primordial up to a stage shortly before ovulation were studied by electron microscopy.The follicular cells of primordial follicles were undifferentiated and rested on a thick basal lamina. In secondary follicles the endoplasmic reticulum had proliferated forming an anastomosing network. In early antral and antral follicles (0.5–2.0 mm dia.) the ER was composed of short cisternae, the mitochondria had elongated and gap junctions were first observed. In late antral follicles (3.0–5.9 mm dia.) gap junctions were frequent. In the cumulus the glycogen was associated with electron lucent areas whereas in the granulosa it was invariably associated with membranes. In large antral follicles large membrane bound bodies were present in the basal cells of the cumulus. At early oestrus a distinctive mitochondrial morphology was noted in the granulosa but not elsewhere in the follicles. At mid oestrus numerous annular nexuses were present in the granulosa but not in the cumulus. At late oestrus numerous lipid droplets were formed in both cumulus and granulosa, the boundary with theca interna became indistinct and the basal lamina became incomplete.Deceased  相似文献   

14.
The effects of hypophysectomy and unilateral ovariectomy on the total number of follicles with greater than 3 layers of granulosa cells were determined at 4 and 70 days following treatment. The population of preantral follicles (less than 0.23 min diam.) was found to be under the control of gonadotrophins but such control was only evident on a long-term basis. At 70 days after unilateral ovariectomy there was a large increase in the number of preantral follicles but at 70 days after hypophysectomy there was a large decrease. The population of antral follicles (greater than 0.23 mm diam.) was under the immediate control of gonadotrophins. By 4 days after hypophysectomy all large antral follicles had become atretic and the number of antral follicles was further decreased at 70 days after treatment. At 70 days after unilateral ovariectomy there was an increase in the number of antral follicles. The follicular growth rates at 70 days following treatment were decreased in hypophysectomized ewes but increased in ewes after unilateral ovariectomy.  相似文献   

15.
Specific receptors for 125I-labelled hCG in ovarian follicle wall were located in the theca interna. No specific binding of 125I-labelled hCG was found in theca externa and/or stromal tissue. The kinetics of 125I-labelled hCG binding to theca interna followed second order kinetics with calculated association rate constants (ka +/- s.d.) of 1.57 +/- 0.16 X 10(6) and 0.57 +/- 0.02 X 10(6) litres mol-1 sec-1 at 37 degrees C and 22 degrees C respectively. Dissociation of specifically bound 125I-labelled hCG from theca interna was minimal at 37 degrees C and 22 degrees C. The binding of 125I-labelled hCG to theca interna could be displaced with PMSG, FSH-P and sheep LH but other sheep pituitary hormones and LH-releasing hormone showed little or no cross-reaction. The calculated binding capacities (Bmax) and equilibrium dissociation constants (Kd) for 125I-labelled hCG binding to theca interna did not differ between Romney ewes and Booroola x Romney ewes with and without the fecundity (F) gene on Day 10 of the oestrous cycle, during anoestrus or at 36 h after an injection of cloprostenol on Day 10 of the oestrous cycle. When the data for Day 10 and anoestrus were pooled, the median (range) Bmax and Kd values in non-atretic follicles (greater than or equal to 3 mm diameter) were 12.0 (5.1-23.5) fmol/mg protein and 0.10 (0.05-0.16) nM respectively. At 36 h after cloprostenol injection the respective median (range) Bmax and Kd values in non-atretic follicles (greater than or equal to 3 mm diam.) increased to 46.9 (28.4-70.3) fmol/mg protein and 0.23 (0.13-0.65) nM respectively. In corpora lutea the hCG binding characteristics were similar in all the above breeds/genotypes. On Day 10 of the cycle, the mean Bmax but not the mean Kd value was significantly higher (P less than 0.01) than the corresponding value at 36 h after cloprostenol injection. In granulosa cells, from follicles of greater than or equal to 5 mm diameter of Romney and Booroola x Romney (++) ewes and from follicles of greater than or equal to 3 mm diameter of Booroola x Romney (F+) ewes, the hCG binding characteristics were similar. In granulosa cells from smaller sized follicles from the above breeds/genotypes, no specific hCG binding was noted.  相似文献   

16.
Eight hundred and seven bovine antral follicles from 2 mm to 20 mm in diameter were dissected free of stromal tissue, measured, qualified and divided into 36 groups according to size, quality and stage of cycle. The follicular fluid was collected and assayed by RIA for oestradiol-17beta, testosterone and progesterone. The steroid hormone concentrations vary with follicular size, degree of atresia and stage of the cylce. Non-atretic follicles of less than 8 mm are generally androgen-dominated and non-atretic follicles of more than 11 mm are oestrogen-dominated. Follicles betwen 8 mm and 11 mm are intermediate in this respect. Degeneration leads to a gradual decrease of oestradiol-17beta and testosterone concentration and increase of progesterone. It is suggested that the ratio of oestradiol-17beta/testosterone and oestradiol- 17beta/progesterone and oestradiol-17beta/testosterone + progesterone cannot generally be used to discriminate between non-atretic and atretic follicles. Large follicles present during the early luteal stage contain as much oestradiol-17beta in the follicular fluid as large follicles during the follicular stage, whereas large follicles of the luteal stage contain only 15% of the maximal amount of the latter's. This and other presented data support the statement that follicles present during the early luteal, late luteal and follicular stages of the cycle belong to different groups of growing follicles. It has been concluded that groups of macroscopically qualified follicles can be distinguished from each other by the steroid hormone concentration in the follicular fluid. It is therefore possible to predict the hormonal environment of the oocyte in any individual follicle of a defined size and quality.  相似文献   

17.
We studied the relationship among the status of the human oocytes, the E2 concentration in the antral fluid and the follicular size in the different phases of the menstrual cycle, in order to determine the microenvironment of the follicles with healthy or degenerative oocytes in the human ovary. In the follicular phase of the menstrual cycle, follicles which contained a healthy but not degenerative oocyte had a significantly higher level of 17 beta-estradiol (E2). In the late follicular phase, the larger follicles (greater than or equal to 13 mm, in diameter) had only health oocytes. It seems that the follicle containing a degenerative oocyte does not develop physiologically until maturation of the preovulatory follicle. In the luteal phase, there were no relationships among the status of the oocyte, E2 concentration in the antral fluid and the follicular size. However, the E2 levels of the antral follicles with healthy oocytes in an ovary with corpus luteum were significantly lower than those in the contralateral ovary. The results suggest that the corpus luteum may exert an influence on the adjacent follicles.  相似文献   

18.
To investigate the effect of recombinant bovine somatotrophin (rGH) on ovarian folliculogenesis in sheep, 18 mature Scottish Blackface ewes were assigned randomly to two treatment groups. Starting from day 5 of the synchronised oestrous cycle, animals were injected daily with either vehicle (control group) or 12.5 mg rGH (rGH-treated group) for 7 days. Blood samples were collected once daily during the experimental period for the measurement of growth hormone (GH), insulin-like growth factor-I (IGF-I), insulin, follicle-stimulating hormone (FSH), luteinising hormone (LH) and progesterone. At the end of treatment animals were killed and ovaries collected. All follicles at least 1.0 mm in diameter were dissected out and diameters measured to assess follicular populations for individual animals. Five small follicles (1.0–3.4 mm in diameter) and all the large follicles (at least 3.5 mm) from each animal were incubated in 1 ml of Medium 199 for 1 h. Medium was then changed and incubation continued for a further hour. All medium samples were assayed for IGF-I, oestradiol, testosterone and progesterone.Treatment of ewes with rGH had no effect on the total number of follicles at least 1.0 mm in diameter (control, 34.4 ± 2.6; rGH-treated, 31.3 ± 1.4; P > 0.2). However, when follicles were further classified into different size categories (1.0–2.0, 2.1–3.0, 3.1–4.0, 4.1–5.0, 5.1–6.0 and over 6.0 mm in diameter), the population of follicles 2.1–3.0 mm in diameter was significantly increased by rGH treatment (control, 9.2 ± 0.7; rGH-treated, 13.8 ± 1.1; P = 0.02). The number of follicles of 3.1–4.0 mm diameter in the rGH-treated group tended to be increased (P = 0.09), whilst the population of follicles 1.0–2.0 mm in diameter was reduced (P = 0.07). Treatment of ewes with rGH significantly increased peripheral concentrations of GH (P < 0.01), IGF-I (P < 0.01), insulin (P < 0.01) and progesterone (P < 0.05). There was no effect of rGH treatment on circulating concentrations of FSH and LH. Both large and small follicles from rGH-treated ewes secreted significantly (P < 0.001) more IGF-I (37.8 ± 2.2 ng ml h−1, n = 50) than follicles from the control group (26.7 ± 1.6 ng ml−1 h−1, n = 73). However, there was no significant effect of rGH treatment on the secretion of oestradiol, testosterone and progesterone by either large or small follicles.It is concluded that treatment of mature ewes with rGH can enhance the development of ovarian follicles to the gonadotrophin-dependent stages. Furthermore, rGH appears to act through increased secretion of ovarian IGF-I, as well as increased peripheral concentrations of IGF-I and insulin.  相似文献   

19.
Four streptozotocin-diabetic gilts (maintained on exogenous insulin for 3 months) and 4 normoglycaemic gilts were treated with 600 i.u. PMSG. Diabetic gilts had insulin therapy removed at the time of PMSG administration. Plasma glucose averaged 463 +/- 5 mg/100 ml for diabetic gilts and 82 +/- 4 mg/100 ml for control gilts over the 72-h sampling period. Serum insulin was lower in diabetic than in normoglycaemic gilts (glycaemic state by time interaction; P less than 0.0001). At ovary removal 75 h after PMSG, numbers and percentages of large (greater than or equal to 7 mm) and medium (3-6 mm) non-atretic follicles were similar for diabetic and control gilts (31 vs 68%; s.e.m. = 7; P less than 0.05). Diabetic gilts had a greater percentage of atretic follicles over all size classes (50 vs 21%; s.e.m. = 7; P less than 0.03). After PMSG, LH was suppressed within 12 h in control gilts and remained similar to values in diabetic gilts until 72 h, when LH was elevated in 2 diabetic gilts (glycaemic state by time interaction; P less than 0.001). Pulsatile LH patterns during 52-55 h after PMSG were not affected by glycaemic state. Serum concentrations of IGF-I tended (P less than 0.1) to be lower in diabetic gilts. Concentrations of oestradiol and FSH in serum were similar in diabetic and control gilts. Follicular fluid concentrations of oestradiol in follicles greater than or equal to 7 mm were lower in diabetic than normoglycaemic gilts (341 vs 873 ng/ml; s.e.m. = 86; P less than 0.05). Testosterone was higher in follicles 3-6 mm in diameter in diabetic than in normoglycaemic gilts (142 vs 80 ng/ml; s.e.m. = 26; P less than 0.05). Progesterone concentrations in follicular fluid were not affected by glycaemic state. Concentrations of IGF-I in follicles greater than or equal to 7 mm were lower in diabetic than control gilts (150 vs 200 ng/ml; s.e.m. = 13; P less than 0.05). We conclude that follicles of diabetic gilts respond to external gonadotrophic stimulation with decreased hormone production and increased ovarian follicular atresia, despite an absence of effects on circulating gonadotrophin and oestradiol concentrations.  相似文献   

20.
The objective of this study was to examine the effects of follicular cells on the in vitro development of porcine preantral follicles. In Experiment 1, one preantral follicle alone (Trt 1) was cocultured with a follicle of the same size with oocytes (Trt 2) or without oocytes (Trt 3). Preantral follicles cultured alone in vitro for 12 days had greater follicle diameters (1017 +/- 96 microm versus 706 +/- 69 or 793 +/- 72 microm, P < 0.05), growth rates (201 +/- 0.3 versus 103 +/- 0.2 or 128 +/- 0.2, P < 0.05) and oocyte survival rates (73% versus 48, or 25%, P < 0.05) than other groups. The inhibitory effects of follicle cells on the growth of preantral follicles and oocyte survival rates were not enhanced by the addition of oocytectomized preantral follicles (Experiment 2). Follicles were cocultured with different sources of follicular cells in other experiments. Coculture with cumulus cells enhanced oocyte survival compared to the control (without coculture) and mural follicular cell groups (Experiment 3). The growth and survival rates of oocytes collected from the group of follicles cocultured with cumulus cells from large antral follicles (>3 mm) were greater (P < 0.05) than those from small antral follicles (<3 mm), or than the control group (without cumulus cells, experiment 4). No significant differences in the follicular diameters (674 +/- 30 microm versus 638 +/- 33 and 655 +/- 28 microm) and growth rate (105% versus 94 and 105%) were observed among the preantral follicles of the different treatments (P > 0.05). Taken together, coculture with the cells from large antral follicles (>3 mm) exerted a significant positive effect on oocyte survival. The growth and oocyte survival of preantral follicle cocultured with the same size of follicles (with or without oocyte) were inhibited. Growth and survival rates of preantral follicles and oocytes are improved by coculturing them with the cumulus cells derived from larger antral follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号