共查询到20条相似文献,搜索用时 15 毫秒
1.
The polyene macrolide antibiotic nystatin, produced commercially by the bacterium Streptomyces noursei, is an important antifungal agent used in human therapy for treatment of certain types of mycoses. Early studies on nystatin biosynthesis in S. noursei provided important information regarding the precursors utilised in nystatin biosynthesis and factors affecting antibiotic yield. New insights into the enzymology of nystatin synthesis became available after the gene cluster governing nystatin biosynthesis in S. noursei was cloned and analysed. Six large polyketide synthase proteins were implicated in the formation of the nystatin macrolactone ring, while other enzymes, such as P450 monooxygenases and glycosyltransferase, were assumed responsible for ring decoration. The latter data, supported by analysis of the polyene mixture synthesised by the nystatin producer, helped elucidate the complete nystatin biosynthetic pathway. This information has proved useful for engineered biosynthesis of novel nystatin analogues, suggesting a plausible route for the generation of potentially safer and more efficient antifungal drugs. 相似文献
2.
Antibiotic glycosyltransferases (AGts) attach unusual deoxy-sugars to aglycons so antibiotics can exert function. It has been reported that polyene macrolide (PEM) AGts have different evolutionary origin when compared with other polyketide AGts, and our previous analysis have suggested that they could be results of horizontal gene transfer (HGT) from eukaryotes. In this paper, we compared the structures of PEM AGts with structures of eukaryotes and other AGts, and then built models of the representative PEM AGts and GT-1 glycosyltransferases. We also constructed the Neighbor-Joining (NJ) trees based on the normalized Root Mean Square (RMS) distance, the Bayesian tree guided by structural alignments, and carried out analysis on several key conserved residues in PEM AGts. The NJ tree showed a close relationship between PEM AGts and eukaryotic glycosyltransferases, and Bayesian tree further supported their affinity with UDP-glucuronosyltransferases (UGTs). Analysis on key conserved residues showed that PEM AGts may have similar interaction mechanism such as in the formation of hydrogen bonds as eukaryotic glycosyltransferases. Using structure-based phylogenetic approaches, this study further supported that PEM AGts were the result of HGT between prokaryotes and eukaryotes. 相似文献
3.
Pierre Poutrain Gr��gory Guirimand Ga?lle Gl��varec Vincent Courdavault Olivier Pichon 《Journal of Plant Growth Regulation》2011,30(2):235-241
In Catharanthus roseus cells, auxins are known to negatively regulate the biosynthesis of monoterpenoid indole alkaloids (MIA), a class of valuable secondary metabolites. Despite extensive studies of this regulation, no protein of the auxin signaling pathway has been isolated to date in this plant. We therefore decided to clone and characterize a C. roseus Aux/IAA protein that belongs to a family of gene expression repressors mediating auxin effects. Using PCR, a cDNA encoding the first C. roseus Aux/IAA was cloned and named CrIAA1. The deduced amino acid sequence has four highly conserved domains that are typical of the Aux/IAA protein family and has high homology to the Aux/IAA isoforms of Arabidopsis (>67%). The CrIAA1 gene expression, monitored by real-time PCR, was found to be dramatically induced by auxin treatment in C. roseus cells. Using GFP imagery and a bimolecular fluorescence complementation assay, we found that CrIAA1 can form oligomers in the nucleus. We also found that CrIAA1 is quickly degraded following auxin treatments, suggesting that auxin regulates CrIAA1 availability via a feedback mechanism. These results should help to elucidate the molecular nature of the processes responsible for the auxin-mediated regulation of MIA biosynthesis in C. roseus. 相似文献
4.
Traditional methods of species classification and identification of the organism are based on morphological, physiological, biochemical,
developmental and nutritional characteristics. Accurate assignment of taxonomic status to the new biologically active microbial isolates through
existing bioinformatics methods is now very essential and also helpful in chemical characterization of the active molecule produced by
microorganisms. The bacterial strain M4 (ckm7) was isolated from the pre-treated soil sample collected from the agricultural field of Eastern
Uttar Pradesh (U.P.), India and was found to be producing antibacterial and antifungal antibiotics. Taxonomic identification of the isolate belongs
to the genus Streptomyces which was done with the help of sequence analysis and later confirmed by biological activity. Sequence comparison
study of ckm7 showed 98% identical similarity with 16S rRNA gene sequences of Streptomyces spinichromogenes, Streptomyces triostinicus and
Streptomyces capoamus. On the basis of both biological activity and phylogenetic analysis of ckm7, it was concluded that the isolated strain is a
new variant of S. triostinicus. 相似文献
5.
Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus roseus using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa. 相似文献
6.
Transgenic hairy root cultures of Catharanthus roseus were established with a glucocorticoid-inducible promoter controlling the expression of green fluorescent protein (GFP), and GFP expression was characterized. The inducible system shows a tightly controlled, reversible, and dosage-dependent response to the glucocorticoid dexamethasone in C. roseus hairy roots. Full induction was noted after 12-18 h in the mature regions of the root tips and after 6 h in the meristem tissue. Upon removal of the inducing agent, GFP expression declined to undetectable levels in the mature tissues after 24 h and in the meristem after 48 h. Although no dosage-dependent response was noted in the meristem region, such a response was apparent in the mature region of the tip and verified by quantitative GFP analysis. The inducible promoter system allowed quantitative control of GFP expression between 0.01 and 10 microM dexamethasone with saturation occurring at higher levels. Using GFP as a model system allowed demonstration of the ability to control temporal and quantitative gene expression with the glucocorticoid-inducible promoter in transgenic C. roseus hairy roots. 相似文献
7.
Efforts to engineer Catharanthus roseus hairy roots to produce commercially significant amounts of valuable compounds, such as the terpenoid indole alkaloids vinblastine and vincristine, require the development of tools to study the effects of overexpressing key metabolic and regulatory genes. The use of inducible promoters allows researchers to control the timing and level of expression of genes of interest. In addition, use of inducible promoters allows researchers to use a single transgenic line as both the control and experimental line, minimizing the problems associated with clonal variation. We have previously characterized the use of a glucocorticoid-inducible promoter system to study the effects of gene overexpression within the terpenoid indole alkaloid pathway on metabolite production. Here the feasibility of using an ethanol-inducible promoter within C. roseus hairy roots is reported. This ethanol-inducible promoter is highly sensitive to ethanol concentration with a concentration of 0.005% ethanol causing a 6-fold increase in CAT reporter activity after 24 h of induction. The ethanol-inducible CAT activity increased 24-fold over a 72-h induction period with 0.5% ethanol. 相似文献
8.
The solution structure of filipin III, an antifungal polyene macrolide biosynthesized by Streptomyces filipinensis and widely used for the detection and the quantitation of cholesterol in biomembranes, has been calculated with a set of geometrical restraints derived from 1H NMR in DMSO-d(6) at 25 degrees C. Filipin III appears as a rod-shaped molecule of 18 A length. Its amphiphilic structure is made of an all-syn 1,3-polyol motif, stabilized by intramolecular hydrogen bonds on one side, and a conjugated pentaene moiety on the other side of the molecule. The overall shape is comparable to cholesterol, and the molecular structure of filipin III affords a first molecular basis to the comprehensive understanding of the interactions possible in the filipin III-cholesterol complex which is still unknown at the atomic resolution. 相似文献
9.
Volokhan O Sletta H Ellingsen TE Zotchev SB 《Applied and environmental microbiology》2006,72(4):2514-2519
The nysL gene, encoding a putative P450 monooxygenase, was identified in the nystatin biosynthetic gene cluster of Streptomyces noursei. Although it has been proposed that NysL is responsible for hydroxylation of the nystatin precursor, experimental evidence for this activity was lacking. The nysL gene was inactivated in S. noursei by gene replacement, and the resulting mutant was shown to produce 10-deoxynystatin. Purification and an in vitro activity assay for 10-deoxynystatin demonstrated its antifungal activity being equal to that of nystatin. The NysL protein was expressed heterologously in Escherichia coli as a His-tagged protein and used in an enzyme assay with 10-deoxynystatin as a substrate. The results obtained clearly demonstrated that NysL is a hydroxylase responsible for the post-polyketide synthase modification of 10-deoxynystatin at position C-10. Kinetic studies with the purified recombinant enzyme allowed determination of K(m) and k(cat) and revealed no inhibition of recombinant NysL by either the substrate or the product. These studies open the possibility for in vitro evolution of NysL aimed at changing its specificity, thereby providing new opportunities for engineered biosynthesis of novel nystatin analogues hydroxylated at alternative positions of the macrolactone ring. 相似文献
10.
Young leaves from Catharanthus roseus plants contain a novel N-methyltransferase which transfers the methyl group from S-adenosyl-L-methionine specifically to position 1 of (2R, 3R)-2,3-dihydro-3-hydroxytabersonine, producing the N-methylated product. The enzyme shows a high degree of specificity toward substrates containing a reduced double bond at position 2,3 of tabersonine derivatives but the more substituted N-desmethyldeacetylvindoline did not act as a substrate. The enzyme catalyses the third last step in vindorosine and vindoline biosynthesis, and is associated with chlorophyll-containing fractions in partially purified enzyme preparations. The lack of vindoline accumulation in cell suspension cultures is correlated with the lack of expression of this enzyme activity as well as that of an acetyltransferase which catalyses the last step in vindoline biosynthesis. Neither fungal elicitor treatment of cell line #615 nor transfer to alkaloid production medium resulted in expression of these two enzyme activities, nor was either enzyme activity detected in photoautotrophic or hormone autotrophic cultures. Cell lines #200, 615–767 and 916 could not be induced to produce DAT or NMT enzyme activities. 相似文献
11.
The culture of Streptomyces felleus VIZP 8 producing new macrolide antibiotic alirinomycin C was isolated in the screening of new insecticide substances. Antibiotic was related to the carbomycin-cirramycin group. Physico-chemical and biological properties investigation and identification were performed in comparison with other antibiotics of the same group, described in literature. 相似文献
12.
The excessive production of pyruvic and 2-oxoglutaric acid by S. hygroscopicus JA 6599 grown on a medium rich in complex carbon and nitrogen sources was studied. Towards the end of the first day of batch cultivation a maximum level of both keto acids in the medium was observed. By diluting the complete culture with water at 22nd hour, however, a further increase in 2-oxoglutarate concentration was induced and the antibiotic production was slightly stimulated. In diluted cultures the oxygen saturation was found to be distinctly higher than in non-diluted ones and, on the other hand, the mycelial activities of both pyruvate and 2-oxoglutarate decarboxylases were decreased. Since the 2-oxoglutarate level was strongly influenced by inhibitors of glycolysis and of citric acid cycle, it is suggested that the metabolite accumulation in diluted cultures is mainly caused by modifications of the metabolic control of carbohydrate catabolism due to an improved aeration. Furthermore, the macrolide antibiotic A 6599 produced by S. hygroscopicus JA 6599 itself was shown to interfere with the accumulation of 2-oxoglutaric acid. 相似文献
13.
Islas-Flores I Moreno-Valenzuela O Minero-García Y Loyola-Vargas VM Miranda-Ham Mde L 《Molecular biotechnology》2002,21(3):211-216
Tryptophan decarboxylase (TDC, EC 4.1.1.28) from Catharanthus roseus hairy roots was purified 80-fold. Antibodies against TDC were obtained and they recognized only one protein of 55 kDa in
crude extracts from hairy root cultures. Elicitation of transformed root cultures with macerozyme yielded a marked increase
in TDC activity, which was accompanied by a similar increase in the amount of immunoreactive TDC protein. These results suggest
that the alkaloid accumulation, produced by elicitation, requires the synthesis of new TDC polypeptide in C. roseus root cultures and establishes important differences in the regulatory control of this enzyme in root cultures compared to
developing seedlings, where the posttranslational regulation apparently plays a major role. 相似文献
14.
V.R. Paradkar T.E. Gupte A.P. Joshi S.R. Naik 《World journal of microbiology & biotechnology》1998,14(5):705-709
A novel Streptoverticillium sp. G-55 was isolated from a soil sample (collected from Panjim, Goa) which produces sclerotia under specific environmental conditions, both in liquid and solid media. It was further identified by taxonomic studies as Streptoverticillium cinnamoneum var scleroticum. The species produces a pentaene polyene macrolide antibiotic (HA-94) under submerged culture conditions which shows promising antifungal and antibacterial activity in vitro. 相似文献
15.
Maximum activity of phosphoenolpyruvate carboxylase (PEPC, EC4.1.1.31) was detected at the stationary phase of growth ofCatharanthus roseus cells in a heterotrophic culture. The activityof PEPC, after partial purification by fractionation with ammoniumsulphate and chromatography on Q-Sepharose, was greatly influencedby pH. The Km of phosphoenolpyruvate (PEP) was 23 µM atpH 8·0 and 45 µM at pH 7·4. Malate, aspartate,citrate, ATP, pyrophosphate and Pi acted as inhibitors of PEPC,but the extent of inhibition varied in each case with the pHof the reaction mixture. By contrast, glucose-6-phosphate, fructose-1,6-bisphosphateand acetyl-CoA, known as stimulators of the activity of PEPCfrom other sources, had little or no effect on the activityof the partially purified PEPC. The possible role and mechanismof regulation of PEPC in C. roseus cells are discussed.Copyright1994, 1999 Academic Press Catharanthus roseus, Apocynaceae, Madagascar periwinkle, suspension culture, phosphoenolpyruvate carboxylase, enzyme kinetics, glycolysis 相似文献
16.
Successive reculturing of Torulopsis glabrata on media containing increasing concentration of the polyene macrolide antibiotics nystalin or lucensomycin resulted in the segregation of cultures resistant to these antibiotics. Isolates resistant to lucensomycin showed good resistance to nystatin, and vice versa. Analysis of the sterols and fatty acids of sensitive and polyene resistant T. glabrata revealed that compositional changes occurred in both classes of lipids upon acquistion of resistance. The sterol composition of nystatin and lucensomycin resistant cultures possessed reduced amounts of, or no ergosterol (the major sterol of the sensitive parent culture), and increased amounts of sterols which were biogenetically more primitive than ergosterol. Resistant cultures in which ergosterol was absent possessed a fatty acid composition that did not differ significantly from the parent sensitive culture grown under identical conditions. Resistant cultures containing significantly reduced amounts of ergosterol were found to possess altered fatty acid compositions. Generally it was observed that these latter cultures possessed fatty acids containing shorter and more saturated chains. These results are considered to indicate that alteration in both lipid and sterol composition is involved in determination of culture resistance to polyene macrolides. 相似文献
17.
18.
Amphotericin B (AmB) is a well known polyene macrolide antibiotic used to treat systemic fungal infections. Despite its toxicity AmB is still regarded as a life-saving drug. The lack of adequate knowledge of the AmB mechanism of action is a serious obstacle to efficient development of new less toxic derivatives. Complementary to various experimental approaches, computational chemistry methods were used to study AmB mechanism of action. A programme lasting for a decade, that was run by our group covered studies of: i) molecular properties of AmB and its membrane targets, ii) structure and properties of AmB membrane channels, and iii) interaction of AmB with the membrane. 相似文献
19.
D. P. Bonner P. B. Fisher N. I. Goldstein W. Mechlinski V. Bryson C. P. Schaffner 《In vitro cellular & developmental biology. Plant》1976,12(5):399-404
Summary The relationships between fetal bovine serum (FBS) concentration and polyene macrolide antibiotic cytotoxicity to animal cells and to fungi were evaluated. The toxicity of amphotericin B (AB) and its derivative, amphotericin B methyl ester (AME), toward KB cells was found to be directly related to fetal bovine serum concentration. At higher FBS levels, increased concentrations of AB and AME were required to reduce 72-hr KB viable cell numbers to 50% of control values. Similarly, polyene macrolide antibiotic levels required to inhibit the growth ofSaccharomyces cerevisiae to 50% of controls, and for obtaining minimum fungicidal concentrations (MFC), were greater when higher levels of FBS were used. In addition, AME was less toxic than AB toward KB cells grown in media containing 2, 5, 10, 15 or 20% FBS, whereas the antifungal activities of AB and AME were similar. AME was also capable of eliminatingCandida albicans, Saccharomyces cerevisiae, Aspergillus niger orFusarium moniliforme from KB cultures at antibiotic levels which exhibited less cell toxicity than did the concentrations of AB required for a similar response. These findings indicate that AME may be a potentially useful antifungal antibiotic for tissue culture systems. Portions of this paper were presented at the 25th Annual Meeting of the Tissue Culture Association at Miami, Florida, 1974. This investigation was supported in part by contract NIH 69-2161, NIH grant no. AI-02095 and NIH training grant no. GM 507 from the National Institute of General Medical Sciences. 相似文献
20.
Canto-Canché BB Meijer AH Collu G Verpoorte R Loyola-Vargas VM 《Journal of plant physiology》2005,162(4):393-402
Geraniol 10-hydroxylase (G10H) is a P450 containing enzyme which is the first committed step in the biosynthesis of monoterpene indole alkaloids (MIAs), including the Catharanthus roseus-anticancer drugs vinblastine and vincristine. It is thought that G10H has a regulatory role in MIA production. In the present paper, we report the characterization of a polyclonal serum raised against the purified G10H polypeptide. Anti-G10H IgG was able to inhibit the G10H activity and also recognized the G10H polypeptide from C. roseus and other plants producing MIAs. These results establish the usefulness of this antiserum as a biochemical tool for the study of G10H regulation. 相似文献