首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Biological Control》2011,56(3):151-158
Several natural enemies regulate populations of root maggots (Delia spp.) (Diptera: Anthomyiidae) in canola (Brassica napus L.) in western Canada, among them the rove beetles Aleochara bilineata Gyllenhal and Aleochara verna Say (Coleoptera: Staphylinidae) and the hymenopteran Trybliographa rapae Westwood (Hymenoptera: Figitidae). Intercrops of canola and wheat (Triticum aestivum L.) can be part of an integrated pest management strategy to reduce damage by Delia spp. to canola. We investigated several intercropping regimes of canola and wheat to determine effects on parasitism of Delia radicum (L.) and activity densities of adult A. bilineata and A. verna. Studies were conducted over four site-years in central Alberta, Canada in 2005 and 2006. Mean parasitism rates of D. radicum puparia by A. bilineata ranged from 7.27% to 81.69%. Increasing proportions of wheat in intercrops significantly reduced parasitism by A. bilineata in one site-year. Parasitism of D. radicum by T. rapae was not affected by intercropping; mean parasitism rates were between 2.17% and 14.55%. In one site-year combined parasitism by all parasitoids significantly increased with increasing canola as a proportion of total crop plant populations. Pitfall trap collections of adult A. bilineata increased with increasing proportions of canola in some site-years. Collections of A. verna adults were low relative to A. bilineata and were largely unaffected by intercropping. Although canola–wheat intercrops do not appear to favour parasitism of D. radicum, reductions in canola root damage by Delia larvae in intercrops, reported previously, suggest that canola–wheat intercrops may nevertheless be favourable as a crop protection strategy.  相似文献   

2.
Overreliance on pesticides has large environmental and human health costs that compel researchers and farmers to seek alternative management tactics for crop pests. For insect pests, increasing crop species diversity via intercropping and using semiochemicals to alter local arthropod populations have separately proven effective at reducing pest densities. Here, we combine these two tactics in an effort to gain better control of Sitobion avenae (Fabricius) (Hemiptera: Aphididae), the English grain aphid, a major pest of cereal production worldwide. We conducted field experiments over 2 years testing the effectiveness of combining intercropping of wheat and oilseed rape with release of methyl salicylate (MeSA). We found that maximum and mean aphid densities were highest in wheat monocultures, significantly lower in intercropped plots and MeSA plots, and lowest when intercropping and MeSA release were combined by obtaining highest densities of predatory lady beetles and parasitoids rates. Importantly, grain yield and quality showed a similar pattern: they were highest for combined intercropped/MeSA plots, intermediate in plots with intercropping or MeSA alone, and lowest in control monoculture plots. Our results suggest that combining these two tactics holds significant promise for improved management of aphid populations and emphasize the need to integrate alternative pest control approaches to optimize sustainable insect pest management.  相似文献   

3.
设计苜蓿-麦邻作与麦-麦邻作的农田界面捕食性天敌空间分布对比试验,在距离交接界面3、6、9、12、15、18、21、24和27 m处设诱集小区,采用陷阱法诱集调查地表步甲和蜘蛛种类与数量.结果表明: 不同界面麦田边缘地表步甲和蜘蛛物种多样性和多度都表现出一定的边际效应.苜蓿 麦界面15~18 m范围内边际效应明显,超过20 m, 边际效应逐渐消失.麦-麦界面的边缘效应明显弱于苜蓿 麦界面.苜蓿的刈割使苜蓿田中的天敌向邻作麦田迁移,苜蓿刈割后10 d内,邻作小麦田20 m内地表步甲和蜘蛛种类和个体数都有所增加,其中个体数的增长幅度大、速度快.绘制了苜蓿-麦界面地表步甲和蜘蛛的物种多样性和优势种(毛青步甲和星豹蛛)种群数量空间动态分布图,能直观地看出天敌由苜蓿向小麦田的迁移过程.  相似文献   

4.
The effects of intercropping wheat, Triticum aestivum L., with mung bean, Vigna radiate L., on the populations of English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae), and its natural enemies were evaluated by field and laboratory experiments. The population densities of aphids and their natural enemies were evaluated in the intercropped field against different row ratio combinations of wheat-mung bean. Results showed that wheat-mung bean intercropping caused a drop in aphid densities, and the ratio 12 wheat: 4 mung bean brought about the largest drop (> 8%). In addition, the population densities of coccinellids (ladybirds) and parasitoids and the species diversity of all the natural enemies of aphid were higher in the intercropped field than in the field planted only with wheat. However, intercropping did not influence the community indices (evenness and index of dominance concentration) of the natural enemies. Y-tube olfactometer bioassays were carried out in the laboratory to test whether odor blends of host and nonhost plants affect the host selection of S. avenae. Bioassays indicated that both apterous and alate aphids significantly preferred host plant odor over odor blends of host and intercropped species. Hence, the olfactory-based host location of aphids in the field might be affected by intercropping. The intercropping experiment clearly showed that increased crop species diversity suppresses aphid population growth and preserves the population of natural enemies of aphids. Our results also provide support for the "resource concentration hypothesis" and the "enemies hypothesis".  相似文献   

5.
Plant species diversity has long been considered a primary driver of arthropod community structure; however, recent ecological research has demonstrated that plant genotypic diversity can also play a major role in influencing the composition of arthropod communities. Genotypic diversity has already been exploited in some agricultural systems to improve disease control and appears to hold promise for managing some insect species as well. To explore the potential for using genotypic diversity within a crop species to help manage insect pests, we used laboratory-based studies to investigate the influence of wheat (Triticum aestivum L.) genotypic diversity on aphid (Rhopalosiphum padi L.) population growth. Increasingly diverse mixtures of wheat genotypes supported lower aphid populations compared with monocultures and were equally productive as single variety plantings. In the absence of aphids, genotypic mixtures were more productive than monocultures. We also analyzed the volatile organic compounds emitted by non-infested genotypic mixtures to provide insight on a possible mechanism influencing aphid populations. Mixtures and monocultures of wheat emitted the same compounds, but mixtures emitted greater amounts of volatile compounds than monocultures. Our results suggest that genotypic mixtures can strongly influence the growth rate and size of aphid populations; therefore, cultivar mixtures appear to hold good potential to be an effective tool for managing insect pests in crop fields.  相似文献   

6.
The role of carabid beetles in reducing populations of phytophagous insects has been an elusive subject. A field experiment was established on a commercial wheat crop (cv. Otto) with an area of 4.5 ha in Valdivia, Chile, during the spring and summer of 1996-1997. The field had been under a prairie system for two years, before wheat sowing (fertilization and a pesticide had been applied during crop development). Samples were taken at approximately monthly intervals. Carabid beetles were sampled with a grid of pitfall traps and other insects were sampled with a vacuum insect net and soil cores. The genera of the carabids found are of neotropical origin. Exclusion by polythene barriers, together with removal of carabid beetles using traps, was an effective technique for controlling carabid populations in a commercial wheat crop. A reduction in the number of carabid beetles was associated with an increase in the number of springtails and arachnids, and a decrease of agromyzid adults. Phytophagous insects, such as homopterans and lepidopterous larvae, were not affected by carabid exclusion and removal. The action of carabid beetles on the arthropod fauna can be extremely complex, due to its predatory activity at multitrophic levels.  相似文献   

7.
Ground beetle assemblages were monitored at four tallgrass prairie sites burned on 3-year cycles in northeastern Iowa. The objectives of this study were to quantify differences in carabid communities between original and reconstructed tallgrass prairies, and to determine the responses of ground beetles to 3-year cycles of early spring fire commonly used to manage tallgrass prairies. Using pitfall traps, ground beetle assemblages in two original and two reconstructed tallgrass prairies were compared between 1994 and 1998, where beetles were sampled annually (0-, 1-, and 2-year post-fire conditions) from plots burned every 3 years. When burned, the greatest abundance, activity density, and species richness of carabid beetles occurred the year immediately following a spring burn, with abundance declining steadily with increased time since burning. Overall ground beetle diversity as determined by Shannon's diversity index was greatest in original tallgrass prairies several years after a fire. Some species of ground beetles were found only in original prairies, while others were found primarily in reconstructed prairie. Similarly, some species were more abundant the year immediately following a burn, while others were found in greater abundance with increased time since fire. NMS ordination and indicator species analysis clearly show differences in carabid species between original and reconstructed tallgrass prairies, but did not show differences among burn treatments.  相似文献   

8.
种间相互作用影响植物氮和磷的吸收量而不是氮磷比 量化不同农艺措施下作物氮和磷吸收量(即从农田中移除的量)的化学计量特征对理解农田生态系统中的养分收支和优化氮、磷肥施用至关重要。目前还不清楚在不同的氮肥和覆膜措施下,单作和间作体系作物氮和磷吸收量以及氮磷化学计量特征随整个生长季的变化。本研究探讨了植物种间养分竞争如何对(1) 5种种植模式(小麦、玉米和大麦单作、小麦/玉米和大麦/玉米间作),(2)两种施氮水平(0和225 kg N ha−1)和(3)两种玉米覆膜处理(覆膜和不覆膜)下的作物氮、磷吸收量(以及氮磷比)时间动态的影响。研究结果表明,小麦和大麦的氮、磷竞争能力强于玉米,导致间作体系共生期的小麦和大麦氮、磷吸收量相比于单作增加,而玉米氮、磷吸收量相比于单作减少。3种作物植株氮磷比随作物生长而降低。作物氮磷比不受间作的影响,也不随施氮呈现一致的变化,覆膜降低了玉米的氮磷比。两种间作体系群落水平的氮磷比在成熟期与相应单作不同。由于(1)间作从土壤移除的氮和磷的比例不同于单作,以及(2)作物对氮和磷的吸收在施氮和覆膜下均是不耦合的,这些发现可能对间作系统的养分收支有启示意义。  相似文献   

9.
The relevance of intercropping, where two or more crop species are simultaneously grown on the same land space, is growing due to its potential for improving resource use and maintaining stable yields under variable weather conditions. However, the actual growth of intercropped species may differ resulting from the idiosyncratic effect of crop diversity, and with this, the realized benefits from intercrops are found to depend critically on the cultivar, species, management and environmental conditions. This study aimed to apply a trait-based approach, in which ecological niche spaces are defined through n-dimensional hypervolumes, to identify the contribution of species/cultivar, cultivation design (sole crop or intercrop) and management (low or high fertilization) to the trait diversity of four crop species, pea-barley and faba bean-wheat, when grown as sole crops and intercrops. Four traits were used as trait axes for the trait space analysis: canopy height, shoot biomass, tiller/node number, and grain yield. We found that trait spaces differed with crop species and cultivars, and whether they were grown as intercrops or sole crops. Trait spaces differed between high and low fertilization only for the cereals grown in the more productive site (i.e. Denmark). Species grown as intercrops had larger volumes than when grown as sole crops, as a result of trait plasticity. This response to intercropping was apparent in almost all the species grown in Sweden and Denmark, except for wheat in Denmark. The study demonstrated that individual species responded to intercropping compared to sole cropping through the plasticity of traits, which influenced the shape of the hypervolumes to divide up the trait space between the species. The findings are important in illustrating the plastic responses of arable crops, which are relevant for understanding the productivity of species grown in intercrops as compared to sole crops.  相似文献   

10.
Arable weeds in organically managed fields may foster arthropod generalist predators by the provision of shelter and favorable microclimate (structure-mediated effects) and the provision of additional animal and floral food resources (resource-mediated effects). In three organically managed winter wheat fields in Central Germany, we investigated the impact of weed removal and introduction of artificial weed-like structure on the activity density and species richness of carabid beetles with respect to trophic groups, microclimatic conditions, and densities of potential prey. Removal of weeds reduced both carabid activity density and species richness but did not affect trophic group composition. The decline in carabid activity density was dampened by the addition of artificial structure. Mean daily surface temperature and light intensity were significantly lower under weeds and artificial plants than under wheat plants alone. Weed removal reduced the abundance of leafhoppers and true bugs, but the response was inconsistent across fields. We conclude that the presence of arable weeds in organically managed wheat fields fosters carabid activity density and species richness via resource-mediated effects, such as a higher availability of weed-borne resources (e.g. seeds and pollen) and herbivorous prey. Structure-mediated effects (altering the microclimate) add to this positive effect. The presence of weeds in organically managed wheat fields enhances carabid activity density and diversity and needs to be integrated into future management strategies for natural enemy conservation.  相似文献   

11.
Intensive agriculture is one of the main reasons for recent insect declines. This loss of biodiversity has created the need to develop methods of intensive cultivation that combine high yields with biodiversity conservation. One promising method in maize cultivation is intercropping with beans. The objective of this study was to determine whether maize-bean intercropping could increase insect biodiversity. We examined the activity density, species richness and Shannon diversity of bees and carabid beetles in pure and intercropped maize under both organic and conventional management. We collected carabid beetles using pitfall traps and bees by doing transect walks. The study was carried out in an agricultural landscape, on a set of 17 study sites. We found that intercropping leads to significant increases in bumblebee and honeybee activity as well as in bee species richness. Differences between pure and intercropped maize were dependent on the year of data acquisition and the management style. Solitary wild bee species activity was not significantly affected. Carabid activity density and carabid species richness also did not differ significantly between the cropping systems. We conclude that maize-bean intercropping can contribute to insect biodiversity conservation but its contribution is limited to bumblebees. Despite its relatively low contribution per hectare, maize-bean intercropping could have a surprisingly positive impact, as maize now covers large areas of German farmland. Potential exists to increase the biodiversity value of maize intercropping even further by using varied plant mixes. Our results strongly encourage further research in this direction.  相似文献   

12.
Field experiments with manipulations of natural enemies of plant-feeding insects may show how a diverse enemy group ensures an important ecosystem function such as naturally occurring biological pest control. We studied cereal aphid populations in winter wheat under experimentally reduced densities of: (i) ground-dwelling generalist predators (mostly spiders, carabid and staphylinid beetles); (ii) flying predators (coccinellid beetles, syrphid flies, gall midges, etc.) and parasitoids (aphidiid wasps), and a combination of (i) and (ii), compared with open controls. Aphid populations were 18% higher at reduced densities of ground-dwelling predators, 70% higher when flying predators and parasitoids were removed, and 172% higher on the removal of both enemy groups. Parasitoid wasps probably had the strongest effect, as flying predators occurred only in negligible densities. The great importance of parasitism is a new finding for aphid control in cereal fields. In conclusion, a more detailed knowledge of the mechanisms of natural pest control would help to develop environmentally sound crop management with reduced pesticide applications.  相似文献   

13.
Matalin AV  Makarov KV 《ZooKeys》2011,(100):223-254
The results of pitfall trapping are often interpreted as abundance in a particular habitat. At the same time, there are numerous cases of almost unrealistically high catches of ground beetles in seemingly unsuitable sites. The correlation of catches by pitfall trapping with the true distribution and abundance of Carabidae needs corroboration. During a full year survey in 2006/07 in the Lake Elton region (Volgograd Area, Russia), 175 species of ground beetles were trapped. Considering the differences in demographic structure of the local populations, and not their abundances, three groups of species were recognized: residents, migrants and sporadic. In residents, the demographic structure of local populations is complete, and their habitats can be considered "residential". In migrants and sporadic species, the demographic structure of the local populations is incomplete, and their habitats can be considered "transit". Residents interact both with their prey and with each other in a particular habitat. Sporadic species are hardly important to a carabid community because of their low abundances. The contribution of migrants to the structure of carabid communities is not apparent and requires additional research. Migrants and sporadic species represent a "labile" component in ground beetles communities, as opposed to a "stable" component, represented by residents. The variability of the labile component substantially limits our interpretation of species diversity in carabid communities. Thus, the criteria for determining the most abundant, or dominant species inevitably vary because the abundance of migrants in some cases can be one order of magnitude higher than that of residents. The results of pitfall trapping adequately reflect the state of carabid communities only in zonal habitats, while azonal and disturbed habitats are merely transit ones for many species of ground beetles. A study of the demographic structure of local populations and assessment of the migratory/residential status of particular carabid species are potential ways of increasing the reliability of pitfall trap information.  相似文献   

14.
Nitrogen economy in relay intercropping systems of wheat and cotton   总被引:3,自引:0,他引:3  
Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are applied. In this study, we analyzed the N-economy of the monocultures of cotton and wheat, and of four relay intercropping systems, differing in number of rows per strip of cotton or wheat. Field experiments were carried out from 2001/02 to 2003/04 in the Yellow River region in China. We quantified the nitrogen uptake and nitrogen use efficiency of wheat and cotton in relay intercropping systems to test if intercrops are more resource use efficient in comparison to monocrops. Nitrogen (N) yields of wheat per unit area in the four intercropping systems were lower than in the monocrop, which ranged from 203 to 288 kg ha−1. The total N-uptake per unit biomass was similar between wheat in mono- and intercrops. On average, the N-yield of cotton per unit area was lower in intercrops than in monocrops, which ranged from 110 to 127 kg ha−1, but the total N-uptake per unit biomass was higher in intercropped cotton, as dry matter production was reduced to a greater extent by intercropping than N-uptake. The N-uptake of cotton was diminished during the intercropping phase, but recovered partially during later growth stages. The physiological nitrogen use efficiency (IE) of wheat was not much affected by intercropping, but it was reduced in cotton, due to delayed flowering and less reproductive growth. Total N-efficiency of the system was assessed by comparing the relative nitrogen yield total (RNT), i.e. the sum of the ratio’s of total N-uptake by a component crop in the intercrop relative to the N-uptake in the monocrop, to the relative yield total. RNT ranged from 1.4 to 1.7, while the relative yield total (RYT) ranged from 1.3 to 1.4, indicating that intercrops used more nitrogen per unit production than monocrops. An analysis of the crop nitrogen balance showed that the nitrogen surplus of sole crops amounted to 220 kg ha−1 for wheat and 140 kg ha−1 for cotton, while in the intercropping systems, the annual N surplus exceeded 400 kg ha−1. Conventional N-management in intercrops thus results in high N-surpluses that pose an environmental risk. The N management could be improved by means of a demand-based rate and timing of N applications.  相似文献   

15.
北京东北旺农田景观步甲群落结构的时空动态比较   总被引:14,自引:8,他引:14  
2000年5~10月在北京海淀区东北旺实验基地,采用陷阱法对林地、农田边界和农田3类生境共14个处理的步甲进行了取样。并在此基础上分析了不同生境和不同季节步甲科昆虫群落的动态分布特征。结果表明,林地和农田边界类生境相对于农田类生境拥有更多的步甲个体数和物种数;无论是优势种还是稀有种都趋向于在林地和边界处生活;边界对相邻农田步甲群落的多样性有积极影响;对边界进行适度的干扰(秋季翻耕)有利于提高步甲群落的个体数量;农田生境中灌溉、施肥和秸秆还田对农田中步甲群落的个体数量和物种数量的空间分布均无显著影响。此外,还结合步甲的时空分布特性对步甲受威胁状况进行了初步的分析。  相似文献   

16.
Carabid beetle communities were studied at three levels of spatial scale, i.e. within fields (three sets of traps, mean distance 15 m), between fields (five fields within 1 km from each other) and between patches of farmland (four study areas 4-8 km from each other). We compared carabid assemblages sampled on five crop types in each study area, i.e. ley. set-aside, spring cereal, potato, and sugar beet. Because of small sample sizes, only the community composition was studied within fields with a DCA ordination, but the differences were small. Analyses of species richness, activity density, community composition as revealed by DCA ordinations, dominance structure, diversity, and evenness showed that carabid communities varied significantly among patches of farmland but not between fields with different crops within the patches. Only the communities of potato fields were found lo resemble each other. Only five carabid beetle species showed a preference for crops, and twelve species favoured some study areas. We conclude that the effect of spatial scale should be emphasised in further studies as it seems that carabid beetles may be very localised even in agricultural habitats.  相似文献   

17.
Lang A 《Oecologia》2003,134(1):144-153
Arable land typically harbours communities of polyphagous invertebrate natural enemies, among them numerous soil-surface dwelling predators such as ground beetles (Carabidae) and spiders (Lycosidae, Linyphiidae). Numbers of these predators were experimentally manipulated in a winter wheat field in order to study the predation impact of a generalist predator assemblage on herbivorous insects, the possible interferences among the predators concerned, and subsequent effects on wheat plant parameters. Removing ground beetles doubled numbers of Lycosidae indicative of intraguild interference between these two predator groups. Aphid densities were highest in carabid removal plots implying a substantial predation impact of ground beetles on the pest population. The predation impact of ground beetles was strongest earlier and disappeared later in the season. In mid-season, at intermediate aphid densities, the combined impact of carabid beetles and spiders appeared to be responsible for the reduction in aphid abundance. This result was probably due to a biomass effect rather than to a synergistic effect of the predator community. Thysanoptera decreased when spiders were removed (perhaps because spiders were preying on a predator of thrips), while Cicadellidae and Delphacidae showed no effect at all. The rise of aphid numbers in carabid removal plots corresponded to an increase in protein content of the wheat grains, while other plant parameters such as plant numbers and grain mass were not affected. In conclusion, this study provided field evidence for intraguild interference among generalist ground predators in arable land. Despite this interference the polyphagous predator community was able to depress numbers of aphids in winter wheat, a result cascading down to plant quality parameters.  相似文献   

18.
《Acta Oecologica》2002,23(6):361-374
Oribatid mite and Carabid beetle communities were investigated at five sites in the ‘Pietraporciana’ and ‘Lucciolabella’ Nature Reserves (central Italy). In this part of southern Tuscany many attempts have been made to encourage the regeneration of native habitats and to preserve existing ones. Human-induced changes in the original forest landscape have had a direct impact on mite and carabid populations. Significant differences in species diversity and abundance among different sites were revealed throughout the sampling period. Species richness, abundance and diversity of oribatid mites decrease from woodland sites to open habitats where evenness was high. There is an inverse trend between the number of species and richness of carabid beetles and those of oribatid mites. Canonical correspondence analysis (CCA) of oribatid and carabid beetle compositions discriminated the sites, demonstrating how even small areas with different vegetation, composition, structure, environment and microclimate were characterised by distinct edaphic populations.  相似文献   

19.
We investigated patterns in species richness and diversity, life-history traits and functional diversity of carabid beetles and spiders along a coastal heathland successional gradient. We sampled in five successional stages on the island of Hiddensee, Germany. Species richness of carabids and spiders and Simpson diversity for spiders did not differ among stages. Functional dispersion (FDis), a measure of functional richness, was lowest in the youngest stage for both carabids and spiders. Older successional stages represent more heterogeneous habitats and offer a broader range of niches, which might enhance functional dispersion. Functional evenness (FEve) differed among successional stages for spiders, indicating an uneven distribution of species abundances in the functional trait space. Functional divergence (FDiv) did not differ among stages for either taxon. Shifts in life-history traits were noted in both arthropod groups, but not always in the same direction: Body size of carabid beetles increased towards older successional stages, but decreased for spiders. The number of flightless carabid species increased towards older habitats. Each successional stage seemingly favors species with distinct life-history traits (species sorting). We conclude that a trait-based approach including the use of functional diversity measurements (FDis) could contribute valuable information for biodiversity conservation.  相似文献   

20.
Agricultural landscapes generally include not only crop fields but also semi-natural habitats. In Japan, such a mixed rural landscape is called “satoyama.” Although ground beetles are potential predators of pests, the environmental factors that determine their distribution in Japanese rural landscapes have not been fully elucidated. To understand the effects of distance from woodland edges, soil moisture, and weed height on assemblages of carabid beetles, we examined the number of adult beetles in pitfall traps placed in a satoyama landscape in the lowlands of western Honshu, Japan. Our results show that the carabid species could be largely differentiated into woodland, intermediate, and open-land species. The “intermediate species” group includes species that depend on woodland or woodland edges for at least part of their life cycles. Paddy fields must have long provided semi-natural habitats that complement those in natural grasslands and wetlands for open-land beetles that prefer wet conditions. Weeds can also increase the abundance of some intermediate and woodland species; thus, the arrangement of such landscape elements as woodlands and paddies can determine the species richness and abundance of ground beetles in agricultural fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号