首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of untreated sewage introduces non‐indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 pyrosequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTPs) in metropolitan Milwaukee. The sewage profiles included a discernible human faecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae and Ruminococcaceae genera. The faecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human faecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High‐abundance sequences from taxonomic groups within the Beta‐ and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in faecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI – servicing residential plus a combined sewer system) and South Shore (SS – servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human faecal microbes and enrichment of specific microbes from the environment to form a unique population structure.  相似文献   

2.
Faecal pollution contains a rich and diverse community of bacteria derived from animals and humans, many of which might serve as alternatives to the traditional enterococci and Escherichia coli faecal indicators. We used massively parallel sequencing (MPS) of the 16S rRNA gene to characterize microbial communities from wastewater treatment plant (WWTP) influent sewage from 12 cities geographically distributed across the USA. We examined members of the Clostridiales, which included the families Clostridiaceae, Lachnospiraceae and Ruminococcaceae for their potential as sewage indicators. Lachnospiraceae was one of the most abundant groups of faecal bacteria in sewage, and several Lachnospiraceae high‐abundance sewage pyrotags occurred in at least 46 of 48 human faecal samples. Clone libraries targeting Clostridium coccoides (C. coccoides) in sewage samples demonstrated that Lachnospiraceae‐annotated V6 pyrotags encompassed the previously reported C. coccoides group. We used oligotyping to profile the genus Blautia within Lachnospiraceae and found oligotypes comprised of 24 entropy components that showed patterns of host specificity. These findings suggest that indicators based on Blautia might have the capacity to discriminate between different faecal pollution sources. Development of source‐specific alternative indicators would enhance water quality assessments, which leads to improved ecosystem health and reduced human health risk due to waterborne disease.  相似文献   

3.
Next-generation DNA sequencing (NGS) approaches are rapidly surpassing Sanger sequencing for characterizing the diversity of natural microbial communities. Despite this rapid transition, few comparisons exist between Sanger sequences and the generally much shorter reads of NGS. Operational taxonomic units (OTUs) derived from full-length (Sanger sequencing) and pyrotag (454 sequencing of the V9 hypervariable region) sequences of 18S rRNA genes from 10 global samples were analyzed in order to compare the resulting protistan community structures and species richness. Pyrotag OTUs called at 98% sequence similarity yielded numbers of OTUs that were similar overall to those for full-length sequences when the latter were called at 97% similarity. Singleton OTUs strongly influenced estimates of species richness but not the higher-level taxonomic composition of the community. The pyrotag and full-length sequence data sets had slightly different taxonomic compositions of rhizarians, stramenopiles, cryptophytes, and haptophytes, but the two data sets had similarly high compositions of alveolates. Pyrotag-based OTUs were often derived from sequences that mapped to multiple full-length OTUs at 100% similarity. Thus, pyrotags sequenced from a single hypervariable region might not be appropriate for establishing protistan species-level OTUs. However, nonmetric multidimensional scaling plots constructed with the two data sets yielded similar clusters, indicating that beta diversity analysis results were similar for the Sanger and NGS sequences. Short pyrotag sequences can provide holistic assessments of protistan communities, although care must be taken in interpreting the results. The longer reads (>500 bp) that are now becoming available through NGS should provide powerful tools for assessing the diversity of microbial eukaryotic assemblages.  相似文献   

4.
The complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within the Lachnospiraceae family, which was closely related to the genus Blautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for human Bacteroidales (based on the HF183 genetic marker), total Bacteroidales spp., and enterococci and the conventional Escherichia coli and enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and human Bacteroidales increased specificity to detect sewage compared to general indicators, and the relationship to a human pathogen group suggests that the use of these alternative indicators will improve assessments for human health risks in urban waters.  相似文献   

5.
Urban coasts receive watershed drainage from ecosystems that include highly developed lands with sewer and stormwater infrastructure. In these complex ecosystems, coastal waters are often contaminated with fecal pollution, where multiple delivery mechanisms that often contain multiple fecal sources make it difficult to mitigate the pollution. Here, we exploit bacterial community sequencing of the V6 and V6V4 hypervariable regions of the bacterial 16S rRNA gene to identify bacterial distributions that signal the presence of sewer, fecal, and human fecal pollution. The sequences classified to three sewer infrastructure-associated bacterial genera, Acinetobacter, Arcobacter, and Trichococcus, and five fecal-associated bacterial families, Bacteroidaceae, Porphyromonadaceae, Clostridiaceae, Lachnospiraceae, and Ruminococcaceae, served as signatures of sewer and fecal contamination, respectively. The human fecal signature was determined with the Bayesian source estimation program SourceTracker, which we applied to a set of 40 sewage influent samples collected in Milwaukee, WI, USA to identify operational taxonomic units (≥97 % identity) that were most likely of human fecal origin. During periods of dry weather, the magnitudes of all three signatures were relatively low in Milwaukee’s urban rivers and harbor and nearly zero in Lake Michigan. However, the relative contribution of the sewer and fecal signature frequently increased to >2 % of the measured surface water communities following sewer overflows. Also during combined sewer overflows, the ratio of the human fecal pollution signature to the fecal pollution signature in surface waters was generally close to that of sewage, but this ratio decreased dramatically during dry weather and rain events, suggesting that nonhuman fecal pollution was the dominant source during these weather-driven scenarios. The qPCR detection of two human fecal indicators, human Bacteroides and Lachno2, confirmed the urban fecal footprint in this ecosystem extends to at least 8 km offshore.  相似文献   

6.
We isolated 1,264 bacterial strains from forest soils previously surveyed via pyrosequencing of rRNA gene amplicons. Conventional culturing techniques recovered a substantial proportion of the community, with isolates representing 22% of 98,557 total pyrotags. Growth characteristics of isolates indicated that ecological traits were associated with relative abundances of corresponding pyrotag operational taxonomic units.  相似文献   

7.
Bacterial assemblages from subsurface (100 m depth), meso- (200-1000 m depth) and bathy-pelagic (below 1000 m depth) zones at 10 stations along a North Atlantic Ocean transect from 60°N to 5°S were characterized using massively parallel pyrotag sequencing of the V6 region of the 16S rRNA gene (V6 pyrotags). In a dataset of more than 830,000 pyrotags, we identified 10,780 OTUs of which 52% were singletons. The singletons accounted for less than 2% of the OTU abundance, whereas the 100 and 1000 most abundant OTUs represented 80% and 96% respectively of all recovered OTUs. Non-metric Multi-Dimensional Scaling and Canonical Correspondence Analysis of all the OTUs excluding the singletons revealed a clear clustering of the bacterial communities according to the water masses. More than 80% of the 1000 most abundant OTUs corresponded to Proteobacteria of which 55% were Alphaproteobacteria, mostly composed of the SAR11 cluster. Gammaproteobacteria increased with depth and included a relatively large number of OTUs belonging to Alteromonadales and Oceanospirillales. The bathypelagic zone showed higher taxonomic evenness than the overlying waters, albeit bacterial diversity was remarkably variable. Both abundant and low-abundance OTUs were responsible for the distinct bacterial communities characterizing the major deep-water masses. Taken together, our results reveal that deep-water masses act as bio-oceanographic islands for bacterioplankton leading to water mass-specific bacterial communities in the deep waters of the Atlantic.  相似文献   

8.
Abstract Kanamycin (Km)-resistant bacterial populations in different soil, river water, sewage and pig manure slurry samples were enumerated and their prevalence in the total populations determined. About 350 Km-resistant Gram-negative colonies grown in the presence of kanamycin were identified using a rapid presumptive identification scheme. They were then screened for the presence of Tn5 and npt II sequences using hybridization of cells in dot blots, of Southern-blotted genomic DNA extracts and of PCR amplification products. Colonies reacting positively with a 2.7 kb probe of the central region of Tn5, or with a 925 bp npt II specific probe were primarily obtained from sewage samples, whereas fewer were obtained from pig manure slurry, river water and soil. However, in soil samples bacteria containing Tn5 or npt II were not found. Transposon Tn5 carrying the npt II gene could be unequivocally demonstrated in 3 isolates from sewage, identified as Aeromonas spp. (2x) and Escherichia coli . Hin dIII digests of chromosomal DNA obtained from these strains were cloned and shown to confer Km resistance to a sensitive E. coli strain. Further, various strains revealed the presence of npt II homologous sequences in a non-Tn5 background. The occurence of Tn5 and npt II in the samples was also assessed via PCR analysis of total community DNA extracts obtained from the aforementioned environmental samples. Evidence for the occurence of npt II was obtained for sewage, pig manure slurry, for 2 (out of 3) river water (Avon, Rhine) and 3 (out of 6) soil (Flevo silt loam, Westmaas silt loam, Ahlum rhizosphere) samples. Tn5 was not detectable via PCR in any of these environmental DNA extracts but it was found in Ede loamy sand and Flevo silt loam samples taken from a field microplot 2 and 4 weeks after release of a Tn5-containing genetically modified organism.  相似文献   

9.
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC.  相似文献   

10.
Temporal and spatial dynamics of ammonia-oxidizing bacteria (AOB) were examined using genes encoding 16S rRNA and ammonia monooxygenase subunit A (AmoA) in Monterey Bay, Calif. Samples were collected from three depths in the water column on four dates at one mid-bay station. Diversity estimators for the two genes showed a strong positive correlation, indicating that overlapping bacterial populations had been sampled by both sets of clone libraries. Some samples that were separated by only 15 m in depth had less genetic similarity than samples that were collected from the same depth months apart. Clone libraries from the Monterey Bay AOB community were dominated by Nitrosospira-like sequences and clearly differentiated from the adjacent AOB community in Elkhorn Slough. Many Monterey Bay clones clustered with previously identified 16S rRNA and amoA groups composed entirely of marine sequences, supporting the hypothesis that these groups are specific to the marine environment and are dominant marine AOB. In addition, novel, phylogenetically distinct groups of AOB sequences were identified and compared to sequences in the database. Only one cluster of gammaproteobacterial AOB was detected using 16S rRNA genes. Although significant genetic variation was detected in AOB populations from both vertical and temporal samples, no significant correlation was detected between diversity and environmental variables or the rate of nitrification.  相似文献   

11.
The microbial dynamics associated with granular activated carbon (GAC) in a pilot water treatment plant were investigated over a period of 16 months. Microbial populations were monitored in the influent and effluent waters and on the GAC particles by means of total plate counts and ATP assays. Microbial populations between the influent and effluent waters of the GAC columns generally increased, indicating microbial growth. The dominant genera of microorganisms isolated from interstitial waters and GAC particles were Achromobacter, Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Micrococcus, Microcyclus, Paracoccus, and Pseudomonas. Coliform bacteria were found in small numbers in the effluents from some of the GAC columns in the later months of the study. Oxidation of influent waters with ozone and maintenance of aerobic conditions on the GAC columns failed to appreciably enhance the microbial growth on GAC.  相似文献   

12.
Tracking human sewage microbiome in a municipal wastewater treatment plant   总被引:1,自引:0,他引:1  
Human sewage pollution is a major threat to public health because sewage always comes with pathogens. Human sewage is usually received and treated by wastewater treatment plants (WWTPs) to control pathogenic risks and ameliorate environmental health. However, untreated sewage that flows into water environments may cause serious waterborne diseases, as reported in India and Bangladesh. To examine the fate of the human sewage microbiome in a local municipal WWTP of Hong Kong, we used massively parallel sequencing of 16S rRNA gene to systematically profile microbial communities in samples from three sections (i.e., influent, activated sludge, and effluent) obtained monthly throughout 1 year. The results indicated that: (1) influent sewage bacterial profile reflected the human microbiome; (2) human gut bacterial community was the dominant force shaping influent sewage bacterial profile; (3) most human sewage bacteria could be effectively removed by the WWTP; (4) a total of 75 genera were profiled as potentially pathogenic bacteria, most of which were still present in the effluent although at a very low level; (5) a grouped pattern of bacterial community was observed among the same section samples but a dispersed pattern was found among the different section samples; and (6) activated sludge was less affected by the influent sewage bacteria, but it showed a significant impact on the effluent bacteria. All of these findings provide novel insights toward a mechanistic understanding of the fate of human sewage microbiome in the WWTP.  相似文献   

13.
Aims: In autumn/winter 2004, a large outbreak of waterborne giardiasis occurred in Bergen, Norway. Over 1 year later, the concentrations and genotypes of Giardia cysts occurring in sewage influent were studied to investigate the impact of the outbreak event on Giardia infections in the community. Methods and Results: Sewage influent samples from four sewage treatment works (STW) serving Bergen were analysed for Giardia cysts on four occasions between 15 and 23 months after the outbreak. Cysts genotypes were investigated at one to three genes. Data from influent analysis from one of the STW before the outbreak, and from patient faecal samples analysed during the outbreak, provided baseline comparative data. Relatively high concentrations of Giardia cysts of diverse genotypes, both from Assemblages A and B, were detected at all STW. Conclusions: Comparison of data suggests that although Giardia cyst concentrations in sewage influent returned to pre‐outbreak levels within 18 months after the outbreak peak, the genetic composition of the isolates remained significantly influenced by the Assemblage B isolate associated with the outbreak. Significance and Impact of the Study: Genotypes associated with an extensive outbreak of giardiasis continued to occur in Giardia infections in Bergen’s population many months after the outbreak was considered to be over.  相似文献   

14.
Temporal and spatial dynamics of ammonia-oxidizing bacteria (AOB) were examined using genes encoding 16S rRNA and ammonia monooxygenase subunit A (AmoA) in Monterey Bay, Calif. Samples were collected from three depths in the water column on four dates at one mid-bay station. Diversity estimators for the two genes showed a strong positive correlation, indicating that overlapping bacterial populations had been sampled by both sets of clone libraries. Some samples that were separated by only 15 m in depth had less genetic similarity than samples that were collected from the same depth months apart. Clone libraries from the Monterey Bay AOB community were dominated by Nitrosospira-like sequences and clearly differentiated from the adjacent AOB community in Elkhorn Slough. Many Monterey Bay clones clustered with previously identified 16S rRNA and amoA groups composed entirely of marine sequences, supporting the hypothesis that these groups are specific to the marine environment and are dominant marine AOB. In addition, novel, phylogenetically distinct groups of AOB sequences were identified and compared to sequences in the database. Only one cluster of gammaproteobacterial AOB was detected using 16S rRNA genes. Although significant genetic variation was detected in AOB populations from both vertical and temporal samples, no significant correlation was detected between diversity and environmental variables or the rate of nitrification.  相似文献   

15.
AIMS: The changes in structure and composition of faecal coliforms and enterococcal populations in sewage from different treatment plants, and the elimination of vancomycin- and erythromycin-resistant enterococci (VRE and ERE, respectively) in these treatment plants was analysed to determine any selective reduction. METHODS AND RESULTS: Faecal coliforms, enterococci, VRE, ERE and spores of sulphite-reducing bacteria were enumerated using standard methods. Samples were enriched where necessary in order to isolate antibiotic resistant strains. The structure and composition of these bacterial populations were determined by biochemical fingerprinting and clustering analysis. High diversity and similarity indexes were detected among all the bacterial populations in raw and treated sewage, independently of their origin and the treatment processes employed. Antibiotic resistant strains were detected in all sewage tested and no selective reduction was observed. CONCLUSIONS: The faecal coliforms and enterococci populations did not differ in the sewage samples studied. The vancomycin and erythromycin resistances of the enterococcal populations were similar in the sewage samples. Resistance to both antibiotics persisted after the treatment process independently of raw sewage flow, faecal origin or size of the human population contributing to sewage. However, sewage of mixed origin (human and animal) presented a lower similarity index for the two bacterial populations compared with that of the other human sewage analysed. SIGNIFICANCE AND IMPACT OF THE STUDY: Although a significant reduction in bacterial populations was observed, the persistence of VRE and ERE strains in the same proportions in sewage suggests that there is no selective elimination of bacterial populations during the treatment processes. The ability of antibiotic resistance strains to survive sewage treatment systems should be considered in certain water reuse programmes.  相似文献   

16.
The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.  相似文献   

17.
The characterization of microbial community structure via 16S rRNA gene profiling has been greatly advanced in recent years by the introduction of amplicon pyrosequencing. The possibility of barcoding gives the opportunity to massively screen multiple samples from environmental or clinical sources for community details. However, an on-going debate questions the reproducibility and semi-quantitative rigour of pyrotag sequencing, similar to the early days of community fingerprinting. In this study we demonstrate the reproducibility of bacterial 454 pyrotag sequencing over biological and technical replicates of aquifer sediment bacterial communities. Moreover, we explore the potential of recovering specific template ratios via quantitatively defined template spiking to environmental DNA. We sequenced pyrotag libraries of triplicate sediment samples taken in annual sampling campaigns at a tar oil contaminated aquifer in Düsseldorf, Germany. The abundance of dominating lineages was highly reproducible with a maximal standard deviation of ~4% read abundance across biological, and ~2% across technical replicates. Our workflow also allows for the linking of read abundances within defined assembled pyrotag contigs to that of specific 'in vivo' fingerprinting signatures. Thus we demonstrate that both terminal restriction fragment length polymorphism (T-RFLP) analysis and pyrotag sequencing are capable of recovering highly comparable community structure. Overall diversity was roughly double in amplicon sequencing. Pyrotag libraries were also capable of linearly recovering increasing ratios (up to 20%) of 16S rRNA gene amendments from a pure culture of Aliivibrio fisheri spiked to sediment DNA. Our study demonstrates that 454 pyrotag sequencing is a robust and reproducible method, capable of reliably recovering template abundances and overall community structure within natural microbial communities.  相似文献   

18.
In view of various studies looking for the merit of coliphages as indicators of water pollution with viruses originating from faecal material, a small agricultural community (population of approximately 1500 inhabitants of all ages, 2-3 km from Haifa) was selected in order to understand these bacteriophage ecology (F-RNA and somatic coliphages) in its sewer and oxidation pond system. Along the sewer lines, it was possible to isolate constantly both bacteriophage types (F-RNA and somatic coliphages) at 10(2)-10(4) plaque-forming units (pfu) ml(-1). The average numbers of somatic and F-RNA phages isolated from oxidation pond were 10(3)-10(4) pfu ml(-1); however, somatic coliphages were undetectable for several months (April-August). Significant high correlation (0.944 < R(2) < 0.99) was found between increased anionic detergent concentrations and F-RNA coliphage numbers. Infants less than 1 year old excreted both phage types and few only F-RNA coliphages (at high numbers > 10(5) pfu g(-1)) for up to 1 year. The excretion of F-RNA coliphages was highly linked to Escherichia coli F(+) harborage in the intestinal track as found in their faecal content. Finally, three bacterial hosts E. coli F(+), F(-) and CN(13) tested for survivability in sewage filtrate revealed that E. coli F(+) had the highest survivability under these conditions. Presence of somatic and F male-specific phages in sewer lines of a small community are influenced by several factors such as: anionic detergents, nutrients, temperature, source (mainly infants), shedding and survival capability of the host strain. Better understanding of coliphages ecology in sewer systems can enhance our evaluation of these proposed indicator/index microorganisms used in tracking environmental pollution of water, soil and crop contamination with faecal material containing enteric viruses.  相似文献   

19.
Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1-V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacter and Enterococcus predominated in the community generated by V4-V6 primers, and the most numerous genera in the V7-V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4-V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7-V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1-V3 and V7-V9 primers provided results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities.  相似文献   

20.
Jiang  Xiao-Tao  Ye  Lin  Ju  Feng  Li  Bing  Ma  Li-Ping  Zhang  Tong 《Applied microbiology and biotechnology》2018,102(21):9379-9388

Bacterial community in activated sludge (AS) is diverse and highly dynamic. Little is known about the mechanism shaping bacterial community composition and dynamics of AS and no study had quantitatively compared the contribution of abiotic environmental factors and biotic associations to the temporal dynamics of AS microbial communities with significantly different diversity. In this study, two full-scale sewage treatment plants (STPs) with distinct operational parameters and influent composition were sampled biweekly over 1 year to reveal the correlating factors to whole and sub-groups of AS bacterial community diversity and dynamics. The results show that the bacterial communities of the two STPs were entirely different and correlated with the influent composition and operating configurations. Bacterial associations represented by cohesion metrics and the environmental factor temperature were the primary correlated factors to the temporal bacterial community dynamics within each STP. The STP with high diversity and evenness could treat influent with higher suspended solid and a shorter sludge retention time, and was less correlated with environmental factors, implying the importance of diversity for AS system.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号