首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postprandial cellular glucose uptake is dependent on an insulin-signaling cascade in muscle and adipose tissue, resulting in the translocation of the insulin-dependent glucose transporter 4 (Glut4) into the plasma membrane. Additionally, extended food deprivation is characterized by suppressed insulin signaling and decreased Glut4 expression. Northern elephant seals are adapted to prolonged fasts characterized by high levels of plasma glucose. To address the hypothesis that the fasting-induced decrease in insulin is associated with reduced insulin signaling in prolonged fasted seals, we compared the adipose protein levels of the cellular insulin-signaling pathway, Glut4 and plasma glucose, insulin, cortisol, and adiponectin concentrations between Early (n = 9; 2-3 wks postweaning) and Late (n = 8; 6-8 wks postweaning) fasted seals. Plasma adiponectin (230 ± 13 vs. 177 ± 11 ng/ml), insulin (2.7 ± 0.4 vs. 1.0 ± 0.1 μU/ml), and glucose (9.8 ± 0.5 vs. 8.0 ± 0.3 mM) decreased, while cortisol (124 ± 6 vs. 257 ± 30 nM) doubled with fasting. Glut4 increased (31%) with fasting despite the significant decreases in the cellular content of phosphatidylinositol 3-kinase as well as phosphorylated insulin receptor, insulin receptor substrate-1, and Akt2. Increased Glut4 may have contributed to the decrease in plasma glucose, but the decrease in insulin and insulin signaling suggests that Glut4 is not insulin-dependent in adipose tissue during prolonged fasting in elephant seals. The reduction of plasma glucose independent of insulin may make these animals an ideal model for the study of insulin resistance.  相似文献   

2.
1. Pyrenean brown trout (Salmo trutta fario) from 200 to 1700 g were analysed in lots of 12 specimens in March, April, July and October 1988, and in January 1989. 2. Hormones (insulin, glucagon, cortisol) and metabolites (glucose, lactate, proteins, triglycerides) were determined in plasma. 3. Body parameters (length and weight) increased progressively, while plasma metabolites and hormones were more dependent on seasonal and sexual conditions. 4. Plasma insulin presented a maximum in spring (11 ng/ml) and a minimum in January (5 ng/ml). A clear relationship between insulin and annual growth rates was established. Plasma glucagon showed annual values between 700 and 1500 pg/ml, with significant seasonal variations. The molar ratio glucagon/insulin oscillated from 0.21 in January to 0.38 in July. 5. Plasma glucose variations agreed with those of pancreatic hormones, especially evident with glucagon levels. Proteins were more uniform throughout year, and plasma lipids were especially associated to the reproductive state in females.  相似文献   

3.
We have studied the effects of insulin on the bioavailability of insulin-like growth factor (IGF) I in insulin-resistant patients after surgery. Serum levels of total IGF-I (tIGF-I), free IGF (fIGF)-I, fIGF-II, and IGF-binding protein (IGFBP) 1 and IGFBP-3 proteolytic activity (IGFBP-3-PA), determined on the day before surgery and on the 1st postoperative day, were related to insulin sensitivity measured by a hyperinsulinemic, normoglycemic clamp. Before surgery, the decreased tIGF-I (P < 0.05) in response to insulin infusion was accompanied by an 18% reduction of IGFBP-1 (P < 0.001), while IGFBP-3-PA remained unchanged. Levels of fIGF-I and fIGF-II were not changed by insulin infusions. After surgery, IGFBP-3-PA increased (P < 0.05) during insulin infusion, and this was associated with an increase in tIGF-I (P < 0.001) and fIGF-I (P < 0.01), while no significant change was found in fIGF-II. The reduction in IGFBP-1 in response to insulin infusion was not affected by surgery. The change in IGFBP-3-PA during insulin infusion after surgery was related to the corresponding change in fIGF-I (r(2) = 0.26, P < 0.05) and postoperative insulin sensitivity (r(2) = -0.22, P < 0.05). These data suggest that increased IGFBP-3-PA during insulin infusion after surgery governs the increased levels of fIGF-I, while insulin-induced suppression of IGFBP-1 was not affected by surgery. We propose that, in catabolic, postoperative patients, increased levels of insulin from exogenous or, possibly, endogenous sources (nutritionally induced) may be a signal to increase IGF-I bioavailability by increased expression of IGFBP-3-PA to counteract further deterioration in glucose metabolism.  相似文献   

4.
Roux-en-Y-Gastric-Bypass (RYGB) reduces overall and diabetes-specific mortality by 40% and over 90%. This study aims to gain insight into the underlying mechanisms of this effect. We evaluated time-courses of glucose, insulin, C-peptide, and the incretin glucagon like peptide-1 (GLP-1) following an oral glucose load. Insulin-sensitivity was measured by a hyperinsulinemic-isoglycemic-clamp-test; glucose-turnover was determined using D-[6,6-(2)H(2)] glucose. Examinations were performed in six nondiabetic patients with excess weight before (PRE: BMI: 49.3 ± 3.2 kg/m(2)) and 7 months after RYGB (POST: BMI: 36.7 ± 2.9 kg/m(2)), in a lean (CON: BMI: 22.6 ± 0.6 kg/m(2)) and an obese control group (CONob) without history of gastrointestinal surgery (BMI: 34.7 ± 1.2 kg/m(2)). RYGB reduced fasting plasma concentrations of insulin and C-peptide (P < 0.01, respectively) whereas fasting glucose concentrations remained unchanged. After RYGB increase of C-peptide concentration following glucose ingestion was significantly higher compared to all other groups (dynamic-area under the curve (Dyn-AUC): 0-90 min: POST: 984 ± 115 ng·min/ml, PRE: 590 ± 67 ng·min/ml, CONob: 440 ± 44 ng·min/ml, CON: 279 ± 22 ng·min/ml, P < 0.01 respectively). Early postprandial increase of glucose concentration was however not affected. GLP-1 concentrations following glucose ingestion were sixfold higher after RYBG than before (P = 0.01). Insulin-stimulated glucose uptake tended to increase postoperatively (M-value: PRE: 1.8 ± 0.5, POST: 3.0 ± 0.3, not significant (n.s.)). Endogenous glucose production (EGP) was unaffected by RYGB. Hepatic insulin resistance index improved after RYGB and was then comparable to both control groups (PRE: 29.2 ± 4.3, POST: 12.6 ± 1.1, P < 0.01). RYGB results in hyper-secretion of insulin and C-peptide, whereas improvements of insulin resistance are minor and seem to occur rather in the liver and the adipose tissue than in the skeletal muscle.  相似文献   

5.
Ghrelin is an endogenous growth hormone (GH) secretagogue recently isolated from the stomach. Although it possesses a strong GH releasing activity in vitro and in vivo, its physiological significance in endogenous GH secretion remains unclear. The aim of this study was to characterize plasma ghrelin levels in acromegaly and growth hormone deficiency (GHD). We investigated plasma total and active ghrelin in 21 patients with acromegaly, 9 patients with GHD and 24 age-, sex- and BMI-matched controls. In all subjects, we further assessed the concentrations of leptin, soluble leptin receptor, insulin, IGF-I, free IGF-I and IGFBP-1, 2, 3 and 6. Patients with acromegaly and GHD as well as control subjects showed similar levels of total ghrelin (controls 2.004+/-0.18 ng/ml, acromegalics 1.755+/-0.16 ng/ml, p=0.31, GHD patients 1.704+/-0.17 ng/ml, p=0.35) and active ghrelin (controls 0.057+/-0.01 ng/ml, acromegalics 0.047+/-0.01 ng/ml, p=0.29, GHD patients 0.062+/-0.01 ng/ml, p=0.73). In acromegalic patients plasma total ghrelin values correlated negatively with IGF-I (p<0.05), in GHD patients active ghrelin correlated with IGF-I positively (p<0.05). In the control group, total ghrelin correlated positively with IGFBP-2 (p<0.05) and negatively with active ghrelin (p=0.05), BMI (p<0.05), WHR (p<0.05), insulin (p=0.01) and IGF-I (p=0.05). Plasma active ghrelin correlated positively with IGFBP-3 (p=0.005) but negatively with total ghrelin and free IGF-I (p=0.01). In conclusion, all groups of the tested subjects showed similar plasma levels of total and active ghrelin. In acromegaly and growth hormone deficiency plasma ghrelin does not seem to be significantly affected by changes in GH secretion.  相似文献   

6.
People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O? = 21% (Control)] or normobaric hypoxia [fraction of inspired O? = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g?1·h?1 in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g?1·h?1, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.  相似文献   

7.
We investigated the effect of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) on 3-O-methylglucose transport in incubated human skeletal muscle strips. Increasing physiological concentrations of IGF-II stimulated glucose transport in a dose-dependent manner. Glucose transport was maximally stimulated in the presence of 100 ng/ml (13.4 nM) of IGF-II, which corresponded to the effect obtained by 100 microU/ml (0.6 nM) of insulin. Exposure of muscle strips to IGFBP-1 (500 ng/ml) inhibited the maximal effect of IGF-II on glucose transport by 40%. Thus, it is conceivable that IGF-II and IGFBP-1 are physiological regulators of the glucose transport process in human skeletal muscle.  相似文献   

8.
Treatment of primary cultured adipocytes with 50 ng/ml insulin and 20 mM glucose for 0-6 h resulted in a loss of maximal insulin responsiveness (MIR) which was immediate (no lag period), rapid (t1/2 of 3 h), linear, and extensive (80% of that seen at 24 h), whereas loss of insulin sensitivity from 0-24 h was slow (t1/2 = 8 h), extensive (insulin ED50 of 0.3 and 1.45 ng/ml at 2 and 24 h, respectively), and was preceded by an initial 2-h lag. Recovery of MIR and insulin sensitivity was assessed by inducing desensitization for various times from 2-24 h, removing insulin and glucose, and then measuring MIR and insulin sensitivity over a subsequent 1-6-h period. After 2 h, recovery of MIR in desensitized cells was rapid (251 pmol of glucose/3 min/h), whereas after 24 h, recovery was much slower (35 pmol/3 min/h). In contrast, the opposite trend was seen for recovery of insulin sensitivity: at early times recovery of insulin sensitivity was slow (0.05 ng/ml/h) but was rapid after 24 h (0.12 ng/ml/h). Thus, it appears that MIR and insulin sensitivity can be independently regulated since recovery rates for MIR and insulin sensitivity diverged with the progression of insulin resistance. When the effects of insulin and glucose on recovery were examined, we found that insulin alone was unable to block recovery of MIR or insulin sensitivity. Glucose alone, however, was effective in preventing recovery of insulin sensitivity but not recovery of MIR. In the presence of 20 mM glucose, low doses of insulin (treatment EC50 = 0.22-0.46 ng/ml) effectively prevented recovery of both MIR and insulin sensitivity. De novo protein synthesis apparently is not involved in the development of insulin resistance or the reversal of desensitization since inhibition of protein synthesis by cycloheximide had no effect on the loss of MIR and insulin sensitivity or recovery.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Growth factors such as platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF-1) stimulate proliferation and migration of vascular smooth muscle cells (SMC). IGF-l bioactivity is modulated by high-affinity binding proteins (IGFBP) which are important regulators of these processes. Procine vascular SMC synthesize IGFBP-2 and IGFBP-4 in vitro. In the present study, levels of IGFBP-2 in conditioned media (CM) were increased approximately 1.6 to 2.2-fold when cells were exposed to PDGF (20 ng.ml) or insulin (5 μg/ml) for 24 hr following a 24 hr incubation in serum-free media, or following a 72 hr exposure to either growth factor. Similar increases in IGFBP-2 mRNA levels were observed. Exposure of cells to PDGF for 24 hr without prior serum deprivation resulted in smaller (47 ± 11%) increases in IGFBP-2 protein levels but failed to alter mRNA levels. IGF-1, FGF-b? and EGF failed to increase IGFBP-2 using either experimental paradigm. In contrast, IGFBP-2 protein levels were consistently decreased (75 ± 14%) after 72 hr of exposure to IGF-II without corresponding decreases in IGFBP-2 mRNA levels. Immunoprecipitation of [35S] methionine-labeled IGFBP-2 indicated that this decrease was not due to a decrease in synthesis of IGFBP-2. Immunoblot analysis of CM from cells treated with IGF-II indicated that the decrease in intact protein corresponded with an increase in two non-IGF binding IGFBP-2 fragments of 22 and 14 kD. Increased abundance of these fragements was also observed following IGF-I exposure, although corresponding decreases in intact IGFBP-2 were not usually observed. The relative abundance of these fragments did not appear to be affected by treatment with PDGF or insulin. In contrast to IGFBP-2, regulation of the levels of IGFBP-4 in CM did not appear to be altered by serum deprivation. Insulin consistently increased IGFBP-4 mRNA and protein levels under all situations. PDGF tended to increase IGFBP-4 protein levels, although this effect was less consistent and not as great as the increase observe with insulin. Treatment with IGF-I or -ll consistently decreased IGFBP-4 levels in CM but tended to increase their mRNA levels under all situations. These data indicate that insulin, PDGF, and the IGFs regulate both IGFBP-2 and IGFBP-4. While PDGF and insulin stimulate IGFBP-2 and 4 synthesis, the IGFs appear to activate protease(s) which regulate IGFBP-2 and -4 levels post-translationally. The regulation of IGFBP-2 levels by each of these mechanisms appears to be amplified by serum deprivation, but this is not observed with IGFBP-4. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
Overweight is related to higher levels of C-reactive protein (CRP) and leptin, which have been independently associated with increased risk for diabetes, cardiovascular disease, and the metabolic syndrome. Elevated CRP may trigger leptin resistance by inhibiting the binding of leptin to its receptors. We cross-sectionally examined the relationship between CRP, leptin, BMI z-score, percent body fat (%BF) assessed by air plethysmography (BodPod), and insulin sensitivity (SI) and acute insulin response (AIRg) measured by intravenous glucose tolerance test in 51 Latina and African-American females (77% Latina), mean age 9.2 (±0.9) years, at either Tanner Pubertal Stage (TPS) 1 (n = 25) or TPS 2 (n = 26). Females at TPS 2 had higher BMI z-scores, %BF (23% ± 10.1 vs. 30% ± 10.0, P = 0.02), AIRg (976.7 ± 735.2 vs. 1555.3 ± 1,223 μIU/ml, P = 0.05), fasting insulin (11.0 ± 10.8 vs. 17.2 ± 13.6 μlU/ml, P = 0.00) and leptin levels (11.0 ± 7.1 vs. 19.6 ± 10.9 ng/ml, P < 0.001) than those at TPS 1. There were no ethnic differences in any of the measured variables. CRP was positively correlated with BMI z-score (P = 0.001), %BF (P = 0.006), fasting insulin and AIRg (P = 0.02), and fasting leptin (P = 0.00), and negatively correlated with SI (P = 0.05). A linear regression model showed that CRP independently explained 10% (P = 0.00) of the variance in leptin after adjusting %BF, TPS, ethnicity, habitual physical activity and SI. Hence, low-grade inflammation may contribute to prolonged leptin exposure and leptin resistance, even in healthy children.  相似文献   

12.
13.
The aim of this study was to determine wether continuous heavy physical activities as well as lack of food and sleep during military training (three weeks of conditioning followed by a five-day combat course) alter serum concentrations of IGF-I and/or its binding proteins, evaluating the relationship to metabolic changes. Before and after training, we measured serum levels of both total and free IGF-I, IGFBP-1 and IGFBP-3 as well as plasma levels of branched-chain amino acids (valine, leucine and isoleucine) and glucose from 26 cadets (21 +/- 2 yr). Total and free IGF-I levels were decreased after training from 228 +/- 12 to 160 +/- 7 ng/ml and from 0.80 +/- 0.08 to 0.52 +/- 0.06 ng/ml, p < 0.001 respectively) as well as IGFBP-3 (p < 0.001), while IGFBP-1 levels were increased (p < 0.001). BCAA levels were decreased from 245.4 +/- 7.5 to 215.9 +/- 5.1 micromol/l, p < 0.001, while those of glucose remained unchanged. There were correlations between changes in total IGF-I and IGFBP-3 (p < 0.05) and between free IGF-I and IGFBP-1 (p < 0.01). Several correlations appeared between changes in all the components of the IGF-I axis and branched-chain amino acids. We concluded that responses of the IGF-I system during an intense training could represent an adaptative response to the encountered energy deficiency, resulting a diversion of substrate from growth to acute metabolic needs.  相似文献   

14.
INTRODUCTION: The liver is the main source of serum insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) and the concentration of these proteins might reflect liver function. METHODS: In a retrospective longitudinal study we examined serum levels of total and free IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 in 21 adult patients with end-stage liver disease before and after orthotopic liver transplantation (LTX) by sensitive and specific RIAs. In each patient, the mean value of at least three measurements before and after LTX was calculated. RESULTS: Before LTX, serum levels of total and free IGF-I, IGF-II, IGFBP-3 were low and showed a rapid and significant increase in almost all patients after successful LTX (total IGF-I: 30 +/- 7 vs. 256 +/- 30 ng/ml, p < 0.001; free IGF-I: 1.3 +/- 0.3 vs. 3.5 +/- 0.6 ng/ml, p < 0.01; IGF-II: 177 +/- 28 vs. 618 +/- 30 ng/ml, p < 0.001; IGFBP-3: 1,230 +/- 136 vs. 3,665 +/- 264 ng/ml, p < 0.001). In contrast, IGFBP-1 was found to be high immediately before LTX, and declined to normal levels after LTX (210 +/- 40 vs. 90 +/- 15 ng/ml, p < 0.01), while IGFBP-2 did not show any significant changes (1,154 +/- 296 vs. 1,303 +/- 192 ng/ ml). Positive correlations were found between IGF-I, IGF-II or IGFBP-3, and serum pseudocholinesterase (R = 0.50, 0.72 and 0.61 respectively, p < 0.001). Negative correlations were found between IGF-I, IGF-II or IGFBP-3, and prothrombin time (R = 0.50, 0.59 and 0.51 respectively, p < 0.001). CONCLUSION: Patients with severe liver disease show decreased levels of total and free IGF-I, IGF-II and IGFBP-3, and increased levels of IGFBP-1. These abnormalities are promptly normalized after successful LTX. Thus, serum levels of IGF-I, IGF-II and IGFBP-3 might be useful parameters for the assessment of liver function.  相似文献   

15.
The effects of hypoinsulinaemia and altered metabolite concentrations on the fetal plasma concentrations of insulin-like growth factors (IGF) have been investigated in chronically catheterized fetal sheep made insulin deficient by pancreatic ablation. Fetal pancreatectomy reduced significantly the plasma IGF-1 concentration and increased plasma IGF-2 activity in comparison with the values observed in sham operated fetuses. Mean plasma IGF-1 concentrations in the sham operated and pancreatectomized fetuses were 18.6 +/- 3.1 ng/ml (n = 7) and 13.4 +/- 1.4 ng/ml (n = 13) respectively. When all the data were combined, there was a significant positive correlation between the plasma concentrations of IGF-1 and insulin in utero. The mean IGF-2 activity was 2349 +/- 83 ng/ml (n = 7) in the sham operated fetuses and 3800 +/- 532 ng/ml in the pancreatectomized animals (n = 13). Plasma IGF-2 activity was correlated positively with plasma glucose, fructose and alpha-amino nitrogen levels and inversely related to the plasma insulin concentration in utero. These observations demonstrate that the fetal pancreas is essential for normal IGF production in the fetus and suggest that insulin, substrate availability and the IGFs may interact in the regulation of fetal growth.  相似文献   

16.
This study was done to determine if insulin mediates H+ and NH+4 excretion in the urinary bladder of Bufo marinus. Acidosis was induced by gavaging with 10 ml of 120 mM NH4Cl 3X daily for 2 days. Hemibladders were mounted between Lucite chambers. Insulin (porcine) was added to the serosal solution of the experimental bladder (10(2) mU/ml). After a 15-min equilibration the flux was measured for 2 hr. H+ excretion was measured from change in pH of the mucosal fluid and the NH+4 measured colorimetrically. The excretion was normalized for weight of bladder and reported in units of nanomoles (100 mg bladder)-1(min)-1. Plasma insulin was determined by radioimmunoassay and glucose by the glucose oxidase method. In 14 control bladders H+ excretion was 8.75 +/- 1.28 and experimental was 16.35 +/- 2.50 (P less than 0.025), while NH+4 excretion in control bladder was 3.29 +/- 0.95 and experimental was 6.58 +/- 1.89 (P less than 0.01). This response was absent when the insulin was heat inactivated (P greater than 0.2 and P greater than 0.3 respectively). Plasma insulin-like levels in 10 normal toads was 0.57 +/- 0.16 ngm/ml and in acidotic toads 1.25 +/- 0.16 ng/ml (P less than 0.025). Plasma glucose levels in 10 normal toads were 22.0 +/- 3.5 mg/dl and in 12 acidotic toads 17.8 +/- 0.75 mg/dl (P less than 0.025). We conclude that plasma insulin is increased in acidosis and that insulin stimulates excretion of H+ and NH+4 in the toad urinary bladder.  相似文献   

17.
Preadipocyte factor-1 (Pref-1) is a member of epidermal growth-factor like family of proteins that regulates adipocyte and osteoblast differentiation. Experimental studies suggest that circulating Pref-1 levels may be also involved in the regulation of lipid and glucose metabolism and energy homeostasis. We hypothesized that alterations in Pref-1 levels may contribute to the ethiopathogenesis of anorexia nervosa or its underlying metabolic abnormalities. We measured Pref-1 concentrations and other hormonal, biochemical and anthropometric parameters in eighteen patients with anorexia nervosa and sixteen healthy women and studied the influence of partial realimentation of anorexia nervosa patients on these parameters. The mean duration of realimentation period was 46±2 days. At baseline, anorexia nervosa patients had significantly decreased body mass index, body weight, body fat content, fasting glucose, serum insulin, TSH, free T4, leptin and total protein. Partial realimentation improved these parameters. Baseline serum Pref-1 levels did not significantly differ between anorexia nervosa and control group (0.26±0.02 vs. 0.32±0.05 ng/ml, p=0.295) but partial realimentation significantly increased circulating Pref-1 levels (0.35±0.04 vs. 0.26±0.02 ng/ml, p<0.05). Post-realimentation Pref-1 levels significantly positively correlated with the change of body mass index after realimentation (r=0.49, p<0.05). We conclude that alterations in Pref-1 are not involved in the ethiopathogenesis of anorexia nervosa but its changes after partial realimentation could be involved in the regulation of adipose tissue expansion after realimentation.  相似文献   

18.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

19.
Inflammatory mechanisms are involved in the pathogenesis of type 2 diabetes with interleukin (IL)-6 being particularly important. While long term exercise has been shown to be associated with reduction in IL-6 serum levels in several reports, the discussion on the effect of dietary intervention on IL-6 serum levels is controversial. In the present study, we aimed to investigate the effect of weight loss due to a very low calorie diet (VLCD) on insulin sensitivity and IL-6 serum levels in nondiabetic obese human individuals. 10 patients with obesity were examined during 12 weeks of a VLCD (800 kcal/d). Body composition was measured by impedance analysis. Blood samples were taken before, during, and after the dietary intervention. Leptin, adiponectin, and IL-6 serum levels were measured by ELISA. The body weight decreased significantly from 123.9±6.2-103.5±5.6 kg with a significant reduction in body fat content (43.2±2.3-36.1±3.1%). Leptin levels exhibited a significant decrease from 56.8±5.6-27.9±5.6 ng/ml while adiponectin levels increased significantly from 7.5±0.9-10.6±1.1 μg/ml. Thereby the leptin-to-adiponectin ratio, a novel marker for insulin sensitivity, significantly improved. Mean IL-6 serum concentrations were within the normal range (3.2±0.8 pg/ml) before the study and were not significantly altered by the nutritional therapy. Despite improvement of insulin sensitivity, IL-6 serum levels did not change throughout the study period, suggesting that in nondiabetic obese human subjects IL-6 might have only a minor role in the impairment of insulin sensitivity.  相似文献   

20.
Metabolic changes during the transition from post-feeding to fasting were studied in Brycon cephalus, an omnivorous teleost from the Amazon Basin in Brazil. Body weight and somatic indices (liver and digestive tract), glycogen and glucose content in liver and muscle, as well as plasma glucose, free fatty acids (FFA), insulin and glucagon levels of B. cephalus, were measured at 0, 12, 24, 48, 72, 120, 168 and 336 h after the last feeding. At time 0 h (the moment of food administration, 09.00 h) plasma levels of insulin and glucagon were already high, and relatively high values were maintained until 24 h post-feeding. Glycemia was 6.42+/-0.82 mM immediately after food ingestion and 7.53+/-1.12 mM at 12 h. Simultaneously, a postprandial replenishment of liver and muscle glycogen reserves was observed. Subsequently, a sharp decrease of plasma insulin occurred, from 7.19+/-0.83 ng/ml at 24 h of fasting to 5.27+/-0.58 ng/ml at 48 h. This decrease coincided with the drop in liver glucose and liver glycogen, which reached the lowest value at 72 h of fasting (328.56+/-192.13 and 70.33+/-14.13 micromol/g, respectively). Liver glucose increased after 120 h and reached a peak 168 h post-feeding, which suggests that hepatic gluconeogenesis is occurring. Plasma FFA levels were low after 120 and 168 h and increased again at 336 h of fasting. During the transition from post-feeding to fast condition in B. cephalus, the balance between circulating insulin and glucagon quickly adjust its metabolism to the ingestion or deprivation of food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号