首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Left ventricular (LV) volume overload (VO) causes eccentric remodeling with inflammatory cell infiltration and extracellular matrix (ECM) degradation, for which there is currently no proven therapy. To uncover new pathways that connect inflammation and ECM homeostasis with cellular dysfunction, we determined the cardiac transciptome in subacute, compensated, and decompensated stages based on in vivo hemodynamics and echocardiography in the rat with aortocaval fistula (ACF). LV dilatation at 5 wk was associated with a normal LV end-diastolic dimension-to-posterior wall thickness ratio (LVEDD/PWT; compensated), whereas the early 2-wk (subacute) and late 15-wk (decompensated) ACF groups had significant increases in LVEDD/PWT. Subacute and decompensated stages had a significant upregulation of genes related to inflammation, the ECM, the cell cycle, and apoptosis. These changes were accompanied by neutrophil and macrophage infiltration, nonmyocyte apoptosis, and interstitial collagen loss. At 15 wk, there was a 40-fold increase in the matricellular protein periostin, which inhibits connections between collagen and cells, thereby potentially mediating a side-to-side slippage of cardiomyocytes and LV dilatation. The majority of downregulated genes was composed of mitochondrial enzymes whose suppression progressed from 5 to 15 wk concomitant with LV dilatation and systolic heart failure. The profound decrease in gene expression related to fatty acid, amino acid, and glucose metabolism was associated with the downregulation of peroxisome proliferator associated receptor (PPAR)-α-related and bioenergetic-related genes at 15 wk. In VO, an early phase of inflammation subsides at 5 wk but reappears at 15 wk with marked periostin production along with the suppression of genes related to PPAR-α and energy metabolism.  相似文献   

2.
Lipid accumulation in nonadipose tissue due to enhanced circulating fatty acids may play a role in the pathophysiology of heart failure, obesity, and diabetes. Accumulation of myocardial lipids and related intermediates, e.g., ceramide, is associated with decreased contractile function, mitochondrial oxidative phosphorylation, and electron transport chain (ETC) complex activities. We tested the hypothesis that the progression of heart failure would be exacerbated by elevated myocardial lipids and an associated ceramide-induced inhibition of mitochondrial oxidative phosphorylation and ETC complex activities. Heart failure (HF) was induced by coronary artery ligation. Rats were then randomly assigned to either a normal (10% kcal from fat; HF, n = 8) or high saturated fat diet (60% kcal from saturated fat; HF + Sat, n = 7). Sham-operated animals (sham; n = 8) were fed a normal diet. Eight weeks postligation, left ventricular (LV) function was assessed by echocardiography and catheterization. Subsarcolemmal and interfibrillar mitochondria were isolated from the LV. Heart failure resulted in impaired LV contractile function [decreased percent fractional shortening and peak rate of LV pressure rise and fall (+/-dP/dt)] and remodeling (increased end-diastolic and end-systolic dimensions) in HF compared with sham. No further progression of LV dysfunction was evident in HF + Sat. Mitochondrial state 3 respiration was increased in HF + Sat compared with HF despite elevated myocardial ceramide. Activities of ETC complexes II and IV were elevated in HF + Sat compared with HF and sham. High saturated fat feeding following coronary artery ligation was associated with increased oxidative phosphorylation and ETC complex activities and did not adversely affect LV contractile function or remodeling, despite elevations in myocardial ceramide.  相似文献   

3.
In the current study, interstitial fluid (ISF), bradykinin (BK), and angiotensin II (ANG II) levels were measured using cardiac microdialysis in conscious, nonsedated rats at baseline and at 48 h and 5 days after each of the following: sham surgery (sham, n = 6), sham + administration of ANG-converting enzyme inhibitor ramipril (R, n = 6), creation of aortocaval fistula (ACF, n = 6), ACF + R (n = 6), and ACF + R + BK2 receptor antagonist (HOE-140) administration (n = 6). At 5 days, both ISF ANG II and BK increased in ACF rats (P < 0.05); however, in ACF + R rats, ISF ANG II did not differ from basal levels and ISF BK increased greater than threefold above baseline at 2 and 5 days (P < 0.05). Five days after ACF, the left ventricular (LV) weight-to-body weight ratio increased 30% (P < 0.05) in ACF but did not differ from sham in ACF + R and ACF + R + HOE-140 rats despite similar systemic arterial pressures across all ACF groups. However, ACF + R + HOE-140 rats had greater postmortem wall thickness-to-diameter ratio and smaller cross-sectional diameter compared with ACF + R rats. There was a significant increase in mast cell density in ACF and ACF + R rats that decreased below sham in ACF + R + HOE-140 rats. These results suggest a potentially important interaction of mast cells and BK in the cardiac interstitium that modulates the pattern of LV remodeling in the acute phase of volume overload.  相似文献   

4.
Xanthine oxidoreductase (XOR) is increased in the left ventricle (LV) of humans with volume overload (VO), and mitochondrial inhibition of the respiratory chain occurs in animal models of VO. Because mitochondria are both a source and a target of reactive oxygen and nitrogen species, we hypothesized that activation of XOR and mitochondrial dysfunction are interdependent. To test this we used the aortocaval fistula (ACF) rat model of VO and a simulation of the stretch response in isolated adult cardiomyocytes with and without the inhibitor of XOR, allopurinol, or the mitochondrially targeted antioxidant MitoQ. Xanthine oxidase (XO) activity was increased in cardiomyocytes from ACF vs sham rats (24h) without an increase in XO protein. A twofold increase in LV end-diastolic pressure/wall stress and a decrease in LV systolic elastance with ACF were improved when allopurinol treatment (100mg/kg) was started at ACF induction. Subsarcolemmal State 3 mitochondrial respiration was significantly decreased in ACF and normalized by allopurinol. Cardiomyocytes subjected to 3h cyclical stretch resulted in an increase in XO activity and mitochondrial swelling, which was prevented by allopurinol or MitoQ pretreatment. These studies establish an early interplay between cardiomyocyte XO activation and bioenergetic dysfunction that may provide a new target that prevents progression to heart failure in VO.  相似文献   

5.
This study was designed to examine the effects of the antioxidant resveratrol on cardiac structure and function in pressure overload (PO)-induced cardiac hypertrophy. Male Sprague-Dawley rats were subjected to sham operation and the aortic banding procedure. A subgroup of sham control and aortic-banded rats were treated with resveratrol for 2 wk after surgery. Echocardiographic analysis of cardiac structure and function along with Western blot analysis of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and redox factor-1 (ref-1) were performed in all groups after 4 wk of surgery. Banded rats showed significantly increased left ventricle-to-body weight ratio. Echocardiographic analysis showed that the interventricular septal wall thickness and left ventricular posterior wall thickness at systole and diastole were significantly increased in banded rats. Also, a significant increase in isovolumic relaxation time was observed in banded rats. Measured eNOS, iNOS, and ref-1 protein levels were significantly reduced in banded rats. Resveratrol treatment prevented the above changes in cardiac structure, function, and protein expression in banded rats. Aortic banding after 4 wk resulted in concentric remodeling and impaired contractile function due to PO on the heart. The 2-wk treatment with resveratrol was found to abolish PO-induced cardiac hypertrophy. Resveratrol may therefore be beneficial against PO-induced cardiac hypertrophy found in clinical settings of hypertension and aortic valve stenosis.  相似文献   

6.
Intact female rats fed a high-phytoestrogen diet are protected against adverse left ventricular (LV) remodeling induced by chronic volume overload. We hypothesized that both phytoestrogens and ovarian hormones, particularly estrogen, are necessary for this dietary-induced cardioprotection. To test this hypothesis, eight groups of female rats were studied; rats were fed either a high-phytoestrogen (+phyto) or phytoestrogen-free diet. Groups included sham-operated rats, intact rats with fistula (Fist), ovariectomized rats with fistula (Fist-OX), and Fist-OX rats treated with estrogen (EST). Myocardial function and remodeling were assessed after 8 wk of volume overload using a blood-perfused isolated heart apparatus. Fist-OX rats developed significant ventricular dilatation and increased compliance vs. intact Fist rats, which were associated with a significant decrease in contractility. Estrogen treatment prevented pulmonary edema and attenuated LV hypertrophy and dilatation but did not maintain contractility. However, dietary phytoestrogens completely prevented LV dilatation in both the Fist+phyto and Fist-OX+EST+phyto groups but had no effect on LV remodeling in the Fist-OX+phyto group. Contractility was significantly greater in the estrogen-treated rats fed the phytoestrogen diet than in those treated with estrogen alone. Dietary phytoestrogens did not affect LV or uterine mass, serum estrogen, LV estrogen receptor expression, or cardiac function in sham animals. These data indicate that estrogen is not solely responsible for the cardioprotection exhibited by intact females and that phytoestrogens can work synergistically with ovarian hormones to attenuate ventricular remodeling induced by chronic volume overload in female rats.  相似文献   

7.
Little is known about the effects of the composition of dietary carbohydrate on the development of left ventricular (LV) hypertrophy (LVH) and heart failure (HF) under conditions of pressure overload. The objective of this study was to determine the effect of carbohydrate composition on LVH, LV function, and mortality in a mouse model of chronic pressure overload. Male C57BL/6J mice of 6 wk of age (n = 14-16 mice/group) underwent transverse aortic constriction (TAC) or sham surgery and were fed either standard chow (STD; 32% corn starch, 35% sucrose, 3% maltodextrin, and 10% fat expressed as a percent of the total energy), high-starch chow (58% corn starch, 12% maltodextrin, and 10% fat), or high-fructose chow (9% corn starch, 61% fructose, and 10% fat). After 16 wk of treatment, mice with TAC fed the STD or high-fructose diets exhibited increased LV mass, larger end-diastolic and end-systolic diameters, and decreased ejection fraction compared with sham. The high-starch diet, in contrast, prevented changes in LV dimensions and contractile function. Cardiac mRNA for myosin heavy chain-beta was increased dramatically in the fructose-fed banded animals, as was mortality (54% compared with 8% and 29% in the starch and STD banded groups, respectively). In conclusion, a diet high in simple sugar was deleterious, resulting in the highest mortality and expression of molecular markers of cardiac dysfunction in TAC animals compared with sham, whereas a high-starch diet blunted mortality, increases in cardiac mass, and contractile dysfunction.  相似文献   

8.
In many patients with congenital heart disease, the right ventricle (RV) is subjected to abnormal loading conditions. To better understand the state of compensated RV hypertrophy, which could eventually progress to decompensation, we studied the effects of RV pressure overload in rats. In the present study, we report the biventricular adaptation to 6 wk of pulmonary artery banding (PAB). PAB resulted in an RV pressure overload to approximately 60% of systemic level and a twofold increase in RV mass (P < 0.01). Systemic hemodynamic parameters were not altered, and overt signs of heart failure were absent. Load-independent measures of ventricular function (end-systolic pressure-volume relation, preload recruitable stroke work relation, maximum first time derivative of pressure divided by end-diastolic volume), assessed by means of pressure-volume (PV) loops, demonstrated a two- to threefold increase in RV contractility under baseline conditions in PAB rats. RV contractility increased in response to dobutamine stimulation (2.5 microg.kg(-1).min(-1)) both in PAB and sham-operated rats in a similar fashion, indicating preserved RV contractile reserve in PAB rats. Left ventricular (LV) contractility at baseline was unaffected in PAB rats, although LV volume in PAB rats was slightly decreased. LV contractility increased in response to dobutamine (2.5 microg.kg(-1).min(-1)), both in PAB and sham rats, whereas the response to a higher dose of dobutamine (5 microg.kg(-1).min(-1)) was blunted in PAB rats. RV pressure overload (6 wk) in rats resulted in a state of compensated RV hypertrophy with preserved RV contractile reserve, whereas LV contractile state at baseline was not affected. Furthermore, this study demonstrates the feasibility of performing biventricular PV-loop measurements in rats.  相似文献   

9.
10.
We tested the hypothesis that left ventricular (LV) remodeling late after myocardial infarction (MI) is associated with myocyte apoptosis in myocardium remote from the infarcted area and is related temporally to LV dilation and contractile dysfunction. One, four, and six months after MI caused by coronary artery ligation, LV volume and contractile function were determined using an isovolumic balloon-in-LV Langendorff technique. Apoptosis and nuclear morphology were determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) and Hoechst 33258 staining. Progressive LV dilation 1-6 mo post-MI was associated with reduced peak LV developed pressure (LVDP). In myocardium remote from the infarct, there was increased wall thickness and expression of atrial natriuretic peptide mRNA consistent with reactive hypertrophy. There was a progressive increase in the number of TUNEL-positive myocytes from 1 to 6 mo post-MI (2.9-fold increase at 6 mo; P < 0. 001 vs. sham). Thus LV remodeling late post-MI is associated with increased apoptosis in myocardium remote from the area of ischemic injury. The frequency of apoptosis is related to the severity of LV dysfunction.  相似文献   

11.
Clinical studies have shown a greater incidence of myocardial infarction in diabetic patients, and following an infarction, diabetes is associated with an increased risk for the development of left ventricular (LV) dysfunction and heart failure. The goal of this study was to determine if the progression of heart failure following myocardial infarction in type 2 diabetic (T2D) rats is accelerated compared with nondiabetic rats. Male nondiabetic Wistar-Kyoto (WKY) and T2D Goto-Kakizaki (GK) rats underwent coronary artery ligation or sham surgery to induce heart failure. Postligation (8 and 20 wk), two-dimensional echocardiography and LV pressure measurements were made. Heart failure progression, as assessed by enhanced LV remodeling and contractile dysfunction, was accelerated 8 wk postligation in the T2D animals. LV remodeling was evident from increased end-diastolic and end-systolic diameters and areas in the GK compared with the WKY infarcted group. Furthermore, enhanced LV contractile dysfunction was evident from a greater deterioration in fractional shortening and enhanced myocardial performance index (an index of global LV dysfunction) in the GK infarcted group. This accelerated progression was accompanied by greater increases in atrial natriuretic factor and skeletal alpha-actin (gene markers of heart failure and hypertrophy) mRNA levels in GK infarcted hearts. Despite similar decreases in metabolic gene expression (i.e., peroxisome proliferator-activated receptor-alpha-regulated genes associated with fatty acid oxidation) between infarcted WKY and GK rat hearts, myocardial triglyceride levels were elevated in the GK hearts only. These results, demonstrating enhanced remodeling and LV dysfunction 8 wk postligation provide evidence of an accelerated progression of heart failure in T2D rats.  相似文献   

12.
In studies of congestive heart failure (CHF) treatment, it is essential to select animals with a similar degree of cardiac dysfunction. However, this is difficult to establish without hemodynamic evaluation in rat postinfarction-induced CHF. This study aimed to diagnose CHF in long-term follow-up postinfarction rats using only echocardiographic criteria through a J-tree cluster analysis and Fisher's linear discriminant function. Two sets of sham and infarcted rats were studied. The first was used to perform cluster analysis and the second to prospectively validate the results. Six months after inducing myocardial infarction (MI), rats were subjected to transthoracic echocardiography. Infarct size was measured by histological analysis. Six echocardiographic variables were used in the cluster analysis: left ventricular (LV) systolic dimension, LV diastolic dimension-to-body weight ratio, left atrial diameter-to-body weight ratio, LV posterior wall shortening velocity, E wave, and isovolumetric relaxation time. Cluster analysis joined the rats into one sham and two MI groups. One MI cluster had more severe anatomical and echocardiographic changes and was called MI with heart failure (MI/HF+, n = 24, infarct size: 42.7 ± 5.8%). The other had less severe changes and was called MI without heart failure (MI/HF-, n = 11, infarct size: 32.3 ± 9.9%; P < 0.001 vs. MI/HF+). Three rats with small infarct size (21.6 ± 2.2%) presenting mild cardiac alterations were misallocated in the sham group. Fisher's linear discriminant function was built using these groups and used to prospectively classify additional groups of sham-operated (n = 20) and infarcted rats (n = 57) using the same echocardiographic parameters. The discriminant function therefore detected CHF with 100% specificity and 80% sensitivity considering allocation in MI/HF+ and sham group, and 100% specificity and 58.8% sensitivity considering MI/HF+ and MI/HF- groups, taking into account pathological criteria of CHF diagnosis. Echocardiographic analysis can be used to accurately predict congestive heart failure in postinfarction rats.  相似文献   

13.
Major burn injury results in impairment of left ventricular (LV) contractile function. There is strong evidence to support the involvement of gut-derived factor(s) transported in mesenteric lymph in the development of burn-related contractile dysfunction; i.e., mesenteric lymph duct ligation (LDL) prevents burn-related contractile depression. However, the cellular mechanisms for altered myocardial contractility of postburn hearts are largely unknown, and the cellular basis for the salutary effects of LDL on cardiac function have not been investigated. We examined contractility, Ca(2+) transients, and L-type Ca(2+) currents (I(Ca)) in LV myocytes isolated from four groups of rats: 1) sham burn, 2) sham burn with LDL (sham + LDL), 3) burn ( approximately 40% of total body surface area burn), and 4) burn with LDL (burn + LDL). Myocytes isolated from hearts at 24 h postburn had a depressed contractility ( approximately 20%) at baseline and blunted responsiveness to elevation of bath Ca(2+). Myocyte contractility was comparable in sham + LDL and sham burn hearts. LDL completely prevented burn-related changes in myocyte contractility. Mechanistically, the decrease in contractility in myocytes from postburn hearts occurred with a decrease in the amplitude of Ca(2+) transients ( approximately 20%) without changes in resting Ca(2+) or Ca(2+) content of the sarcoplasmic reticulum. On the other hand, I(Ca) density was decreased ( approximately 30%) in myocytes from postburn hearts, with unaltered voltage-dependent properties. Thus burn-related myocardial contractile dysfunction is linked with depressed myocyte contractility associated with a decrease in I(Ca) density. These findings also provide strong evidence that mesenteric lymph is involved in the onset of burn-related cardiomyocyte dysfunction.  相似文献   

14.
After myocardial infarction (MI), there is progressive left ventricular (LV) remodeling and impaired exercise capacity. We tested the hypothesis that LV remodeling results in structural and functional changes that determine exercise impairment post-MI. Rats underwent coronary artery ligation (n = 12) or sham (n = 11) surgery followed by serial exercise tests and echocardiography for 16 wk post-MI. LV pressure-volume relationships were determined using a blood-perfused Langendorff preparation. Exercise capacity was 60% of shams immediately post-MI (P < 0.05) followed by a recovery to near normal during weeks 5-8. Thereafter, there was a progressive decline in exercise capacity to +/-40% of shams (P < 0.01). At both 8 and 16 wk post-MI, fractional shortening (FS) was reduced and end-diastolic diameter (EDD) was increased (P < 0.01). However, neither FS nor EDD correlated with exercise at 8 or 16 wk (r(2) < 0.12, P > 0.30). LV septal wall thickness was increased at both 8 (P = 0.17 vs. shams) and 16 wk (P = 0.035 vs. shams) post-MI and correlated with exercise at both times (r(2) >/= 0.50 and P 相似文献   

15.
After myocardial infarction (MI), the left ventricle (LV) undergoes ventricular remodeling characterized by progressive global dilation, infarct expansion, and compensatory hypertrophy of the noninfarcted myocardium. Little attention has been given to the response of remodeling myocardium to additional hemodynamic overload. Studies have indicated that gender may influence remodeling and the response to both MI and hemodynamic overload. We therefore determined 1) structural and function consequences of superimposing hemodynamic overload (systemic hypertension) on remodeling myocardium after a MI and 2) the potential influence of gender on this remodeling response. Male and female Dahl salt-sensitive and salt-resistant rats underwent coronary ligation, resulting in similar degrees of MI. One week post-MI, all rats were placed on a high-salt diet. Four groups were then studied 4 wk after initiation of high-salt feeding: MI female, MI female + hypertension, MI male, and MI male + hypertension. Hypertension-induced pressure overload resulted in additional comparable degrees of myocardial hypertrophy in both females and males. In females, hypertension post-MI resulted in concentric hypertrophy with no additional cavity dilation and no measurable scar thinning. In contrast, in males, hypertension post-MI resulted in eccentric hypertrophy, further LV cavity dilation, and scar thinning. Physiologically, concentric hypertrophy in post-MI hypertensive females resulted in elevated contractile function, whereas eccentrically hypertrophied males had no such increase. Female gender influences favorably the remodeling and physiological response to hemodynamic overload after large MI.  相似文献   

16.
The mandatory use of pharmacotherapy in human heart failure (HF) impedes further study of natural history and remodeling mechanisms. We created a sheep model of chronic, severe, ischemic HF [left ventricular (LV) ejection fraction (LVEF) <35% stable over 4 wk] by selective coronary microembolization under general anesthesia and followed hemodynamic, energetic, neurohumoral, structural, and cellular responses over 6 mo. Thirty-eight sheep were induced into HF (58% success), with 23 sheep followed for 6 mo (21 sheep with sufficient data for analysis) after the LVEF stabilized (median of 3 embolizations). Early doubling of LV end-diastolic pressure persisted, as did increases in LV end-diastolic volume, LV wall stress, and LV wall thinning. Contractile impairment (LV end-systolic elastance, LV preload recruitable stroke work, and dobutamine-responsive contractile reserve) and diastolic dysfunction also remained stable. Cardiac mechanical energy efficiency did not recover. Plasma atrial natriuretic peptide levels remained elevated, but rises in plasma aldosterone and renin activity were transient. Collagen content increased 170%, the type I-to-III phenotype ratio doubled in the LV, but right ventricular collagen remained unaltered. Fas ligand cytokine levels correlated with expression of both caspase-3 and -2, suggesting a link in the apoptotic "death cascade." Caspase-3 activity also bore a close relationship to LV meridional wall stress calculated from echocardiographic and intraventricular pressure measurements. We concluded that the stability of chronic untreated severe ischemic HF depends on the recruitment of myocardial remodeling mechanisms that involve an interaction among hemodynamic load, contractile efficiency/energetics, neurohumoral activation, response of the extracellular matrix, wall stress, and the myocyte apoptotic pathway.  相似文献   

17.
We hypothesized that sepsis during hyperglycemia would activate left ventricular (LV) mitogen activated protein kinase (MAPK) signaling mechanisms and modulate generation of endothelin-1 (ET-1) and nitric oxide (NO) that can contribute to the progression of LV dysfunction. A single injection of streptozotocin (STZ, 60 mg/kg, via tail vein) was used to produce type 2 diabetes in male SD rats. Polymicrobial sepsis and sham-sepsis were induced using single i.p. injection of cecal inoculum and sterile 5% dextrose water, respectively, on the 13th and 27th day following STZ injection. Both 2-week (2-wk) and 4-wk diabetes groups were associated with hyperglycemia and weight loss. LV end diastolic pressure (LVEDP) was significantly increased in 4-wk diabetes but not in 2-wk diabetes group. Plasma concentration of tumor necrosis factor-alpha (TNF-alpha) was significantly increased in 4-wk diabetes+sepsis group as compared to sham, 2-wk diabetes+sepsis and sepsis groups. Elevated plasma and LV ET-1 and NO byproducts (NOx) along with LV preproET-1 and inducible nitric oxide synthase (iNOS) protein expression were observed in 4-wk but not in 2-wk diabetes group. Sepsis further elevated LV iNOS and preproET-1 in 4-wk diabetes group. Up-regulated phosphorylation of LV p38-MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and heat shock protein-27 (Hsp27) was observed in 4-wk diabetes group. Sepsis caused a factorial increase in LV p38-MAPK and Hsp27 phosphorylation and iNOS up-regulation but not ERK1/2 following progression from 2-wk to 4-wk diabetes. The study provides evidence that sepsis up-regulated LV iNOS, p38-MAPK phosphorylation and elevated LVEDP during 4-wk diabetes. We concluded that sepsis contributes in the development of LVEDP dysfunction and alteration in signaling mechanisms depending upon the progression from 2-wk to 4-wk diabetes in the rat.  相似文献   

18.
Intracardiac accumulation of lipid and related intermediates (e.g., ceramide) is associated with cardiac dysfunction and may contribute to the progression of heart failure (HF). Overexpression of nuclear receptor peroxisome proliferator-activated receptor-alpha (PPARalpha) increases intramyocellular ceramide and left ventricular (LV) dysfunction. We tested the hypothesis that activation of fatty acid metabolism with fat feeding or a PPARalpha agonist increases myocardial triglyceride and/or ceramide and exacerbates LV dysfunction in HF. Rats with infarct-induced HF (n = 38) or sham-operated rats (n = 10) were either untreated (INF, n = 10), fed a high-fat diet (45% kcal fat, INF + Fat, n = 15), or fed the PPARalpha agonist fenofibrate (150 mg.kg(-1).day(-1), INF + Feno, n = 13) for 12 wk. LV ejection fraction was significantly reduced with HF (49 +/- 6%) compared with sham operated (86 +/- 2%) with no significant differences in ejection fraction (or other functional or hemodynamic measures) among the three infarcted groups. Treatment with the PPARalpha agonist resulted in LV hypertrophy (24% increase in LV/body mass ratio) and induced mRNAs encoding for PPARalpha-regulated genes, as well as protein expression and activity of medium chain acyl-CoA dehydrogenase (compared with INF and INF + Fat groups). Myocardial ceramide content was elevated in the INF group compared with sham-operated rats, with no further change in the INF + Fat or INF + Feno groups. Myocardial triglyceride was unaffected by infarction but increased in the INF + Fat group. In conclusion, LV dysfunction and dilation are not worsened despite upregulation of the fatty acid metabolic pathway and LV hypertrophy or accumulation of myocardial triglyceride in the rat infarct model of HF.  相似文献   

19.
This study was designed to determine the effect of all-trans retinoic acid (RA) on the development of cardiac remodeling in a pressure overload rat model. Male Sprague-Dawley rats were subjected to sham operation and the aortic constriction procedure. A subgroup of sham control and aortic constricted rats were treated with RA for 5 mo after surgery. Pressure-overloaded rats showed significantly increased interstitial and perivascular fibrosis, heart weight-to-body weight ratio, and gene expression of atrial natriuretic peptide and brain natriuretic peptide. Echocardiographic analysis showed that pressure overload induced systolic and diastolic dysfunction, as evidenced by decreased fractional shortening, ejection fraction, stroke volume, and increased E-to-E(a) ratio and isovolumic relaxation time. RA treatment prevented the above changes in cardiac structure and function and hypertrophic gene expression in pressure-overloaded rats. RA restored the ratio of Bcl-2 to Bax, inhibited cleavage of caspase-3 and -9, and prevented the decreases in the levels of SOD-1 and SOD-2. Pressure overload-induced phosphorylation of ERK1/2, JNK, and p38 was inhibited by RA, via upregulation of mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-2. The pressure overload-induced production of angiotensin II was inhibited by RA via upregulation of expression of angiotensin-converting enzyme (ACE)2 and through inhibition of the expression of cardiac and renal renin, angiotensinogen, ACE, and angiotensin type 1 receptor. Similar results were observed in cultured neonatal cardiomyocytes in response to static stretch. These results demonstrate that RA has a significant inhibitory effect on pressure overload-induced cardiac remodeling, through inhibition of the expression of renin-angiotensin system components.  相似文献   

20.
To elucidate the molecular mechanism underlying estrogen-mediated cardioprotection in left ventricular (LV) hypertrophy and remodeling, we analyzed myocardial hypertrophy as well as cardiac function and hypertrophy-related protein expression in ovariectomized, aortic-banded rats. Wistar rats subjected to bilateral ovariectomy (OVX) were further treated with abdominal aortic stenosis. Effects on LV morphology and function were assessed using echocardiography, and expression of protein levels was determined by Western blot analysis. The heart-to-body weight ratio was most significantly increased in the OVX-pressure overload (PO) group compared with the OVX group and in the PO group compared with sham. The LV weight-to-body weight ratio was also significantly increased in the OVX-PO group compared with the OVX group and in the PO group compared with sham. The most significant increases in LV end diastolic pressure, LV developed pressure, and +/-dp/dt(max) were observed in the OVX-PO group compared with the OVX group and represent compensatory phenotypes against hypertrophy. Both endothelial nitric oxide (eNOS) synthase expression and activity was markedly reduced in the OVX-PO group, and protein kinase B (Akt) activity was largely attenuated. Marked breakdown of dystrophin was also seen in hearts of OVX-PO groups. Finally, significantly increased mortality was observed in the OVX-PO group following chronic isoproterenol administration. Our results demonstrate that rats subjected to ovariectomy are unable to compensate for hypertrophy, showed deteriorated heart function, and demonstrated increased mortality. Simultaneous impairment of eNOS and Akt activities and reduced dystrophin by ovariectomy likely contribute to cardiac decompensation during PO-induced hypertrophy in ovariectomized rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号