首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of succession models from temperate and tropical wet forests to threatened seasonally dry tropical forests (SDTFs) is questioned. Plant phenology affects ecosystem functions and changes along forest regeneration gradient. To investigate the recovery of ecological functions after disturbances in a SDTF, we recorded the vegetative and reproductive phenologies for trees (DBH >5 cm) for 17 months in southeast Brazil in three successional stages: early (10–15 years after clearing), intermediate (25–30) and late (>50). The vegetative phenology of the 523 individuals was strongly seasonal, with 3% of individuals presenting green leaves in a deciduous dry season. Besides structural and floristic differences, phenological trends were similar between the later stages. Reproduction occurred with higher intensities in the early stage and in the advanced stages only in the dry season, providing key resources to local fauna. The studied SDTF is resilient to ecological functions, rapidly recovering functional processes. The integration of structural and functional knowledge of succession of STDFs may lead to better management of its secondary remnants. Our study suggests that classical forest succession theory developed for other ecosystems may not fully reflect the pattern of SDTF succession, an ecosystem that originally covered 42% of the earth's tropical and subtropical landmass.  相似文献   

2.
Despite the recent rapid growth of tropical dry forest succession ecology, most studies on this topic have focused on plant community attribute recovery, whereas animal community successional dynamics has been largely overlooked, and the few existing studies have used taxonomic approaches. Here, we analyze the successional changes in the bee community in a Mexican tropical dry forest, by integrating taxonomic (species, genus, and family diversity) and functional (sociability, nesting strategy, and body size) information for bees. Over one year, in a successional chronosequence (2–67 years after abandonment) we collected 469 individual bees, representing five families, 36 genera, and 69 species. Linear modeling showed decreases in taxonomic diversity with succession, more strongly so for species. Bee species turnover along succession ranged from moderate to high, decreasing slightly at intermediate stages. An RLQ analysis (ordination method that allows relating environmental variables with functional attributes) revealed clear relations between bee functional traits and the plant community. RLQ axis 1 was positively related to vegetation structural and diversity variables, and to eusociality, while solitary, parasociality, and ground nesting was negatively associated with it. Early successional fallows attract mostly solitary and parasocial bees; older fallows tend to attract eusocial bees with aerial nesting. The continuous taxonomic turnover observed by us and the functional analysis suggest that the disappearance of old fallows from agricultural landscapes would likely result in significant reductions and even local extinctions of particular bee guilds. Considering the low viability of preserving large mature tropical dry forest tracts, the conservation of older successional stands emerges as a crucial component of landscape management.Abstract in Spanish is available with online material.  相似文献   

3.
Most plant species feature similar biochemical compositions and thus similar spectral signals. Still, empirical evidence suggests that the spectral discrimination of species and plant assemblages is possible. Success depends on the presence or absence of faint but detectable differences in biochemical (e.g., pigments, leaf water and dry matter content) and structural properties (e.g., leaf area, angle, and leaf structure), i.e., optical traits. A systematic analysis of the contributions and spatio-temporal variability of optical traits for the remote sensing of organismic vegetation patterns has not yet been conducted. We thus use time series of optical trait values retrieved from the reflectance signal using physical models (optical trait indicators, OTIs) to answer the following questions: How are optical traits related among patterns of floristic composition and reflectance? How variable are these relations in space and time? Are OTIs suitable predictors of plant species composition?We conducted a case study of three temperate open study sites with semi-natural vegetation. The canopy reflectance of permanent vegetation plots was measured on multiple dates over the vegetation period using a field spectrometer. We recorded the cover fractions of all plant species found in the vegetation plots and extracted gradients of species composition from these data. The physical PROSAIL leaf and canopy optical properties model was inverted with random forest regression models to retrieve time series of OTIs for each plot from the reflectance spectra. We analyzed these data sets using correlation analyses. This approach allowed us to assess the distribution of optical traits across gradients of species composition. The predictive performance of OTIs was tested in relation to canopy reflectance using random forest models.OTIs showed pronounced relationships with floristic patterns in all three study sites. These relationships were subject to considerable temporal variability. Such variability was driven by short-term vegetation dynamics introduced by local resource stress. In 72% of all cases OTIs out-performed the original canopy reflectance spectra as indicators of plant species composition. OTIs are also easier to interpret in an ecological sense than spectral bands or features. We thus conclude that optical traits retrieved from reflectance data have a high indicative value for ecological research and applications.  相似文献   

4.
The influence of plant functional groups and moderate seasonality on arbuscular mycorrhizal (AM) fungal status (root colonization and spore density) was investigated during 13 consecutive months in a chronosequence of succession in southern Brazil, consisting of grassland field, scrub vegetation, secondary forest and mature forest, in a region of transition from tropical to subtropical zones. AM root colonization and spore density decreased with advancing succession and were highest in early successional sites with grassland and scrub vegetation, intermediary in the secondary forest and lowest in the mature forest. They were little influenced by soil properties, but were sufficiently influenced by the fine root nutrient status and fine root traits among different functional plant groups. AM root colonization and spore density were higher during the favourable plant growth season (spring and summer) than during the less favourable plant growth season (autumn and winter). Spore density displayed significant seasonal variation at all sites, whilst root colonization displayed significant seasonal variation in grassland, scrub and secondary forest, but not in mature forest. The data suggest that (1) different plant functional groups display different relationships with AM fungi, influencing their abundance differentially; (2) plant species from early successional phases are more susceptible to AM root colonization and maintain higher AM sporulation than late successional species; (3) fine root traits and nutrient status influence these AM fungal attributes; and (4) higher AM spore production and root colonization is associated with the season of higher light incidence and temperature, abundant water in soil and higher plant metabolic activity.  相似文献   

5.
海南岛热带山地雨林天然次生林的功能群划分   总被引:4,自引:0,他引:4  
邓福英  臧润国 《生态学报》2007,27(8):3240-3249
热带林极高的物种丰富度使许多生态分析非常困难,把功能相似的物种划分为不同功能群,将为热带林的生态研究提供新的途径。以物种的7个功能特性因子(生长型、分布的海拔高度、分布的林型、木材密度、喜光性、演替地位和寿命)和9个林分结构因子(相对生物量、相对胸高断面积、相对树高、相对密度、相对频度、相对冠幅、相对更新数、相对死亡数和相对萌生数)为基础,应用数量化分析的方法,对海南岛典型的热带山地雨林天然次生林群落进行了功能群的划分。结果表明:(1)应用CCA分析林分结构因子时,可将山地雨林天然次生林的物种划分为6类功能群,它们的相对生物量、相对密度、相对频度、相对更新数、相对萌生数和相对死亡数等,随胸径和高度的增加而呈现有规律的变化;(2)应用CCA分析物种功能特性因子时,可将山地雨林天然次生林的物种划分为5类功能群,它们的功能特性都随演替过程而呈现有规律的变化;(3)在综合考虑两个不同角度CCA分析的基础上,最后将热带山地雨林天然次生林的物种共划分为11类功能群,它们能充分体现物种随胸径和高度结构的变化特点及其在演替过程中所处的阶段;(4)演替初期的灌木类功能群与各不同演替时期的乔木功能群共同分布于的中下层,但其大多处于死亡状态;(5)演替初期与演替中后期的乔木功能群则共同组成的主层林,但其死亡数量也较高。可见,海南岛热带山地雨林天然次生林目前正处不同功能群的激烈竞争阶段。  相似文献   

6.
Evaluating plant functional traits helps to understand how plants respond to changing environmental conditions and resource availability associated with disturbance events. Livestock production is one of the primary drivers of tropical forest loss and degradation. Livestock alter environmental conditions within the forest by grazing, trampling and nutrient inputs, which in turn can influence species composition and functional traits of species. Understanding how livestock influence functional traits along a successional gradient is poorly understood. Here, we studied the effect of cattle grazing and fallow age on plant functional traits and soil nutrients in secondary and old-growth tropical dry forests. We analyzed plant functional traits of the most important species in successional and old-growth forest communities in both cattle present and cattle excluded plots. Our results showed the effects of cattle grazing and fallow age on plant functional traits, with fallow age explaining more variation than cattle grazing. In early succession, functional traits were associated with water conservation (thicker leaves, lower specific leaf area), and in later successional they were linked with sunlight conservation (larger height, higher specific leaf area). The presence of large fruits and seeds in advanced successional sites suggests high resource availability, which may help plants to successfully reproduce. Moreover, under cattle grazing some functional traits are associated with herbivory defense (high foliar dry weight and thick leaves). Even though N and C increased as succession advanced, the sites with cattle grazing had higher NH4 and NO3 concentrations as a result of fecal deposition. Plant functional traits responded to fallow age than to cattle grazing. Our study showed that cattle exclusion, as a management and biodiversity conservation strategy, contributes positively to soil nutrition. Thus, fallow age and cattle exclusion facilitate soil recovery and allows establishing species with suitable functional attributes for overcoming environmental filters in abandoned cattle fields.  相似文献   

7.
Questions: Are the vegetation attributes significantly different among lava domes and among geomorphologic units as a result of age and soil features? Are the successional rates equal in all the geomorphologic units of the domes? Are the colonizer species of lava domes totally replaced by other species in the late successional stages? Location: Terceira Island, Azores (Portugal). Methods: Three comparable domes of 240, 370 and 2080 yr old were selected. Data on floristic composition, vegetation bioarea (area occupied by plant species in transects), structure, demography and soil nutrients were collected. Quantitative and qualitative changes along the succession gradient were also analyzed. Results: Vegetation attributes were consistent with the successional stage of each dome in the primary sere; however, the geomorphologic units did not follow the same pattern. The influence of the rates of plant colonization and soil formation are responsible for the decrease of the successional rates from footslopes, to summits, to slopes. The vegetation successionally changes from Juniperus scrub, to Juniperus wood and forest, and there is little species replacement since the similarity in species composition is high between the 3 domes. Conclusions: This is a special type of direct succession that takes place mainly through an increase in biomass and structural complexity. We observed small wooded areas in the fissures of very young domes that are samples of later successional forests — a phenomenon that we call ‘zoom effect’.  相似文献   

8.
Old field succession was studied on coastal dunes supporting tropical evergreen forest on Inhaca Island, Mozambique. Plots of 10×10 m were sited in three early successional stages and in relatively undisturbed forest. Woody species increased in number during succession; leptophylls were most frequent in younger vegetation, whereas microphylls and mesophylls were most frequent in forest. Grasses, shrubs and forbs dominated initially following abandonment, and shrubs persisted as dominants in the three early successional stages. The initial floristic composition model was generally supported by the pattern of species sequences, with many forest species entering early in the succession. Of the few species conforming to the relay floristic model, many were grasses and forbs of the forest understorey. Similarity between plots of equivalent vegetation age indicated that, at least in early succession, there was linearity in the successional pathway; there was no evidence for divergence or multiple pathways. In early succession, no accumulation was detected in either soil organic matter or extractable nutrients, thus providing little support for the facilitation model of succession. It is stressed that the findings are probably scale-dependent.  相似文献   

9.
Question: How does vegetation develop during the initial period following severe wildfire in managed forests? Location: Southwestern Oregon, USA. Methods: In severely burned plantations, dynamics of (1) shrub, herbaceous, and cryptogam richness; (2) cover; (3) topographic, overstory, and site influences were characterized on two contrasting aspects 2 to 4 years following fire. Analysis of variance was used to examine change in structural layer richness and cover over time. Non‐metric multidimensional scaling, multi‐response permutation procedure, and indicator species analysis were used to evaluate changes in community composition over time. Results: Vegetation established rapidly following wildfire in burned plantations, following an initial floristics model of succession among structural layers. Succession within structural layers followed a combination of initial and relay floristic models. Succession occurred simultaneously within and among structural layers following wildfire, but at different rates and with different drivers. Stochastic (fire severity and site history) and deterministic (species life history traits, topography, and pre‐disturbance plant community) factors determined starting points of succession. Multiple successional trajectories were evident in early succession. Conclusions: Mixed conifer forests are resilient to interacting effects of natural and human‐caused disturbances. Predicting the development of vegetation communities following disturbances requires an understanding of the various successional components, such as succession among and within structural layers, and the fire regime. Succession among and within structural layers can follow different successional models and trajectories, occurs at different rates, and is affected by multiple interacting factors.  相似文献   

10.
On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash‐and‐burn events in tropical second growth forests. We inventoried a chronosequence of 15 1‐ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community‐weighted functional traits with succession. We aimed to track long‐term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen‐related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in‐depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery.  相似文献   

11.
Understanding community assembly patterns with regard to functional traits, which may be common to different species, allows us to compare ecological communities in a wider range of environmental and phytogeographic conditions. Moreover, a functional approach may facilitate the comprehension of the relation between biotic changes and ecosystem functions in complex systems such as tropical forests. Considering the lack of information in relation to the influence of environmental conditions on lichen functional traits, on lichen functional patterns in tropical forests and the potential usage of this approach in bioindication studies, this paper aims at (i) determining the functional structure of the lichen communities along the forest succession gradient, (ii) assessing the relation of lichen functional traits to this gradient and (iii) verifying the potential of using lichen functional traits as indicators of successional stages in tropical rainforests. Lichens were sampled in 24 sampling units of three successional stages (6–10; 12–20; and 40–60 years of recovering). The results corroborated our main hypothesis that the functional structure of the lichen communities responds to structural changes along a forest regeneration gradient. Growth forms (foliose, fruticose and crustose) as well as some reproductive trait states (lirella, isidia and perithecia) were the most suitable lichen traits to be used as indicators of forest succession in the southern edge of the Atlantic Rainforest. Lirella, fruticose and foliose were more related to earlier successional stages; isidia was more related to intermediate stages, while perithecia and crustose were more related to older stages. These results reinforce the ability of lichens to be used as bioindicators of forest conditions.  相似文献   

12.
张增可  郑心炫  林华贞  林欣  黄柳菁 《生态学报》2019,39(10):3749-3758
植物功能性状与环境之间的关系是功能性状研究的重点,环境因子驱使植物功能性状发生变化,进而推动群落发生演替。以平潭岛4个不同演替阶段的森林植被(灌草丛、针叶林、针阔混交林、常绿阔叶林)为研究对象,结合不同群落演替阶段的物种特征和群落结构,分析海岛不同演替阶段茎、叶功能性状的变化规律,以及功能性状与环境因子的关系。结果表明:(1)随着演替的进行,土壤养分和水分逐渐增加,土壤pH逐渐下降。比叶面积(SLA)、叶片氮含量(LNC)、叶片磷含量(LPC)、茎氮含量(SNC)、茎磷含量(SPC)下降后上升,叶厚度(LT)、叶片碳含量(LCC)、茎碳含量(SCC)与之相反,叶干物质含量(LDMC)、茎组织密度(STD)逐渐上升。(2)冗余分析表明,演替早期植物主要分布在土壤pH、容重高的贫瘠环境,拥有较高SLA、SNC、SPC、LPC的性状组合;演替后期植物主要分布在土壤养分和水分高的肥沃环境,拥有较高的STD、LDMC、LCC、LNC的性状组合。其中,土壤有机质和全氮含量是影响海岛植物演替过程中功能性状变化的关键环境因子。研究海岛植物功能性状与环境之间的关系随演替的变化规律,探讨各演替阶段功能性状和环境特征,以及功能性状如何响应环境变化。旨在为今后选择合适的树种进行海岛植被修复和重建提供依据。  相似文献   

13.
Tropical secondary forests form an important part of the landscape. Understanding functional traits of species that colonize at different points in succession can provide insight into community assembly. Although studies on functional traits during forest succession have focused on trees, lianas (woody vines) also contribute strongly to forest biomass, species richness, and dynamics. We examined life history traits of lianas in a forest chronosequence in Costa Rica to determine which traits vary consistently over succession. We conducted 0.1 ha vegetation inventories in 30 sites. To examine the establishment of young individuals, we only included small lianas (0.5–1.5 cm diameter at 1.3 m height). For each species, we identified seed size, dispersal mode, climbing mode, and whether or not the seedling is self‐supporting. We found a strong axis of variation determined by seed size and seedling growth habit, with early successional communities dominated by small‐seeded species with abiotic dispersal and climbing seedlings, while large‐seeded, animal‐dispersed species with free‐standing seedlings increased in abundance with stand age. Contrary to previous research and theory, we found a decrease in the abundance of stem twiners and no decrease in the abundance of tendril‐climbers during succession. Seed size appears to be a better indicator of liana successional stage than climbing mode. Liana life history traits change predictably over succession, particularly traits related to seedling establishment. Identifying whether these trait differences persist into the growth strategies of mature lianas is an important research goal, with potential ramifications for understanding the impact of lianas during tropical forest succession.  相似文献   

14.
Question: What are the consequences of frequently occurring landslides on vegetation dynamics, floristic and structural diversity? Location: 39°27′N; 31°13′W – Morro Alto, Flores Island, Azores, Portugal. Methods: Six comparable landslides were selected. Plots were placed at the top, slope and toe of landslides. Data on floristic composition and biovolume, demography and size structure of the dominant tree species (Juniperus brevifolia) were collected. Hierarchical agglomerative clustering and Principal Component Analysis were used in order to identify succession stages and compare succession pathways and vegetation recovery in different parts of the landslides. Results: Four stages of primary succession on substrates formed by landslides were identified: pioneer (Festuca‐Sphagnum grassland), assembly (JuniperusFestuca‐Sphagnum open scrub), building (Juniperus‐Sphagnum scrub) and mature (Juniperus‐Sphagnum woodland). Concerning J. brevifolia populations, the succession pathways are independent of location on the landslide. However, at the floristic level, there are some differences, mainly in the pioneer stage at the toes of landslides. Better abiotic conditions, resulting in a higher succession rate, are probably responsible for a faster vegetation recovery on landslide toes. Conclusion: Landslides trigger succession processes that enable a massive regeneration of the dominant tree species and existence of species not present in mature forests. They are also responsible for the simultaneous occurrence of vegetation of different structures. Overall, landslides increase the floristic and structural diversity of the vegetation, consequently increasing landscape heterogeneity.  相似文献   

15.
Herbivory has significant impacts on individual plants and plant communities, both at ecological and evolutionary time scales. In this context, this study aims to evaluate herbivore damage and its relationship with leaf chemical and structural traits, nutritional status, and forest structural complexity along a successional gradient. We predicted that trees in early successional stages support conservative traits related to drought tolerance (high specific leaf mass and phenolics), whereas trees in light-limited, late successional stages tend to enhance light acquisition strategies (high nitrogen content). We sampled 261 trees from 26 species in 15 plots (50 × 20 m; five per successional stage). From each tree, twenty leaves were collected for leaf trait measures. Phenolic content increased whereas specific leaf mass and nitrogen content decreased from early to late stages. However, leaf damage did not differ among successional stages. Our results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water. The unexpected decrease in nitrogen content along the chronosequence is likely related to the fact that thinner leaves with low specific leaf mass could have less nitrogen-containing mesophyll per unit area. Mechanisms affecting herbivory intensity varied across scales: at the species level, leaf damage was negatively correlated with tannin concentration and specific leaf mass; at the plot level, leaf damage was positively affected by forest structural complexity. Herbivory patterns in tropical forests are difficult to detect because abiotic factors and multiple top-down and bottom-up forces directly and indirectly affect herbivores.  相似文献   

16.
In tropical regions, many studies have focused on how vegetation and ecosystem processes recover following the abandonment of anthropogenic activities, but less attention has been given to the recovery patterns of vertebrates. Here we conduct a meta‐analysis (n = 147 studies) of amphibian, reptile, bird and mammal recovery during tropical secondary forest succession (i.e. natural regeneration). For each taxonomic group, we compared changes in species richness and compositional similarity during natural secondary succession to reference forests (mature or old growth forest). In addition, we evaluated the response of forest specialists and the change in bird and mammal functional groups during natural secondary succession in the tropical moist forest biome. Overall, species richness of all groups reached levels of the reference forests during natural secondary succession, but this was not the case for species compositional similarity. The delay in recovery of forest specialists may be the reason for the delay in recovery of species compositional similarity. Overall, vertebrate recovery increased with successional stage, but other potential predictors of diversity recovery, such as, the geographical setting (amphibian and reptile species compositional similarity recovered more rapidly on islands), rainfall (mammal species richness and compositional similarity recovered faster in regions of low rainfall), and the landscape context (amphibian, reptile and mammal species compositional similarity recovered faster in regions with more forest patches) influenced vertebrate recovery. These results demonstrate the important role of secondary forests in providing habitat for many vertebrates, but the slow recovery of species compositional similarity, forest specialists and some functional groups (e.g. insectivorous birds) highlighted the challenge of secondary forest persistence, and strongly argues for the continued protection of old growth/mature forest as habitat for forest specialists and as sources for secondary forest sites.  相似文献   

17.
We investigated a unique source of forest disturbance: gamma radiation. While the temporal patterns of ecological succession are well understood for the forests of eastern North America, this is not the case for massively irradiated forests. Our objective was to compare vascular plant community change after irradiation at the five vegetation zones described in 1962 by Woodwell at Brookhaven National Laboratory, Long Island, New York. No follow-up studies have been done since the gamma radiation experiments were terminated in 1978. Ecological successional theory (e.g., Bormann and Likens, 1994, Likens and Bormann, 1995) does not explain long-term forest recovery after radiation damage. Our null hypothesis was that 47 yr after initial gamma ray exposure, the sites would have recovered such that floristic composition would be the same as the pine-oak forest control. This hypothesis was rejected statistically. In 2007/2008, the five concentric zones of vegetation centered about the gamma source retained their floristic heterogeneity as measured by Jaccard coefficients.  相似文献   

18.
Abstract One of the greatest challenges for ecologists this century will be restoring forests on degraded tropical lands. This restoration will require understanding complex processes that shape successional pathways, including interactions between trees and other plants. Shrub species often quickly invade disturbed tropical lands, yet little is known about whether they facilitate or inhibit subsequent tree recruitment and growth. We examined how shrubs and other vegetation (e.g., vines, grasses, herbs) affect tree recruitment, survival, and growth during the first 6 years of forest succession in Kibale National Park, Uganda. The study was undertaken in two recently logged exotic softwood plantations. We studied the successional trajectories in two recently logged areas that varied in their initial densities of trees and shrubs. Analyses suggested tree seedling presence and density were not strongly related to shrub density or height during succession. Tree sapling presence and density were positively significantly related to shrub density and height. We found little response in the tree community to experimental shrub removal, and although removal of all nontree vegetation temporarily enhanced tree growth, the effect disappeared after 2 years. Some early‐successional trees benefited from reduced competition, whereas some mid‐successional trees benefited from the presence of other vegetation. Some specific tree species responded strongly to vegetation removal. We interpret our findings in light of designing manipulations promoting forest restoration for biodiversity conservation and conclude with four tentative guidelines: (1) manage at the species level, not the community level; (2) increase facilitation for seedlings, reduce competition for saplings; (3) be cautious of assumptions about plant interactions; and (4) be adaptable and creative with new strategies when manipulations fail.  相似文献   

19.
We used fossil pollen to investigate the response of the eastern Chiquitano seasonally-dry tropical forest (SDTF), lowland Bolivia, to high-amplitude climate change associated with glacial–interglacial cycles. Changes in the structure, composition and diversity of the past vegetation are compared with palaeoclimate data previously reconstructed from the same record, and these results shed light on the biogeographic history of today’s highly disjunct blocks of SDTF across South America. We demonstrate that lower glacial temperatures limited tropical forest in the Chiquitanía region, and suggest that SDTF was absent or restricted at latitudes below 17°S, the proposed location of the majority of the hypothesized ‘Pleistocene dry forest arc’ (PDFA). At 19500 yrs b.p., warming supported the establishment of a floristically-distinct SDTF, which showed little change throughout the glacial–Holocene transition, despite a shift to significantly wetter conditions beginning ca. 12500–12200 yrs b.p. Anadenanthera colubrina, a key SDTF taxon, arrived at 10000 yrs b.p., which coincides with the onset of drought associated with an extended dry season. Lasting until 3000 yrs b.p., Holocene drought caused a floristic shift to more drought-tolerant taxa and a reduction in α-diversity (shown by declining palynological richness), but closed-canopy forest was maintained throughout. In contrast to the PDFA, the modern distribution of SDTF most likely represents the greatest spatial coverage of these forests in southern South America since glacial times. We find that temperature is a key climatic control upon the distribution of lowland South American SDTF over glacial-interglacial timescales, and seasonality of rainfall exerts a strong control on their floristic composition.  相似文献   

20.
We integrate forest structure and remotely sensed data for four successional stages (pasture, early, intermediate, and late) of a tropical dry forest area located in the Sector Santa Rosa of the Guanacaste Conservation Area in northwestern Costa Rica. We used a combination of spectral vegetation indices derived from Landsat 7 ETM+ medium resolution and IKONOS high‐resolution imagery. The indices (using the red and near‐infrared bands) simple ratio and normalized difference vegetation index separated the successional stages well. Two other indices using mid‐infrared bands did not separate successional stages as well. In a comparison of the successional stages with chronological age, there was no separability in the spectral reflectance among different age classes. Successional stages, in contrast, showed distinct groups with minimal overlap. We also applied a simple validation in another dry forest located in the Palo Verde National Park in the province of Guanacaste, Costa Rica, with reasonably good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号