首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple hydrodynamic model is introduced to describe the airlift fiber-bed bioreactor, which can enhance the volumetric productivity of anchorage-dependent animal cell cultures. By applying the model, liquid flow rates and volumetric mass transfer coefficients are predicted and are in agreement with experimental measurements. Consequently, the optimal reactor configuration giving the maximal oxygen supply is derived. Also, theoretical scaleup potential of this concentric internal loop reactor is considered for volumes ranging from 10 to 67,000 L with which cell densities of 5.1 x 10(7) and 1.2 x 10(7) cells/cm(3), respectively, can be maintained.  相似文献   

2.
A concentric-cylinder airlift reactor, in which the annulus is a packed bed of glass fibers, has been developed in order to facilitate the scaleup and enhance the volumetric productivity of anchorage-dependent animal cell cultures. In this bio-reactor, oxygen-containing gas is sparged through the inner draft tube, causing bubble-free medium to flow through the fiber bed in the outer cylinder and providing both oxygenation and convective nutrient transfer to the cells. Several other desirable features for reactor operation are also provided by this design. Cell cultivations in this bioreactor have been successfully carried out and provide data for the feasibility of the large-scale cell cultivation.  相似文献   

3.
Increasing the throughput and efficiency of cell culture process development has become increasingly important to rapidly screen and optimize cell culture media and process parameters. This study describes the application of a miniaturized bioreactor system as a scaled-down model for cell culture process development using a CHO cell line expressing a recombinant protein. The microbioreactor system (M24) provides non-invasive online monitoring and control capability for process parameters such as pH, dissolved oxygen (DO), and temperature at the individual well level. A systematic evaluation of the M24 for cell culture process applications was successfully completed. Several challenges were initially identified. These included uneven gas distribution in the wells due to system design and lot to lot variability, foaming issues caused by sparging required for active DO control, and pH control limitation under conditions of minimal dissolved CO2. A high degree of variability was found which was addressed by changes in the system design. The foaming issue was resolved by addition of anti-foam, reduction of sparge rate, and elimination of DO control. The pH control limitation was overcome by a single manual liquid base addition. Intra-well reproducibility, as indicated by measurements of process parameters, cell growth, metabolite profiles, protein titer, protein quality, and scale-equivalency between the M24 and 2 L bioreactor cultures were very good. This evaluation has shown feasibility of utilizing the M24 as a scale-down tool for cell culture application development under industrially relevant process conditions.  相似文献   

4.
The pharmaceutical and biotech industries face continued pressure to reduce development costs and accelerate process development. This challenge occurs alongside the need for increased upstream experimentation to support quality by design initiatives and the pursuit of predictive models from systems biology. A small scale system enabling multiple reactions in parallel (n ≥ 20), with automated sampling and integrated to purification, would provide significant improvement (four to fivefold) to development timelines. State of the art attempts to pursue high throughput process development include shake flasks, microfluidic reactors, microtiter plates and small-scale stirred reactors. The limitations of these systems are compared to desired criteria to mimic large scale commercial processes. The comparison shows that significant technological improvement is still required to provide automated solutions that can speed upstream process development.  相似文献   

5.
A novel approach of design of experiment (DoE) is developed for the optimization of key substrates of the culture medium, amino acids, and sugars, by utilizing perfusion microbioreactors with 2 mL working volume, operated in high cell density continuous mode, to explore the design space. A mixture DoE based on a simplex-centroid is proposed to test multiple medium blends in parallel perfusion runs, where the amino acids concentrations are selected based on the culture behavior in presence of different amino acid mixtures, and using targeted specific consumption rates. An optimized medium is identified with models predicting the culture parameters and product quality attributes (G0 and G1 level N-glycans) as a function of the medium composition. It is then validated in runs performed in perfusion microbioreactor in comparison with stirred-tank bioreactors equipped with alternating tangential flow filtration (ATF) or with tangential flow filtration (TFF) for cell separation, showing overall a similar process performance and N-glycosylation profile of the produced antibody. These results demonstrate that the present development strategy generates a perfusion medium with optimized performance for stable Chinese hamster ovary (CHO) cell cultures operated with very high cell densities of 60 × 106 and 120 × 106 cells/mL and a low cell-specific perfusion rate of 17 pL/cell/day, which is among the lowest reported and is in line with the framework recently published by the industry.  相似文献   

6.
Two key issues in the application of plant-cell-culture technology to the production of valuable secondary metabolites are reviewed: the selection of cell lines with suitable genetic, biochemical and physiological characteristics; and the optimization of bioreactor environments. Although great progress has been made in recent years in the design, selection and optimization of bioreactor hardware, optimization of environmental factors such as medium components, light irradiation and O2 supply needs detailed investigations for each case. With a better understanding of plant cell metabolism and physiology, further developments in cultivation processes, such as process integration and on-line monitoring and control, can be expected in the near future.J.-J. Zhong and J.-T. Yu are with the Research Institute of Biochemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China T. Yoshida is with the International Center of Cooperative Research in Biotechnology (ICBiotech), Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan.  相似文献   

7.
Animal cell (Chinese Hamster Ovary) concentration was determined on-line in a packed bed process using dielectric spectroscopy. This enabled the evaluation of the effect of temperature on specific metabolic rates during 3 months of continuous culture. The effect of low cultivation temperature on cell growth and metabolism was monitored, and the data were used for process development. At 37 degrees C cells grew exponentially with a specific growth rate of 0.038 d-1 and specific glucose uptake and lactate production rates increased continually. Reduction of the temperature to 33.5 degrees C resulted in a lowering of these metabolic rates while having no effect on cell proliferation. Subsequent reduction of the temperature to 32 degrees C resulted in stabilization of the cell concentration at a high density (3.6 x 10(7) cell per mL of packed bed). In addition, the specific production rate of the protein of interest increased by a factor of 6 compared to the value at 37 degrees C. During the stationary phase at 32 degrees C, all other specific metabolic rates could be controlled to low and constant levels.  相似文献   

8.
Dielectric spectroscopy was applied to two industrial high cell density culture processes and used to determine on-line the concentration of CHO cells immobilized on macroporous microcarriers in a stirred bioreactor and in a packed-bed of disk carriers. The cell concentration predicted from the spectroscopic data was in excellent agreement with off-line cell counting data for both processes. Deviations between the two counting methods only occurred in the case of a significant decrease of the cell viability, from 93% to 64%, which induced a change of the average cell size in the culture. Results for the packed-bed process were further confirmed by the application of indirect yield models based on the measurement of glucose, lactate, and the protein of interest. Moreover, dielectric spectroscopy was used as a tool to characterize the packed-bed process. It was possible to determine both the maximum cell concentration that could be reached in the culture system, 2.0 x 10(11) cell per kg of disk carrier, and to quantify the increase of specific protein productivity induced by the production phase, from 5.14 x 10(-8) microg x cell(-1) x h(-1) to 4.24 x 10(-7) microg x cell(-1) x h(-1).  相似文献   

9.
The differential pulse polarography has been used on samples taken from the medium during the culture of chinese hamster ovary cells with a view to producing the active principle of an anti-cancer drug. An electrochemical signal at a potential of −1.8 V with respect to the saturated calomel electrode was correlated with the lactic acid concentration, the pH variation and the number of cells. The peaks observed in oxidation at potentials −0.35 V and −0.05 V were associated with the transformation of the cystine present in the nutrient medium into cysteine and provide an indication of the modification of the reducing power of the medium during culture. No correlation was found between the electrochemical behaviour and cell production.  相似文献   

10.
A packed bed bioreactor was investigated as means for the cultivation of mammalian cells. The packed bed is comprised of porous ceramic particles with pores sufficiently large for cell immobilization as well as for intraparticle convective flow. In this way, the transport of limiting nutrients such as oxygen can be significantly enhanced, allowing maintenance of cell viability and productivity in an environment protective of adverse shear effects. The extent of intraparticle convective medium flow was experimentally quantified relative to the reactor operating conditions, and was found to be the dominant mechanism of nutrient transport to cells immobilized in the particle interior. An approximate linear relationship was obtained between overall reactor productivity and the extent of intraparticle convection. As the latter can be controlled at the single-particle level through total flow rate control, this relationship is a useful scale-up tool for the design of bioreactors. The high cell densities and the high volumetric productivities achieved by using small lab-scale reactors underline the potential of this simple bioreactor configuration for large-scale cell culture applications. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
This study describes two packed bed bioreactor configurations which were used to culture a mouse-mouse hybridoma cell line (ATCC HB-57) which produces an IgG1 monoclonal antibody. The first configuration consists of a packed column which is continuously perfused by recirculating oxygenated media through the column. In the second configuration, the packed bed is contained within a stationary basket which is suspended in the vessel of a CelliGen bioreactor. In this configuration, recirculation of the oxygenated media is provided by the CelliGen Cell Lift impeller. Both configurations are packed with disk carriers made from a non-woven polyester fabric. During the steady-state phase of continuous operation, a cell density of 108 cells per cm3 of bed volume was obtained in both bioreactor configurations. The high levels of productivity (0.5 gram MAb per 1 of packed bed per day) obtained in these systems demonstrates that the culture conditions achieved in these packed bed bioreactors are excellent for the continuous propagation of hybridomas using media which contains low levels (1 %) of serum as well as serum-free media. These packed bed bioreactors allow good control of pH, dissolved oxygen and temperature. The media flows evenly over the cells and produces very low shear forces. These systems are easy to set up and operate for prolonged periods of time. The potential for scale-up using Fibra-cel carriers is enhanced due to the low pressure drop and low mass transfer resistance, which creates high void fraction approaching 90% in the packed bed.  相似文献   

12.
J. Varley  J. Birch 《Cytotechnology》1999,29(3):177-205
The scale of operation of freely suspended animal cell culture has been increasing and in order to meet the demand for recombinant therapeutic products, this increase is likely to continue. The most common reactor types used are stirred tanks. Air lift fermenters are also used, albeit less commonly. No specific guidelines have been published for large scale (≥10 000 L) animal cell culture and reactor designs are often based on those used for microbial systems. However, due to the large difference in energy inputs used for microbial and animal cell systems such designs may be far from optimal. In this review the importance of achieving a balance between mixing, mass transfer and shear effects is emphasised. The implications that meeting this balance has on design of vessels and operation, particularly in terms of strategies to ensure adequate mixing to achieve homogeneity in pH and dissolved gas concentrations are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
There is a dearth of technology and methods to aid process characterization, control and scale‐up of complex culture platforms that provide niche micro‐environments for some stem cell‐based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale‐up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1‐luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:256–260, 2014  相似文献   

14.
There is an increased interest from the vaccine industry to use mammalian cell cultures for influenza vaccine manufacturing. Therefore, it became important to study the influenza infection mechanism, the viral–host interaction, and the replication kinetics from a bioprocessing stand point to maximize the influenza viral production yield in cell culture. In the present work, influenza replication kinetics was studied in HEK293 cells. Two infection conditions were evaluated, a low (0.01) and a high multiplicity of infection (1.0). Critical time points of the viral production cycle (infection, protein synthesis, viral assembly and budding, viral release, and host‐cell death) were identified in small‐scale cell cultures. Additionally, cell growth, viability, and viral titers were monitored in the viral production process. The infection state of the cultivated cell population was assessed by influenza immunolabeling throughout the culture period. Influenza virus production kinetics were also on‐line monitored by dielectric spectroscopy and successfully correlated to real‐time capacitance measures. Overall, this work provided insights into the mechanisms associated with the infection of human HEK293 cell line by the influenza virus and demonstrated, once again, the usefulness of multifrequency scanning permittivity for in‐line monitoring and supervision of cell‐based viral production processes. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

15.
The adoption of disposable bioreactor technology as an alternate to traditional nondisposable technology is gaining momentum in the biotechnology industry. Evaluation of current disposable bioreactors systems to sustain high intensity fed-batch mammalian cell culture processes needs to be explored. In this study, an assessment was performed comparing single-use bioreactors (SUBs) systems of 50-, 250-, and 1,000-L operating scales with traditional stainless steel (SS) and glass vessels using four distinct mammalian cell culture processes. This comparison focuses on expansion and production stage performance. The SUB performance was evaluated based on three main areas: operability, process scalability, and process performance. The process performance and operability aspects were assessed over time and product quality performance was compared at the day of harvest. Expansion stage results showed disposable bioreactors mirror traditional bioreactors in terms of cellular growth and metabolism. Set-up and disposal times were dramatically reduced using the SUB systems when compared with traditional systems. Production stage runs for both Chinese hamster ovary and NS0 cell lines in the SUB system were able to model SS bioreactors runs at 100-, 200-, 2,000-, and 15,000-L scales. A single 1,000-L SUB run applying a high intensity fed-batch process was able to generate 7.5 kg of antibody with comparable product quality.  相似文献   

16.
近年来,哺乳动物细胞培养技术发展迅猛,基于此技术的生物制药行业更是异军突起。在激烈的生物药市场竞争中,缩短研发时间和降低研发成本是制胜的关键。与传统的生物反应器相比,高通量微型生物反应器具有操作简单、运行通量高、实验重复性好等优点,可大大缩短研发周期,降低人力、物力成本,因此成为了生物制药行业最新的研究热点之一。目前,已成功应用于生物药物研发的微型生物反应器有Simcell TM、Ambr 15 TM、Ambr 250 TM等,分别适用于工艺开发中的不同阶段。以上述三种微型生物反应器为例,介绍高通量微型反应器在哺乳动物细胞培养工艺开发中的研究现状及发展前景。  相似文献   

17.
初步研究了气液双升式动物细胞反应器微载体培养 Bowes细胞和悬浮培养 M4G3杂交瘤细胞的生长条件 ,在不加入消泡剂和保护剂的情况下 ,批式培养 Bowes细胞的最大密度为 2 .6×1 0 6/ml,批式培养 M4G3细胞的最大密度为 1 .5× 1 0 6/ml。基于细胞生长的密度效应 ,建立了动物细胞生长动力学模型 :   μ=0   t相似文献   

18.
A grating coupler was used for the on-line determination of monoclonal antibodies produced in perfused animal cell bioreactor. The device was connected with the culture vessel via a flow-injection analysis (FIA) system, which was controlled automatically. Specific antimouse lgG antibodies were immobilized on the surface of the sensor-chip. After injection of the sample, the binding of mouse lgG was observed in real time. The regeneration of the binding sites of the immobilized antibodies using an acidic solution allowed the on-line detection of produced monoclonal antibodies in the range of 10 to 150 mug/mL. In contrast to other techniques coupled to bioprocesses, the developed method represents a regenerable direct immunosensor. Results were compared with standard ELISA techniques (off-line) and a competitive immunochemical assay using the grating coupler (off-line). (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
20.
The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European ‘Biorack’ provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the ‘Biorack’ facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatent in-flight), injection port, and supernatent collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatent, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground- based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities. J. Cell. Biochem. 70:252–267, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号