首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: BACKGROUND: The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms from bacteria to human and vascular plants. In recent years, multiple deg/htrA protease genes were identified in various plant genomes. During genome annotations most proteases were named according to the order of discovery, hence the same names were sometimes given to different types of Deg/HtrA enzymes in different plant species. This can easily lead to false inference of individual protease functions based solely on a shared name. Therefore, the existing names and classification of these proteolytic enzymes does not meet our current needs and a phylogeny-based standardized nomenclature is required. RESULTS: Using phylogenetic and domain arrangement analysis, we improved the nomenclature of the Deg/HtrA protease family, standardized protease names based on their well-established nomenclature in Arabidopsis thaliana, and clarified the evolutionary relationship between orthologous enzymes from various photosynthetic organisms across several divergent systematic groups, including dicots, a monocot, a moss and a green alga. Furthermore, we identified a "core set" of eight proteases shared by all organisms examined here that might provide all the proteolytic potential of Deg/HtrA proteases necessary for a hypothetical plant cell. CONCLUSIONS: In our proposed nomenclature, the evolutionarily closest orthologs have the same protease name, simplifying scientific communication when comparing different plant species and allowing for more reliable inference of protease functions. Further, we proposed that the high number of Deg/HtrA proteases in plants is mainly due to gene duplications unique to the respective organism.  相似文献   

2.
The HtrA family of serine proteases   总被引:27,自引:7,他引:20  
HtrA, also known as DegP and probably identical to the Do protease, is a heat shock-induced serine protease that is active in the periplasm of Escherichia coli . Homologues of HtrA have been described in a wide range of bacteria and in eukaryotes. Its chief role is to degrade misfolded proteins in the periplasm. Substrate recognition probably involves the recently described PDZ domains in the C-terminal half of HtrA and, we suspect, has much in common with the substrate recognition system of the tail-specific protease, Prc (which also possesses a PDZ domain). The expression of htrA is regulated by a complex set of signal transduction pathways, which includes an alternative sigma factor, RpoE, an anti-sigma factor, RseA, a two-component regulatory system, CpxRA, and two phosphoprotein phosphatases, PrpA and PrpB. Mutations in the htrA genes of Salmonella , Brucella and Yersinia cause decreased survival in mice and/or macrophages, and htrA mutants can act as vaccines, as cloning hosts and as carriers of heterologous antigens.  相似文献   

3.
Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.  相似文献   

4.
The family of Deg proteases in cyanobacteria and chloroplasts of higher plants   总被引:10,自引:1,他引:10  
The family of Deg proteases is present in nearly all organisms from bacteria to higher plants. This family consists of ATP-independent serine endopeptidases with a catalytic domain of trypsin type and up to three PDZ domains, involved in protein–protein interactions. Sixteen deg genes (originally named deg P1–16) were found in Arabidopsis thaliana , and the chloroplast location was predicted or experimentally proven for seven proteins. The cyanobacterium Synechocystis sp. PCC6803 contains three Deg homologues, HtrA (DegP), HhoA (DegQ) and HhoB (DegS), but their number can vary between one and six in other photosynthetic Prokaryota. Interestingly, all of these proteases are evolutionarily more closely related within one species than proteases with the same names present in other organisms. This means that Deg proteases from A. thaliana are not necessarily the closest relatives of cyanobacterial DegP. Therefore, we propose to change the misleading original name 'DegP' to 'Deg' for A. thaliana enzymes. Here, we summarize the expression, location and functions of Deg proteases from cyanobacteria and chloroplasts of higher plants, with special emphasis on their role in the photosystem II (PSII) repair cycle under light stress conditions.  相似文献   

5.
Cells precisely monitor the concentration and functionality of each protein for optimal performance. Protein quality control involves molecular chaperones, folding catalysts, and proteases that are often heat shock proteins. One quality control factor is HtrA, one of a new class of oligomeric serine proteases. The defining feature of the HtrA family is the combination of a catalytic domain with at least one C-terminal PDZ domain. Here, we discuss the properties and roles of this ATP-independent protease chaperone system in protein metabolism and cell fate.  相似文献   

6.
HtrA family proteins play a central role in protein quality control in the bacterial periplasmic space. DegQ-like proteases, a group of bacterial HtrA proteins, are characterized by a short LA loop as compared with DegP-like proteases, and are found in many bacterial species. As a representative of the DegQ-like proteases, we report that Escherichia coli DegQ exists in?vivo primarily as a trimer (substrate-free) or dodecamer (substrate-containing). Biochemical analysis of DegQ dodecamers revealed that the major copurified protein substrate is OmpA. Importantly, wild-type DegQ exhibited a much lower proteolytic activity, and thus higher chaperone-like activity, than DegP. Furthermore, using cryo-electron microscopy we determined high-resolution structures of DegQ 12- and 24-mers in the presence of substrate, thus revealing the structural mechanism by which DegQ moderates its proteolytic activity.  相似文献   

7.
Deg phenotype of Escherichia coli lon mutants.   总被引:60,自引:31,他引:29       下载免费PDF全文
Deg. one of the Escherichia coli systems for degrading abnormal polypeptides (e.g., nonsense fragments), is also involved in the degradation of some classes of missense proteins. Both missense proteins of beta-galactosidase and temperature-sensitive phage products appear to be degraded by the Deg system. Mutations in the Deg system are indistinguishable from mutations classically called lon or capR; all map near proC, all are mucoid, defective in protein degradation, sensitive to radiomimetic agents, and defective in P1 lysogenization. All are able to propagate temperature-sensitive phage better than lon+ parental strains. Mutations that suppress the radiation sensitivity of these strains (sul) also suppress the P1 lysogenization defect, but do not affect mucoidy or the degradation defect.  相似文献   

8.
Periplasmic proteases of Escherichia coli   总被引:3,自引:0,他引:3  
In the course of examining the turnover of enzymes and proteins subject to catabolite inhibition and/or catabolite repression in Escherichia coli, we have observed at least three novel calcium- or manganese-activated proteolytic activities restricted to the periplasmic space. The occurrence and level of these proteolytic activities vary with the stage of cell growth and carbon source. Each of these proteases are neutral metalloendoproteases capable of degrading test substrates such as casein, insulin, globin, and protamine and appear to be unique when compared with the known periplasmic proteases in E. coli. One of these proteases (designated protease VII) has been purified to homogeneity and characterized in regard to subunit structure, sensitivity to protease inhibitors and metal ions, and substrate specificity. Immunological and genetic approaches are being employed to determine if these novel proteases arise from a common gene product. The physiological role of these proteases remains to be established.  相似文献   

9.
DsbA is the major oxidase responsible for generation of disulfide bonds in proteins of E. coli envelope. In the present work we provided the first detailed characterization of disulfide exchange between DsbA and its natural substrate, HtrA protease. We demonstrated that HtrA oxidation relies on DsbA, both in vivo and in vitro. We followed the disulfide exchange between these proteins spectrofluorimetrically and found that DsbA oxidizes HtrA with a 1:1 stoichiometry. The calculated second-order apparent rate constant (kapp) of this reaction was 3.3x10(4)+/-0.6x10(4) M-1s-1. This value was significantly higher than the values obtained for nonfunctional disulfide exchanges between DsbA and DsbC or DsbD and it was comparable to the kapp values calculated for in vitro oxidation of certain non-natural DsbA substrates of eukaryotic origin.  相似文献   

10.
Protein aggregation is involved in several human diseases, and presumed to be an important process in protein quality control. In bacteria, aggregation of proteins occurs during stress conditions, such as heat shock. We studied the protein aggregates of Escherichia coli during heat shock. Our results demonstrate that the concentration and diversity of proteins in the aggregates depend on the availability of proteases. Aggregates obtained from mutants in the Lon (La) protease contain three times more protein than wild-type aggregates and show the broadest protein diversity. The results support the assumption that protein aggregates are formed from partially unfolded proteins that were not refolded by chaperones or degraded by proteases.  相似文献   

11.
Thermally aggregated, endogenous proteins of Escheri-chia coli form a distinct fraction, denoted S, which is separable by sucrose-density-gradient centrifugation. It was shown earlier that DnaK, DnaJ, IbpA and IbpB heat-shock proteins are associated with the S fraction. Comparison of the rise and decay of the S fraction in mutants defective for heat-shock proteases Lon (La), Clp, HtrA (DegP, Do) and in wild-type strains made studies of proteolysis and the function of the heat-shock response possible in vivo. Different timing and the extent of action of particular proteases was revealed by the initial size and decay kinetics of the S fraction. The proteases Lon, Clp, and HtrA all participated in removal of the aggregated proteins. Mutation in the gene encoding ClpB caused the most prominent effect (47% stabilization of the S fraction). The correlation between the disappearance of the S fraction and proteolytic activity was supported by the result of the in vitro reaction. Approximately one third of the isolated S fraction was converted to trichloroacetic acid-soluble products by the purified HtrA protease. Mg2+ ions stimulated the reaction, in contrast to the reaction of the HtrA protease with casein. The digestion of the aggregated proteins, unlike the digestion of casein, by HtrA protease in vitro was inhibited by added DnaJ, which might reflect protection of the aggregated proteins in vivo by DnaJ from excessive degradation. One might expect that such an activity of DnaJ would promote denatured protein renaturation versus proteolysis. Moreover, among the aggregated proteins that are discernible by electrophoresis, none could be identified as being more susceptible than any other to HtrA degradation. The separation pattern of these proteins before and after the in vitro digestion did not show a difference corresponding to the loss of about 30% of constituting proteins. This was interpreted as recognition by the HtrA protease of a state of protein denaturation rather than specific amino acid sequences in particular proteins. We conclude that the fraction consisting of proteins heat- aggregated in vivo (i.e. the S fraction) contains endogenous substrates for the heat-shock proteases tested. Their use for in vitro reaction reveals information that is in some respects different from that obtained with exogenous substrates such as casein.  相似文献   

12.
HtrA (High temperature requirement protease A) proteins that are primarily involved in protein quality control belong to a family of serine proteases conserved from bacteria to humans. HtrAs are oligomeric proteins that share a common trimeric pyramidal architecture where each monomer comprises a serine protease domain and one or two PDZ domains. Although the overall structural integrity is well maintained and they exhibit similar mechanism of activation, subtle conformational changes and structural plasticity especially in the flexible loop regions and domain interfaces lead to differences in their active site conformation and hence in their specificity and functions.  相似文献   

13.
The serine protease HtrA (DegP), which is indispensable for cell survival at elevated temperatures, is a peripheral membrane protein, localized on the periplasmic side of the inner membrane in Escherichia coli, and the biochemical and genetic evidence indicates that the physiological role of HtrA is to degrade denatured proteins formed in the cellular envelope during heat shock. The aim of this study was to find out if the HtrA protease contributes to protection of the cell against oxidative stress. We compared the influence of various oxidizing agents on htrA mutant cells with their effects on wild-type bacteria, and found that the htrA mutation did not increase sensitivity to hydrogen peroxide or paraquat but made the cell extremely sensitive to ferrous [Fe(II)] ions, which are known to enhance oxidation of proteins. Treatment with ferrous ions caused a larger increase in the level of protein carbonyl groups in the membrane fraction of the cell than in the periplasm and cytoplasm. Iron-induced oxidation of membrane proteins was enhanced in the htrA mutant relative to wild-type cells. Inhibition of the growth of the htrA mutant by iron could be alleviated more efficiently by a nitroxide antioxidant that localizes in the membranes (A-TEMPO) than by a derivative (4OH-TEMPO) that acts mainly in the soluble fraction of the cell. Inhibition of the growth of the htrA mutant was more pronounced following treatment with cumene hydroperoxide, which partitions into membranes, than with t-butyl hydroperoxide, which forms radical mainly in the cytosol. Both ferrous ions and cumene hydroperoxide, but not hydrogen peroxide, paraquat or t-butyl hydroperoxide, induced synthesis of HtrA. Our results show that HtrA plays a role in defense against oxidative shock and support the hypothesis that HtrA participates in the degradation of oxidatively damaged proteins localized in the cell envelope, especially those associated with the membranes.  相似文献   

14.
HtrA heat shock protease is highly conserved in evolution, and in Escherichia coli, it protects the cell by degradation of proteins denatured by heat and oxidative stress, and also degrades misfolded proteins with reduced disulfide bonds. The mature, 48-kDa HtrA undergoes partial autocleavage with formation of two approximately 43 kDa truncated polypeptides. We showed that under reducing conditions, the HtrA level in cells was increased and efficient autocleavage occurred, while heat shock and oxidative shock caused the increase of HtrA level, but not the autocleavage. Purified HtrA cleaved itself during proteolysis of substrates but only under reducing conditions. These results indicate that the autocleavage is triggered specifically by proteolysis under reducing conditions, and is a physiological process occurring in cells. Conformations of reduced and oxidized forms of HtrA differed as judged by SDS-PAGE, indicating presence of a disulfide bridge in native protein. HtrA mutant protein lacking Cys57 and Cys69 was autocleaved even without the reducing agents, which indicates that the cysteines present in the N-terminal region are necessary for stabilization of HtrA peptide. Autocleavage caused the native, hexameric HtrA molecules dissociate into monomers that were still proteolytically active. This shows that the N-terminal part of HtrA is essential for maintaining quaternary structure of HtrA.  相似文献   

15.
HtrA2/Omi, a mitochondrial trypsin-like serine protease, is pivotal in regulating apoptotic cell death; however, the underlying mechanism of HtrA2/Omi-mediated apoptosis remains to be elucidated. Using the pGEX bacterial expression system, we investigated the expression patterns of various forms of HtrA2/Omi. Full-length mouse HtrA2/Omi (mHtrA2/Omi) was successfully expressed in E. coli and purified as a proteolytically active protein. In contrast, the expression of full-length human HtrA2/Omi (hHtrA2/Omi) in E. coli was barely detected. On the basis of this result, we characterized further the expression patterns of N- or C-terminally truncated hHtrA2/Omi proteins. We found that three copies of the PRAXXTXXTP motif, which exist only in hHtrA2/Omi, might serve as a primary site that is highly susceptible to proteolytic degradation by host proteases. Removal of the N-terminal region containing the PRAXXTXXTP motifs produced a form resistant to proteolytic degradation during expression in E. coli and purification, consequently improving the production of a catalytically active, mature hHtrA2/Omi. Our study provides a method for generating useful reagents to investigate molecular mechanism by which HtrA2/Omi contributes to regulating apoptotic cell death and to identify natural substrates of HtrA2/Omi.  相似文献   

16.
The HtrA protein of Escherichia coli is a heat-shock inducible periplasmic protease, essential for bacterial survival at high temperatures. Expression of htrA gene depends on the alternative factor sigmaE and on the two-component regulatory system Cpx. These regulators systems respond, among others factors, to overproduction of misfolded proteins in the periplasm or to high level synthesis of various extracytoplasmic proteins. We describe in this report the osmoregulation of the expression of htrA gene. Low osmolarity conditions result in htrA repression. We report, as well, the role of the nucleoid associated proteins H-NS and Hha in the repression of htrA expression at low osmolarity.  相似文献   

17.
Peptidases and proteases of Escherichia coli and Salmonella typhimurium   总被引:5,自引:0,他引:5  
A number of peptidases and proteases have been identified in Escherichia coli. Although their specific physiological roles are often not known, some of them have been shown to be involved in: the maturation of nascent polypeptide chains; the maturation of protein precursors; the signal peptide processing of exported proteins; the degradation of abnormal proteins; the use of small peptides as nutrients; the degradation of colicins; viral morphogenesis; the inactivation of some regulatory proteins for which a limited lifetime is a physiological necessity. Some of these enzymes act in concert to carry out specific functions. At present, twelve peptidases and seventeen proteases have been characterized. The specificity for only a few of them is known. The possible roles and the properties of these enzymes are discussed in this review.  相似文献   

18.
19.
Subcellular distribution of various proteases in Escherichia coli.   总被引:18,自引:10,他引:8       下载免费PDF全文
It has been reported recently that Escherichia coli cells contain eight distinct soluble enzymes capable of degrading proteins to acid-soluble material. Two are metalloproteases that degrade [125I]insulin but not larger proteins: protease Pi, which is identical to protease III, is restricted to the periplasm, and protease Ci is restriction to the cytoplasm. The six others (named Do, Re, Mi, Fa, So, and La, which is the ATP-dependent protease) are serine proteases that degrade [14C]globin and [3H]casein, but not insulin. One of these (Mi) is localized to the periplasm, and one (Re) is distributed equally between the two cellular fractions. The others are present only in the cytoplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号