首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,4-Dioxane, a widely used industrial chemical and rodent hepatocarcinogen, has produced mixed, largely negative results in the mouse erythrocyte micronucleus assay. In contrast, a recent report has indicated that 1,4-dioxane induces micronuclei in mouse hepatocytes following in vivo treatment. The objective of this study was to confirm these earlier results and identify the origin of the induced micronuclei. Following an initial range-finding study, mice were administered 1,4-dioxane by gavage at doses ranging from 1500 to 3500 mg/kg. The test animals were also implanted with BrdU-releasing osmotic pumps to allow cell proliferation to be measured in the liver and to increase the sensitivity of the hepatocyte assay. Upon sacrifice, the frequency of micronuclei in the bone marrow erythrocytes and in the proliferating BrdU-labeled hepatocytes was determined. Significant dose-related increases in micronuclei were seen in both the liver and the bone-marrow with significant increases being detected at all the tested doses in the bone marrow and at the 2500 and 3500 mg/kg doses in the liver. Using CREST staining or pancentromeric FISH to determine the origin of the induced micronuclei, it was determined that 80-90% of the micronuclei in both tissues originated from chromosomal breakage. Small increases in centromere-containing micronuclei were also seen in the hepatocytes. Decreases in hepatocyte proliferation as well as in the ratio of bone marrow PCE:NCE were also observed. Based on these results, we conclude that at high doses: (i) dioxane exerts genotoxic effects in both the mouse bone marrow and liver; (ii) the induced micronuclei are formed primarily from chromosomal breakage; and (iii) dioxane can interfere with cell proliferation in both the liver and bone marrow.  相似文献   

2.
The plant flavonol fisetin is a common dietary component that has a variety of established biological effects, one of which is the inhibition of the enzyme DNA topoisomerase II (topo II). Compounds that inhibit topo II can exert genotoxic effects such as DNA double strand breaks, which can lead to the induction of kinetochore- or CREST-negative micronuclei. Despite reports that fisetin is an effective topoisomerase II inhibitor, its genotoxic effects have not yet been well characterized. Genotoxicity testing of fisetin was conducted in TK6 and HL60 cell lines and the cells were analyzed for malsegregating chromosomes as well as for the induction of micronuclei. Using the cytokinesis-blocked CREST micronucleus assay to discriminate between micronuclei formed from chromosomal breakage (CREST-negative) and chromosomal loss (CREST-positive), a statistically significant increase in CREST-positive micronuclei was seen for all doses tested in both cell lines. CREST-negative micronuclei, however, were significantly increased at the higher test concentrations in the TK6 cell line. These data indicate that at low concentrations fisetin is primarily exerting its genotoxic effects through chromosomal loss and that the induction of DNA breaks is a secondary effect occurring at higher doses. To confirm these results, the ability of fisetin to inhibit human topoisomerase II-alpha was verified in an isolated enzyme system as was its ability to interfere with chromosome segregation during the anaphase and telophase periods of the cell cycle. Fisetin was confirmed to be an effective topo II inhibitor. In addition, significant increases in the number of mis-segregating chromosomes were observed in fisetin-treated cells from both cell lines. We conclude that fisetin is an aneugen at low concentrations capable of interfering with proper chromosomal segregation and that it is also an effective topo II inhibitor, which exerts clastogenic effects at higher concentrations.  相似文献   

3.
The genotoxic potential of 1,4-dichlorobenzene (1,4-DCB) has been extensively evaluated in vitro and in vivo. The majority of the studies demonstrated the absence of a genotoxic potential for 1,4-DCB. At variance are a bone marrow micronucleus test (MNT) after intraperitoneal (i.p.) treatment of NMRI mice [Mohtashamipur et al., Mutagenesis 2 (1987) 111–113] and a gene mutation assay on mouse lymphoma cells [McGregor et al., Environ. Mol. Mutagen. 12 (1988) 85–145]. Therefore, we investigated 1,4-DCB and its main metabolite 2,5-dichlorophenol (2,5-DCP) for both endpoints. In an MNT, male and female NMRI mice were treated orally with single doses of 2500 mg/kg 1,4-DCB and 1500 mg/kg 2,5-DCP, respectively. Smears were prepared 24, 48 and 72 h thereafter. No induction of micronuclei was detected for both compounds. Also under the conditions of Mohtashamipur et al. (1987), intraperitoneal treatments of male and female mice with 2 × 177.5 and 2 × 355 mg/kg 1,4-DCB failed to induce micronuclei. In addition, CHO/HPRT-gene mutation tests with 1,4-DCB and 2,5-DCP yielded negative results for both compounds with and without metabolic activation system. Therefore, 1,4-DCB and 2,5-DCP are considered to be non-mutagenic in these test systems.  相似文献   

4.
A review of the genotoxicity of ethylbenzene   总被引:2,自引:0,他引:2  
Ethylbenzene is an important industrial chemical that has recently been classified as a possible human carcinogen (IARC class 2B). It induces tumours in rats and mice, but neither the relevance of these tumours to humans nor their mechanism of induction is clear. Considering the carcinogenic potential of ethylbenzene, it is of interest to determine whether there is sufficient data to characterize its mode of action as either genotoxic or non-genotoxic. A review of the currently available genotoxicity data is assessed. Ethylbenzene is not a bacterial mutagen, does not induce gene conversion or mutations in yeast and does not induce sister chromatid exchanges in CHO cells. Ethylbenzene is not clastogenic in CHO or rat liver cell lines but was reported to induce micronuclei in SHE cells in vitro. No evidence for genotoxicity has been seen in humans exposed to relatively high levels of ethylbenzene. Mouse lymphoma gene mutation studies produced a mixed series of responses that have proved difficult to interpret. An increase in morphological transformation of SHE cells was also found. Results from a more relevant series of in vivo genotoxicity studies, including acute and sub-chronic micronucleus tests and the mouse liver UDS assay, indicate a lack of in vivo genotoxic activity. The composite set of results from both in vitro and in vivo tests known to assess direct damage to DNA have been predominantly negative in the absence of excessive toxicity. The available data from the standard battery of genotoxicity assays do not support a genotoxic mechanism for ethylbenzene-induced kidney, liver or lung tumors in rats and mice.  相似文献   

5.
Chromium is a well-documented carcinogen. To evaluate the genotoxic potential of hexavalent chromium on an aquatic bio-system, freshwater murrel fish (Channa punctatus) were exposed to potassium dichromate. The 96-h LC50 for potassium dichromate was 61.80 mg/L for the test fish in a static system. On the basis of the 96-h LC50, fish were exposed to sublethal concentrations of the test chemical. Fish exposed to the test chemical were sampled on days 1, 7, 14, 21, and 28 post-exposure and blood and gill cells were collected. Significantly (p < .05) higher DNA damage in both lymphocyte and gillcells and micronuclei formation in whole blood was observed at different test concentrations and sampling times of the test chemical as compared to control fish. The mean% tail DNA in the comet tail assay showed a concentration-dependent increase and the maximum% tail DNA was observed on day 7 of exposure in both cells. A similar trend was also observed in micronuclei induction in blood with maximum induction on day 21. Hexavalent chromium showed genotoxic potential in chronic exposure of C. punctatus, and the micronucleus test and the comet assay are the methods for sensitive and rapid detection of the genetic effects.  相似文献   

6.
To evaluate the biodegradation potential of 1,4-dioxane in natural environments, a total of 20 environmental samples including river water, activated sludge, soil from the drainage area of a chemical factory and garden soil were subjected to a 1,4-dioxane degradation test. The five soil samples from the drainage area of the chemical factory were capable of reducing 100 mg l?1 of 1,4-dioxane to below the detection limit (0.8 mg l?1) within 33 days. In one activated sludge sample, 100 mg l?1 of 1,4-dioxane decreased by 69% within 14 days via cometabolic degradation in the presence of 100 mg l?1 of tetrahydrofuran (THF). The ability of all samples to degrade 1,4-dioxane degradation with or without THF increased after repeated enrichment, except for one soil sample from the drainage area of the chemical factory that was no longer able to degrade 1,4-dioxane after the third cycle of enrichment. However, most of the samples (14/20) were not able to degrade 1,4-dioxane degradation. Thus, it can be concluded that the potential for 1,4-dioxane degradation is not ubiquitously distributed in natural environment.  相似文献   

7.
Products containing phytoestrogens are increasingly promoted as the "natural" alternative to estrogen replacement therapy. In the present study, we have used the in vitro micronucleus assay in L5178Y mouse lymphoma cells to investigate the genotoxic potential of the isoflavone daidzein, and of four daidzein metabolites known to be formed in humans. Whereas no induction of micronuclei was observed with daidzein up to the limit of solubility (100 microM), all four daidzein metabolites, i.e. equol (2.3-fold induction at 100 microM), O-desmethylangolensin (6.2-fold induction at 10 microM), 4',6,7-isoflavone (6.7-fold induction at 100 microM) and 3',4',7-isoflavone (8.2-fold induction at 100 microM) induced micronuclei in a concentration-dependent manner. Thus, both reductive and oxidative metabolites of the soy isoflavone daidzein exhibit genotoxic potential in vitro.  相似文献   

8.
Asphalt fumes are complex mixtures of aerosols and vapors containing various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). Previously, we have demonstrated that inhalation exposure of rats to asphalt fumes resulted in dose-dependent induction of CYP1A1 with concomitant down-regulation of CYP2B1 and increased phase II enzyme quinone reductase activity in the rat lung. In the present study, the potential genotoxic effects of asphalt fume exposure due to altered lung microsomal enzymes were studied. Rats were exposed to air or asphalt fume generated under road paving conditions at various concentrations and sacrificed the next day. Alveolar macrophages (AM) were obtained by bronchoalveolar lavage and examined for DNA damage using the comet assay. To evaluate the systemic genotoxic effect of asphalt fume, micronuclei formation in bone marrow polychromatic erythrocytes (PCEs) was monitored. Lung S9 from various exposure groups was isolated from tissue homogenates and characterized for metabolic activity in activating 2-aminoanthracene (2-AA) and benzo[a]pyrene (BaP) mutagenicity using the Ames test with Salmonella typhimurium YG1024 and YG1029. This study showed that the paving asphalt fumes significantly induced DNA damage in AM, as revealed by DNA migration in the comet assay, in a dose-dependent manner, whereas the micronuclei formation in bone marrow PCEs was not detected even at a very high exposure level (1733 mg h/m3). The conversion of 2-AA to mutagens in the Ames test required lung S9-mediated metabolic activation in a dose-dependent manner. In comparison to the controls, lung S9 from rats exposed to asphalt fume at a total exposure level of 479+/-33 mg h/m3 did not significantly enhance 2-AA mutagenicity with either S. typhimurium YG1024 or YG1029. At a higher total asphalt fume exposure level (1150+/-63 mg h/m3), S9 significantly increased the mutagenicity of 2-AA as compared to the control. However, S9 from asphalt fume-exposed rats did not significantly activate the mutagenicity of BaP in the Ames test. These results show that asphalt fume exposure, which significantly altered both phases I and II metabolic enzymes in lung microsomes, is genotoxic to AM and enhances the metabolic activation of certain mutagens through altered S9 content.  相似文献   

9.
IQ, a heterocyclic aromatic amine which is formed during the frying of meat, was prepared by chemical synthesis. Its genotoxic potential was studied in bacteria, Drosophila and in mice. A mutagenic effect of IQ (frameshift induction) was detected in Salmonella typhimurium in experiments without metabolic activation; this effect was several orders of magnitude lower than that observed in the presence of an activation system. Ames tests with liver-homogenate S9 fraction from PCB-induced mice and rats confirmed the high mutagenic potency of IQ metabolites (Kasai et al., 1980a). Comparative studies on diagnostic Salmonella strains revealed that the high frameshift-inducing activity is independent of the plasmid pkM101; it is, however, greatly reduced by an intact excision-repair system for DNA lesions. The mutagenic activity of the metabolite(s) formed in vitro by S9 mix has a half-life of ca. 14 min. In the fruit fly, Drosophila melanogaster, IQ induced when used at sublethal concentrations, X-chromosomal recessive lethal mutations in male germ cells in a dose-dependent manner. In mice, tests were performed to detect somatic mutations: chromosomal anomalies (micronuclei) in bone marrow, and gene mutations (affecting coat pigmentation) in mice exposed to IQ in utero. No genotoxic effects were observed in these assays. However, the formation of mutagenic metabolites in the liver of IQ-treated mice was unequivocally demonstrated in host-mediated assays using Salmonella as mutagen probes in mice. The data demonstrate genotoxic activity of IQ in prokaryotic and eukaryotic organisms. The possible reasons for the different response of mammalian systems in vivo and the Salmonella system are discussed.  相似文献   

10.
A new bacterial strain PH-06 was isolated using enrichment culture technique from river sediment contaminated with 1,4-dioxane, and identified as belonging to the genus Mycobacterium based on 16S rRNA sequencing (Accession No. EU239889). The isolated strain effectively utilized 1,4-dioxane as a sole carbon and energy source and was able to degrade 900 mg/l 1,4-dioxane in minimal salts medium within 15 days. The key degradation products identified were 1,4-dioxane-2-ol and ethylene glycol, produced by monooxygenation. Degradation of 1,4-dioxane and concomitant formation of metabolites were demonstrated by GC/MS analysis using deuterium labeled 1,4-dioxane (1,4-dioxane-d8). In addition to 1,4-dioxane, this bacterium could also transform structural analogues such as 1,3-dioxane, cyclohexane and tetrahydrofuran when pre-grown with 1,4-dioxane as the sole growth substrate. Our results suggest that PH-06 can maintain sustained growth on 1,4-dioxane without any other carbon sources.  相似文献   

11.
2-Hydroxy-1,4-naphthoquinone (HNQ) has been found positive in a previous chromosome aberration test in Chinese hamster ovary (CHO) cells and in a mouse bone marrow micronucleus test at 72h after oral administration (vehicle: DMSO). However it was negative at 24 and 48h sampling times, and in subsequent micronucleus tests that used 0.5% aqueous methyl cellulose (MC) as vehicle. We performed a bone marrow micronucleus test in male and female NMRI BRL/BR mice at oral doses of 75, 150 and 300mg/kg in two vehicles (DMSO and 0.5% aqueous MC), evaluated micronuclei at 24, 48 and 72h, plasma levels of HNQ at 0.5, 1 and 4h, and haematology parameters at 72h after administration. The mechanism of in vitro clastogenic activity of HNQ was investigated by evaluation of the potential of HNQ to produce oxidative DNA damage after treatment of CHO with 10mM HNQ, followed by quantification of DNA fragments using the comet assay. In the micronucleus test, HNQ at 300mg/kg produced mortality and clinical signs at similar incidence and severity for both vehicles. Levels of HNQ in the plasma of treated mice were dose-related, of similar magnitude for both vehicles, but higher in females than in males. Maximum concentrations were found at 0.5 or 1h. At 300mg/kg, HNQ slightly affected RBC parameters suggesting haematotoxicity. No increase in the frequency of micronuclei was observed for any dose, vehicle or time point, whereas the positive control substance (CPA) produced a clear positive response. No evidence of HNQ-induced oxidative DNA damage was found at clastogenic concentrations in vitro, whereas the positive control substance (H(2)O(2)) produced a clear increase. In conclusion, HNQ was negative for induction of bone marrow micronuclei in mice up to 72h after administration in two different vehicles, and its in vitro clastogenicity was not due to oxidative damage. These results confirm that HNQ poses no or negligible genotoxic risk.  相似文献   

12.
Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes   总被引:5,自引:0,他引:5  
4-Hydroxynonenal (HNE), one of the major products of lipid peroxidation, has been demonstrated to induce genotoxic effects in the micromolar range. HNE has too structural domains, a lipophilic tail and a polar head with three functional groups: the aldehyde and hydroxy groups and the trans CC double bond. To evaluate their relative importance, the genotoxic effects of HNE were compared with those of the homologous aldehydes 4-hydroxyhexenal and 4-hydroxyundecenal (different lengths of the lipophilic tail), and the analogous aldehydes 2-trans-nonenal (lacking the OH group) and nonanal (lacking the OH group and the trans CC double bond). This investigation was carried out on primary cultures of adult rat hepatocytes in order to further determine the influence of biotransformation- and/or detoxification reactions.

A 3-h treatment with HNE induces statistically significant levels of SCE at concentrations ≥0.1 μM, micronuclei at concentrations ≥ 1 μM and chromosomal aberrations at a concentration of 10 μM. Compared to HNE the homologous aldehydes induced a significant genotoxic effect at higher concentrations. Statistically significant increases in SCE frequency were obtained at concentrations ≥ 1 μM for 4-hydroxyundecenal and at a concentration of 10 μM for 4-hydroxyhexenal. The induction of chromosomal aberrations was significantly elevated at concentrations of ≥ 10 μM and 10 μM for 4-hydroxyhexenal and 4-hydroxyundecenal, respectively. Except for a 4-hydroxyhexenal concentration of 1 μM, both aldehydes did not induce statistically significant levels of micronucleis.

The HNE analogous aldehydes 2-trans-nonenal and nonanal induced statistically significant frequencies of SCE at concentrations of ≥ 1 μM (nonanal) and ≥ 10 μM (2-trans-nonenal). No significant induction of chromosomal aberrations or micronuclei could be demonstrated.

The structure of the aldehydes investigated appears to influence the cyto- and genotoxic potential in the following ways. (1) The lenght of the lipophilic tail has no influence on chromosomal aberration induction, but appears to determine the yield of SCE and micronuclei, and the cytotoxic potential. (2) The lack of the OH group (2-trans-nonenal) reduces the SCE-inducing potential of the aldehyde shifting the dose-effect curve to higher concentrations. The similar shape compared to SCE induction by HNE indicates that possibly the same active metabolite is formed. (3) The lack of both the OH group and the CC double bond (nonanal) does not result in a complete loss of the SCE-inducing activity. The different shape of the dose-response curve suggests a different metabolism and/or a different mode of interaction with DNA.  相似文献   


13.
While the collection of genotoxicity data and insights into potential mechanisms of action for nano-sized particulate materials (NPs) are steadily increasing, there is great uncertainty whether current standard assays are suitable to appropriately characterize potential risks. We investigated the effects of NPs in an in vivo Comet/micronucleus (MN) combination assay and in an in vitro MN assay performed with human blood. We also incorporated additional endpoints into the in vivo study in an effort to delineate primary from secondary mechanisms. Amorphous silica NPs (15 and 55 nm) were chosen for their known reactivity, while gold nano/microparticles (2, 20, and 200 nm) were selected for their wide size range and lower reactivity. DNA damage in liver, lung and blood cells and micronuclei in circulating reticulocytes were measured after 3 consecutive intravenous injections to male Wistar rats at 48, 24 and 4h before sacrifice. Gold nano/microparticles were negative for MN induction in vitro and in vivo, and for the induction of DNA damage in all tissues. Silica particles, however, caused a small but reproducible increase in DNA damage and micronucleated reticulocytes when tested at their maximum tolerated dose (MTD). No genotoxic effects were observed at lower doses, and the in vitro MN assay was also negative. We hypothesize that silica NPs initiate secondary genotoxic effects through release of inflammatory cell-derived oxidants, similar to that described for crystalline silica (quartz). Such a mechanism is supported by the occurrence of increased neutrophilic infiltration, necrosis, and apoptotic cells in the liver, and induction of inflammatory markers TNF-α and IL-6 in plasma at the MTDs. These results were fairly consistent between silica NPs and the quartz control, thereby strengthening the argument that silica NPs may act in a similar, thresholded manner. The observed profile is supportive of a secondary genotoxicity mechanism that is driven by inflammation.  相似文献   

14.
Styrene (CAS No. 100-42-5) is an important industrial chemical for which positive results have been reported in in vitro and in vivo genotoxicity assays. Styrene-exposed workers have been studied extensively over two decades for the induction of various types of genotoxic effects. The outcomes of these studies have been conflicting, and where positive responses have been reported, it has proved difficult to demonstrate clear relationships between levels of damage reported and exposure levels. In this review, we have assessed studies addressing mutagenicity (chromosome aberrations, micronuclei and gene mutations) and other endpoints (sister chromatid exchanges, DNA breaks and DNA adducts) using criteria derived from the IPCS guidelines for the conduct of human biomonitoring studies. Based on the re-evaluated outcomes, the data are not convincing that styrene induces gene mutations. The evidence for induction of clastogenicity in occupationally exposed workers is less clear, with a predominant lack of induction of micronuclei in different studies, but conflicting responses in chromosome aberration assays. The results of numerous studies on sister chromatid exchanges do not provide evidence of a clear positive response, despite these being induced in animals exposed to styrene at high concentrations. However, there is evidence that both DNA adducts and DNA single strand breaks are induced in styrene workers. These types of damage are considered indicative of exposure of the target cells and interaction with cellular DNA but do not necessarily result in heritable changes. There is evidence that the metabolism of styrene in humans is affected by genetic polymorphisms of metabolizing genes and that these polymorphisms affect the outcome of in vitro mutagenicity studies on styrene. Therefore, studies that have addressed the potential of this factor to affect in vivo responses were considered. To date, there are no consistent relationships between genetic polymorphisms and induction of genotoxicity by styrene in humans, but further work is warranted on larger samples. The analyses of individual studies, together with a consideration of dose-response relationships and the lack of a common profile of positive responses for the various endpoints in different studies, provide no clear evidence that styrene exposure in workers results in detectable levels of mutagenic damage. However, evidence of exposure to genotoxic metabolites is demonstrated by the formation of DNA adducts and strand breaks.  相似文献   

15.
This study was performed (1) to provide a comparison of the genotoxin effects of inhaled radon and radon progeny, referred to as radon in this paper, among three species of rodents: Wistar rats, Syrian hamsters, and Chinese hamsters; (2) to determine if initial chromosome damage was related to the risk of induction of lung cancer; and (3) to evaluate the tissue repair and long-term presence of cytogenetic damage in respiratory tract cells. These species were selected because Syrian hamsters are very resistant to radon induction of lung cancer and Wistar rats are sensitive; no literature is available on the in vivo effects of radon in the Chinese hamster. Exposure-response relationships were established for the rats and Syrian hamsters while the Chinese hamsters received a single exposure of radon. At 4 h (0.2 days), 15 days, and 30 days after the highest WLM exposure to radon, Wistar rats, Chinese hamsters, and Syrian hamsters were killed, and lung fibroblasts were isolated and grown in culture to determine the frequency of induced micronuclei. Animals at each level of exposure showed an increase in the frequency of micronuclei relative to that in controls (P < 0.05). The exposure-response relationship data for rats and Syrian hamsters killed 0.2 days after the end of exposure were fit to linear equations (micronuclei/1000 binucleated cells = 15.5±14.4+0.53±0.06 WLM and 38.3±15.1+0.80±0.08 WLM, respectively). For the single exposure level used (496 WLM) in Chinese hamsters killed at 0.2 days after exposure, the frequency of micronuclei/1000 binucleated cells/WLM was 1.83±0.02. A comparison of the sensitivity for induction of micronuclei/WLM illustrated that Chinese hamsters were three times more sensitive than rats. The Syrian hamsters also showed a significantly elevated response (P < 0.05) relative to rats. These data suggest that initial chromosome damage is not the major factor responsible for the high rate of radon-induced cancer in rats relative to Syrian hamsters. The frequency of micronuclei in radon-exposed rats, Syrian hamsters, and Chinese hamsters significantly decreased (P < 0.05) as a function of time after the exposure. The rate of loss of damaged cells from the lung was greatest in the Chinese hamsters, followed by Wistar rats and Syrian hamsters, respectively. Our experiments demonstrated that the mammalian lung fibroblast/micronucleus method has the potential to (1) detect species differences in the induction of in vivo genotoxic damage in the lungs by inhaled environmentalal agents; (2) evaluate exposure-response relationships for in vivo induction of genetic damage; and (3) determine the persistence in vivo of preclastogenic and premutagenic lesions in cell populations.  相似文献   

16.
Three-spined sticklebacks (Gasterosteus aculeatus L.) were collected during different sampling trails from three locations in Northern Germany, which differ in the amount of sewage-treatment effluent that they receive. Due to natural population developments, the size of the specimens caught decreased significantly from April to August. The fish were examined for DNA damage in their blood cells by means of the comet (single-cell gel electrophoresis, SCGE) assay and the micronucleus test (MT). The suitability of stickleback erythrocytes as indicators for genotoxic substances in water was assessed. The median level of strand breakage ranged from 5.23 to 9.67%, and decreased significantly from April to August. The difference between the locations was marginally significant. The amount of micronuclei was more variable (ranging from 0.40 to 4.35%), but appears to better reflect the pollution state of the sampling location. Significant differences between the locations were found. The relatively strong micronucleus induction found in this study may be related to the fish species selected. Contrary to the SCGE results, a significant increase in the number of micronuclei from April to August was observed. A significant negative correlation between strand breakage and micronuclei was found for the sticklebacks from the most polluted location and for the pooled data of all locations. The length of the fish was positively correlated with results of the SCGE and negatively with those of the MT, whereby males show a clearer relation between size and the amount of genotoxic damage. The test results are predominantly affected by seasonal impacts. This study indicates that the outcome of the SCGE and MT applied to sticklebacks is determined by multiple factors, which need to be identified first before these tests can be applied routinely. Because of the profound negative correlation between SCGE and MT results, we recommend to apply both tests for the evaluation of the genotoxic potential of surface waters.  相似文献   

17.
Acute exposure to arsenic trioxide has been reported to induce death and/or multiple organ damage with symptoms including nausea, vomiting, diarrhea, gastrointestinal hemorrhage, cerebral edema, tachycardia, dysrhythmias and hypovolemic shock. Its toxic effects are due to its ability to bind to sulfhydryl groups of proteins and to inhibit energy production. Although the chronic exposure to arsenic trioxide has been linked to various types of cancer, such as skin, liver, lung, bladder and kidney neoplasms, studies of its carcinogenic potential in animals have not been conclusive. In this study, we investigated the genotoxic potential of arsenic trioxide in bone-marrow cells obtained from Sprague-Dawley rats; using chromosomal aberrations (CA), mitotic index (MI) and micronuclei (MN) formation as the toxicological endpoints. Four groups of six male rats each, weighing approximately 60+/-2 g per rat, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15 and 20 mg/kg body weight (BW) of arsenic trioxide dissolved in distilled water. A control group was also made of six animals injected with distilled water without chemical. All the animals were sacrificed at the end of the treatment period. Chromosome and micronuclei preparation was obtained from bone-marrow cells following standard protocols. Arsenic trioxide exposure significantly increased the number of structural chromosomal aberrations, the frequency of micronucleated cells and decreased the mitotic index in treated groups when compared with the control group. Our results demonstrate that arsenic trioxide has a clastogenic/genotoxic potential as measured by the bone-marrow CA and MN tests in Sprague-Dawley rats.  相似文献   

18.
The effectiveness of 6 chemicals (benzo[a]pyrene, (BaP), cyclophosphamide (CP), diethylnitrosamine (DEN), methyl methanesulphonate (MMS), mitomycin C (MC) and procarbazine (PC) ) as inducers of micronuclei in foetal liver and maternal bone marrow erythroblasts has been determined, and related to that of gamma-radiation. CP, DEN, MMS and PC were all more effective in the foetal liver. The induction of micronuclei and SCEs by each chemical in foetal erythroblasts after in vivo exposure was measured. When expressed as induction of sister-chromatid exchanges (SCEs) per erythroblast/induction of micronuclei per erythroblast (/microM/kg), the ratios obtained were MC 580, BaP 470, DEN 430, CP 258, MMS 140 and PC 13. The lowest doses detected as potentially genotoxic by each test in foetal liver erythroblasts are (with the exception of PC which is a relatively ineffective inducer of SCEs) similar. When isolated foetal livers were exposed in vitro, SCE dose responses to BaP, MC, MMS and PC could be directly related to those from in vivo exposure, indicating the role of the foetal liver in metabolic activation, but CP was considerably more cytotoxic. The transplacental micronucleus test, and in vivo/in vitro method for SCEs in foetal liver erythroblasts, provide sensitive, complementary assays for genotoxic effects of chemicals during prenatal life. Since foetal liver possesses greater metabolic potential than adult bone marrow, the transplacental tests respond to genotoxic agents not detected by bone-marrow systems.  相似文献   

19.
The aim of the present study was to examine whether zinc (Zn) deficiency augmented the frequency of micronuclei, an indicator of chromosome aberration, and the induction of 8-hydroxy-2′-deoxyguanosine (8-OHdG), a marker of cellular DNA damage derived from oxidative stress, in rat bone marrow cells or not. Both the frequency of micronuclei and the induction of 8-OHdG were significantly increased in rats fed with a Zn-deficient versus a standard diet for 6 weeks (p?<?0.005). The supplementation of Zn with a standard diet for 4 weeks to rats fed with a Zn-deficient diet for 6 weeks restored the enhanced induction of micronuclei and 8-OHdG to levels comparable to those seen in rats fed with a standard diet for 10 weeks, indicating that the shortage of Zn in the body is involved in the induction of micronuclei and 8-OHdG. Again, the membrane-permeable superoxide dismutase mimetic superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, treatment (100 μmol/kg, twice a day) for 10 days prior to the termination of dietary treatment reduced the induction of micronuclei and 8-OHdG in rats fed with a Zn-deficient diet for 6 weeks to levels comparable to those in rats fed with a standard diet for 6 weeks, indicating that superoxide radical participates in the induction of micronuclei and 8-OHdG. In fact, the endogenous superoxide scavenger, Cu/Zn superoxide dismutase, was significantly reduced in the bone marrow cells of rats fed with a Zn-deficient diet for 6 weeks when compared to those of rats fed with a standard diet for 6 weeks (p?<?0.005). These observations demonstrate that Zn deficiency elevates the frequency of micronuclei and the induction of 8-OHdG through an increase in the biological action of the superoxide radical. This suggests an increase in carcinogenic initiation resulting from Zn deficiency-induced oxidative stress.  相似文献   

20.
The effectiveness of 6 chemicals (benzo[a]pyrene), (BaP), cyclophosphamide (CP), diethylnitrosamine (DEN), methyl methanesulphonate (MMS), mitomycin C (MC) and procarbazine (PC) as inducers of micronuclei in foetal liver and maternal bone marrow erythooblasts has been determined, and related to that of γ-radiation. CP DEN, MMS and PC were all more effective in the foetal liver. The induction of micronuclei and SCEs by each chemical in foetal erythroblasts after in vivoexposure was measured. When expressed as induction of sister-chromatid exchanges (SCEs) per erythroblast/induction of micronuclei per erythroblast (/μM/kg), the ratios obtained were MC 580, BaP 470, DEN 430, CP 258, MMS 140 and PC 13. The lowest doses detected as potentially genotoxic by each test in foetal liver erythroblasts are (with the exception of PC which is a relatively ineffective inducer of SCEs) similar. When isolated foetal livers were exposed in vitro, SCE dose responses to BaP, MC, MMS and PC could be directly related to those from in vivo exposure, indicating the role of the foetal liver in metabolic activation, but CP was considerably more cytotoxic. The transplacental micronucleus test, and in vivo/in vitro method for SCEs in foetal liver erythroblasts, provide sensitive, complementary assays for genotoxic effects of chemicals during prenatal life. Since foetal liver possesses greater metabolic potential than adult bone marrow, the transplacental test respond to genotoxic agents not detected by bone-marrow systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号