首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In order to study the synaptic connections of neurons identified by their projection target and neurotransmitter content, we have adapted a method of combining retrograde tracing of horseradish peroxidase (HRP) and immunocytochemistry at the electron microscopic level. HRP was injected into the rat amygdala. Sections from the rostral forebrain were processed according to the 3,3-diaminobenzidine/glucose oxidase reaction followed by choline acetyltransferase (ChAT) localization. Neurons in the ventral pallidum which contained both the diffuse immunoperoxidase reaction product (ChAT) and large electron dense bodies characteristic of retrogradely transported HRP were defined as double labeled, i.e. cholinergic neurons that project to the amygdaloid body.  相似文献   

2.
Horseradish peroxidase (HRP), a commonly used enzymatic marker for tracing pathways in the central nervous system, can be visualized histochemically with the aid of the chromogen tetramethyl benzidine (TMB). In a recent report, Olucha and collaborators (J Neurosci Meth 13:131, 1985) introduced the use of ammonium heptamolybdate (AHM) as a substitute for sodium nitroferricyanide (SNF) which serves to stabilize the HRP reaction product. This TMB-AHM method of Olucha et al. proves superior to the TMB-SNF method of Mesulam (J Histochem Cytochem 26:106, 1978) in that the reaction does not produce crystalline artifact. For visualization of retrogradely transported HRP, the two methods are reportedly equivalent in sensitivity. In the work reported here, we have compared the sensitivity of the two methods in detecting HRP that was transported anterogradely after intraocular injections of the enzyme in normal adult and neonatal hamsters, as well as in animals with lesions of the superior colliculus or retina. We demonstrate that the TMB-SNF method is decidedly more sensitive than the TMB-AHM technique for visualization of anterogradely transported HRP. This difference in sensitivity is especially evident in regions of sparse projections.  相似文献   

3.
In order to study the synaptic connections of neurons identified by their projection target and neurotransmitter content, we have adapted a method of combining retrograde tracing of horseradish peroxidase (HRP) and immunocytochemistry at the electron microscopic level. HRP was injected into the rat amygdala. Sections from the rostral forebrain were processed according to the 3,3'-diaminobenzidine/glucose oxidase reaction followed by choline acetyltransferase (ChAT) localization. Neurons in the ventral pallidum which contained both the diffuse immunoperoxidase reaction product (ChAT) and large electron dense bodies characteristic of retrogradely transported HRP were defined as double labeled, i.e. cholinergic neurons that project to the amygdaloid body.  相似文献   

4.
Tetramethylbenzidine (TMB) as a substrate for horseradish peroxidase (HRP) histochemistry is more sensitive than other chromogens. Its instability in aqueous solutions and ethanol, however, has limited its application. We now report a method for stabilizing TMB by incubation in combinations of diaminobenzidine (DAB)/cobalt (Co2+)/H2O2. The stabilized TMB product was unaffected by long-term exposures to ethanol, neutral buffers, and subsequent immunohistochemical staining procedures. A procedure is recommended for optimal stabilization of TMB that affords a sensitivity for demonstrating retrogradely labeled perikarya comparable to standard TMB histochemistry. The physical characteristics of the reaction product make it suitable for combination with the unlabeled antibody, peroxidase-antiperoxidase (PAP) immunohistochemical staining procedure. This was established by staining retrogradely labeled neurons in the basal forebrain with a monoclonal antibody against choline acetyltransferase. Because the stabilized TMB product exhibited a superior sensitivity over cobalt ion intensification of the DAB-based reaction product (DAB-Co), it offers a distinct advantage over previously described combination procedures.  相似文献   

5.
We present a method for establishing in a single experiment four characteristics of individual neurons: the efferent and afferent connectivity, the morphology, and the content of a particular neuroactive substance. The connectivity of the neurons is determined by retrograde fluorescent tracing with Fast Blue and anterograde tracing with the lectin Phaseolus vulgaris leucoagglutinin (PHA-L). After fixation, the brain is cut into 300-micron thick slices. Neurons containing retrogradely transported Fast Blue are intracellularly injected with the fluorescent dye Lucifer Yellow to fill their dendritic trees. The slices are then resectioned at 20-40 microns. One section through the soma of a Lucifer Yellow-filled neuron is selected for the detection of a neuroactive substance contained by this cell [immunofluorescence, secondary antiserum conjugated to tetramethylrhodamine (TRITC)]. Using appropriate filtering, it can be determined in the fluorescence microscope whether a Lucifer Yellow-containing cell body has also been labeled with TRITC, i.e., whether it is immunoreactive for this neuroactive substance. The adjacent sections are subjected to dual peroxidase immunocytochemistry with different chromogens to visualize the PHA-L-labeled afferent fibers (nickel-enhanced diaminobenzidine, blue-black reaction product) and to stabilize the Lucifer Yellow (diaminobenzidine, brown reaction product) in the dendrites of the intracellular injected cells. The other sections are used for electron microscopic visualization of the transported PHA-L. The relationships between the PHA-L-labeled afferent fibers (blue color) and the dendrites of the intracellularly Lucifer Yellow-injected, retrogradely Fast Blue-labeled cells (brown color) are studied by light microscopy. The electron microscope supplies ultrastructural data on the PHA-L-labeled axon terminals.  相似文献   

6.
Recurrent Herpes simplex virus infections of the cornea are currently treated with antiviral drugs administered locally during periods of active infection. We have examined the feasibility of an alternate approach to treating recurrent infection, that of delivering an antiviral drug by axonal transport to cell somata in the trigeminal ganglion where the latent virus is thought to reside. We have coupled an antiviral drug to horseradish peroxidase (HRP), a protein which is readily transported retrogradely in corneal sensory axons to ganglion cell somata in the trigeminal ganglion. The antiviral drug 5-iodo-5'-amino-2',5'-dideoxyuridine (AIDU) was synthesized with 125I and coupled to horseradish peroxidase by Schiff base formation between the 5' amino group and aldehydes generated on the carbohydrate of the HRP following short periodate oxidation. The useful ratio of AIDU:HRP was 2-9; higher ratios resulted in an insoluble product. Sodium dodecylsulfate (SDS) acrylamide gel electrophoresis of the drug-protein conjugate revealed considerable aggregation and the isoelectric point of HRP was changed from 8.1 to 4.4-5.8 following the coupling procedure. Despite evidence that the protein conformation was considerably altered, the specific enzymatic activity of the final product was 58% of native HRP and the drug-protein conjugate was still strongly transported retrogradely. Retrograde transport of this conjugate was demonstrated by autoraiography of the trigeminal ganglion neurons 24 h after corneal injection of the [125I]AIDU/HRP.  相似文献   

7.
A blue reaction product is formed at sites that contain horseradish peroxidase (HRP) activity when benzidene is used as the chromogen. With neutral red as a counter stain, this method affords excellent visualization of both retrograde and orthograde axonal transport of intracerebrally injected HRP. The visibility of this blue reaction-product is better than the visibility of the brown reaction-product obtained in the commonly used diaminobenzidene procedures. Variations in incubation times and reagent concentrations resulted in significant differences in the extent to which transported HRP could be demonstrated with benzidene. One of these benzidene procedures demonstrated a wider extent of HRP transport than a representative diaminobenzidene procedure. The substantia nigra and the nucleus locus ceruleus did not display artifactual deposition of the blue reaction-product.  相似文献   

8.
In experiments that use horseradish peroxidase (HRP) and tetramethyl benzidine (TMB) for tracing neural connections, the activity of tissue-bound enzyme as well as the stability of the resultant reaction product are influenced by the duration of storage, the composition of the storage medium, the type of counterstaining and even the details of histological dehydration. Furthermore, the conditions for preserving HRP activity are very different from those necessary for preserving the stability of the tetramethyl benzidine (TMB) reaction product. Thus, tissue-bound HRP activity is stable at a neutral pH, while a much lower pH, around 3.3, is required for preserving the stability of the TMB reaction product. Recent evidence indicates that the stabilization bath in sodium nitroferricyanide that was previously recommended is not necessary. However, gradual dehydration of mounted sections is essential for long-term stability. Excessive counterstaining and excessive dehydration interfere with the detection of reaction product. These considerations are pertinent to experiments using free HRP as well as to those where the enzyme has been conjugated to wheat germ agglutinin.  相似文献   

9.
An attempt has been made to determine where in the lower brainstem the cell bodies of nonsympathetic efferent fibres in the aortic nerve of the cat and rabbit are located. Horseradish peroxidase (HRP) was placed on the central end of the right cut aortic nerve of anaesthetized animals and, after an appropriate time, sections of the brainstem encompassing the rostral and caudal limits of the dorsal vagal motor nucleus and nucleus ambiguus were examined microscopically for retrogradely transported HRP. Cell bodies labelled by exogenous HRP were not found in any of the cats or rabbits exposed to HRP although reaction product, due to an endogenous response, was observed. Appropriate control experiments were performed to show that the sensitivity of the technique for demonstrating HRP in our hand was adequate. We conclude that the cell bodies of efferent fibres, of non sympathetic origin, in the aortic nerve are likely to be located outside the central nervous system.  相似文献   

10.
This paper describes a sensitive method for tracing neural connections at the electron microscopic (EM) level using a new compound produced through the coupling of colloidal gold particles to a wheat germ agglutinin horseradish peroxidase conjugate (the WGA*HRP-gold complex). Visualization of retrogradely labeled cells at the EM level was achieved either directly by gold particles scanning or after silver enhancement. By using different sizes of gold particles individually coupled to WGA*HRP and injected in different brain areas EM detection of multiple retrograde labeling was possible. Thus retrogradely labeled cells were first identified at the light microscopic level through HRP histochemistry with tetramethylbenzidine as a chromogen and then examined under the electron microscope after osmication and embedding. Gold particles were readily identified as electron dense, round dots in spherical grey vesicles. Identification of different sizes of gold particles often localized in the same vesicle established that the protein-gold complex can be used to study collateralisation of parental axons.  相似文献   

11.
Multiple neuroanatomical tract-tracing methods are important tools for elucidating the connectivity between different populations of neurons. Evaluation of the question as to whether two specific fiber inputs converge on a particular, identified population of projection neurons requires the application of a triple-staining procedure that allows the unequivocal detection of three markers in a single section. The present report deals with a combination of tracing methods using anterogradely transported Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine in conjunction with retrogradely transported Fluoro-Gold. These tracers were simultaneously detected according to a three-color paradigm, which includes the use of three different peroxidase substrates (nickel-enhanced diaminobenzidine, diaminobenzidine, and Vector®VIP), thus resulting in three distinct precipitates: black, brown, and purple. We illustrate this method by showing convergence of projections arising from neurons located in two separate basal ganglia-related nuclei onto identified thalamostriatal projection neurons.  相似文献   

12.
Summary Horseradish peroxidase (HRP) applied to lesioned neurons in the retina and thoracic ganglia of the flies Musca, Calliphora and Drosophila labeled axon terminals, dendrites and perikarya of the severed neurons after anterograde or retrograde passage. In addition, HRP reaction product secondarily labeled intact neurons that are contiguous with injured nerve cells. In many cases labeling of optic lobe neurons remote from primarily filled ones was also seen (here called tertiary labeling). HRP labeling was extensive and both primarily and transneuronally filled neurons could be resolved in almost as much detail as Golgi-impregnated or cobalt-silver-labeled cells. Electron microscopy showed that in both primarily and secondarily filled neurons, reaction product was distributed diffusely in the cytoplasm.Transneuronal uptake of HRP was specific to certain types of neurons in the brain and thus displayed certain pathways. The pathways resolved by transneuronal labeling with HRP extend from the optic lobes to the thoracic ganglia and include visual neurons previously identified electrophysiologically and anatomically.Transneuronal HRP uptake, although believed to occur in vivo, could not be shown to be dependent on synaptic activity. Three other heme peptides tested were taken up by injured neurons, but showed no transneuronal labeling: lactoperoxidase, cytochrome c, and microperoxidase.  相似文献   

13.
By the neuroanatomical tracing technique based on uptake, transport, and immunocytochemical detection of injected Phaseolus vulgaris leucoagglutinin (PHA-L), fiber trajectories of labeled neurons can be followed with great accuracy to their termination areas. To further analyze the connectivity of these fibers, the target neurons must be chemically characterized. In vibratome and frozen sections of rat brain, we tried to visualize PHA-L-labeled fibers and, simultaneously, the target neuron-related antigen. As a model system we used the projection from the pre-frontal cortex to histaminergic neurons in the posterior hypothalamic region. We tested "sequential" and "pooled" immunocytochemical procedures. In the sequential procedure, the two antigens are detected by two successive and complete immunocytochemical staining procedures, with primary antibodies raised in different animal species and with different chromogens for the final visualization. In the pooled procedure, the sections are incubated with mixtures of primary and secondary antibodies, after which the procedure is similar to the sequential procedure. We obtained excellent results on vibratome sections with a sequential procedure using first conventional peroxidase immunocytochemistry (goat anti-PHA-L primary antibody) to visualize the transported PHA-L (brown reaction product), and subsequently alkaline phosphatase immunocytochemistry (rabbit anti-histidine decarboxylase primary antibody) to locate the histaminergic neurons (blue reaction product). The resulting preparations deteriorate, however, after 1-2 months of storage. Good results were also obtained with a double peroxidase procedure on frozen sections, using nickel-enhanced diaminobenzidine to visualize the PHA-L (dark blue reaction product), and diaminobenzidine (brown reaction product) to visualize the second antigen. The quality of these preparations is permanent.  相似文献   

14.
Summary This paper describes a sensitive method for tracing neural connections at the electron microscopic (EM) level using a new compound produced through the coupling of colloidal gold particles to a wheat germ agglutinin horseradish peroxidase conjugate (the WGA*HRP-gold complex). Visualization of retrogradely labeled cells at the EM level was achieved either directly by gold particles scanning or after silver enhancement. By using different sizes of gold particles individually coupled to WGA*HRP and injected in different brain areas EM detection of multiple retrograde labeling was possible. Thus retrogradely labeled cells were first identified at the light microscopic level through HRP histochemistry with tetramethylbenzidine as a chromogen and then examined under the electron microscope after osmication and embedding. Gold particles were readily identified as electron dense, round dots in spherical grey vesicles. Identification of different sizes of gold particles often localized in the same vesicle established that the protein-gold complex can be used to study collateralisation of parental axons.  相似文献   

15.
本实验用HRP注入下丘脑腹内侧核结合逆行追踪与抗FOS蛋白和抗酪氨酸羟化酶(TH)抗血清双重免疫细胞化学相结合的三重标记方法,对大鼠孤束核和延髓腹外侧区至下丘脑腹内侧核的儿茶酚胺能投射神经元在胃伤害性刺激后的c-fos表达进行了观察。本文发现孤束核和延髓腹外侧区有七种不同的标记细胞:HRP、Fos、TH单标细胞Fos/HRP、Fos/TH、HRP/TH双标细胞和Fos/HRP/TH三标细胞。上述七种标记细胞主要分布在延髓中段和尾段孤束核的内侧亚核和延髓腹外侧区以及两者之间的网状结构。HRP标记细胞以注射侧为主,对侧有少量分布。本文结果证明,大鼠孤束核、延髓腹外侧区和网状结构内儿茶酚胺能神经元有些至下丘脑腹内侧核的投射,其中一部分儿茶酚胺能神经元参与了胃伤害性刺激的传导和调控。  相似文献   

16.
3,3'-Diaminobenzidine (DAB) is widely used as a chromogen for visualization of horseradish peroxidase activity in neuroanatomical tracing experiments and in immunohistochemistry. The product of the enzymatically catalyzed oxidation of DAB by hydrogen peroxide is brown and nonfluorescent. In frozen sections of formaldehyde fixed rat and mouse brain that had been exposed to DAB either alone or with hydrogen peroxide, we observed strong greenish fluorescence in myelinated nerve fibers and in the somata of some neurons. This fluorescence was not associated with brown coloration and was not due to endogenous peroxidase activity. Extractions, blocking reactions, and other histochemical tests indicate that the fluorescence resulted from the combination of DAB with aldehyde groups that were formed by oxidation of unsaturated linkages in lipids. DAB induced fluorescence provides a simple and useful demonstration of background anatomy in sections that also contain specifically localized deposits of peroxidase activity.  相似文献   

17.
Using a method based on retrograde axonal transport of horse-radish peroxidase (HRP), the cortico-cortical afferents of the motor cortex were studied. After enzyme injection into the posterior sigmoideus gyrus, the HRP product was found in the first and the second somatic sensory areas and in parietal cortex (fields 5a, 5b). The HRP-positive neurons occurred in layers II, III and V of the cortex and belonged to the pyramidal cells.  相似文献   

18.
Summary The location of the cells giving rise to the methionine-enkephalin (Met-Enk)-ergic innervation of the lateral septal nucleus has been investigated in the rat by combining immunohistochemistry and retrograde axonal tracing. Small volumes (0.06 l) of apo-horseradish peroxidase (Apo-HRP) conjugated to wheat-germ agglutinin (WGA) and coupled with colloidal gold particles (WGA-ApoHRP-gold) were injected into the lateral septum. The retrogradely labeled cell bodies were visualized by silver intensification of the gold particles on Vibratome sections that were subsequently processed for immunohistochemistry for Met-Enk. Cells labeled with WGA-ApoHRP-gold were observed in the septal area, throughout the hypothalamus (mainly in the perifornical and lateral nuclei) and in the mesencephalon. The localization of Met-Enk-immunoreactive cells was as previously described. With the exception of a few septal cells close to the injection site, doubly labeled cells were found only in the perifornical nucleus of the hypothalamus. Almost all perifornical magnocellular cells were doubly labeled ipsilateral to the injection site, whereas on the opposite side, only about 25% of the Met-Enk-immunoreactive cells contained WGA-ApoHRP-gold. Other brain regions containing retrogradely labeled or Met-Enk-immunoreactive cells (particularly the raphe nuclei) did not show double-labeled neurons. This study demonstrates, using a new and sensitive technique for specific neurochemical tracing of tracts, that the origin of the Met-Enk-ergic innervation of the rat lateral septal nuclei lies in the magnocellular perifornical nuclei of the hypothalamus. The precise involvement of this pathway in limbic functions remains to be determined.  相似文献   

19.
We synthesized novel phenylenediamine derivatives and evaluated them as labeling agents to label proteins in close proximity to a single electron transfer catalyst. We found that N’-acyl-N-methylphenylenediamine labels tyrosine effectively in a model experiment using tris(bipyridine)ruthenium (Ru(bpy)32+) as the single electron transfer catalyst. By changing the substituents on the nitrogen atom of the phenylenediamine derivatives, the electrochemical properties of the labeling agent can be drastically changed. On the other hand, horseradish peroxidase (HRP) also catalyzes the reaction with almost the same oxidation potential as Ru(bpy)32+ (~+1.1?V). HRP proximity labeling is applicable to signal amplification in immunohistochemistry. We evaluated the phenylenediamine derivatives as labeling agents for HRP proximity labeling and signal amplification, and found that N’-acyl-N-methylphenylenediamine is a novel and efficient agent for signal amplification using HRP in immunohistochemistry.  相似文献   

20.
A highly stable functional composite film was prepared using polyazetidine prepolymer (PAP) with peroxidase from horseradish (HRP) and/or glucose oxidase (GOx). The good permeability of the PAP layer to classical electrochemical mediators, as evaluated by the determination of the diffusion coefficient of different redox molecules, is of great importance in view of the use of PAP as an immobilizing agent in second-generation biosensor development. Cyclic voltammetry of the HRP-PAP layer on a glassy carbon electrode (GCE) showed a pair of stable and quasi-reversible peaks for the HRP-Fe((III))/Fe((II)) redox couple at about -370 mV vs. Ag/AgCl electrode in pH 6.5 phosphate buffer. The electrochemical reaction of HRP entrapped in the PAP film exhibited a surface-controlled electrode process. This film and the successive modifications (HRP-PAP self-assembled monolayer (SAM) modified Au electrode) were used as a biological catalyst (hydrogen peroxide transducers) for glucose biosensors, after coupling to GOx. Both HRP/GOx-PAP and HRP/GOx-PAP SAM third generation biosensors were prepared and characterized. The use of PAP as immobilizing agent offers a biocompatible micro-environment for confining the enzyme and foreshadows the great potentiality of this immobilizing agent not only in theoretical studies on protein direct electron transfer but also from an applications point of view in the development of second- and third-generation biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号