首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli is widely used for recombinant protein production due to its well established genetic manipulation techniques and cost effectiveness of the associated production processes. Soluble expression of heterologous recombinant proteins constitutes a major problem in the deployment of bacterial expression systems. We have developed a dps promoter based expression system in E. coli for improved solubility of expressed proteins. The resulting expression system was found to be superior to the IPTG inducible T7 promoter based pET expression system for production of soluble β-galactosidase, tdTomato, and mCherry. The dps promoter based expression system was shown to be functional in most commonly used strains of E. coli without need for prior genetic manipulation of the host genome.  相似文献   

2.
A xylanase gene (xyn2) from Trichoderma reesei ATCC 58350 was previously cloned and expressed in Kluyveromyces lactis GG799. The production of the recombinant xylanase was conducted in a developed medium with an optimised batch and with fed-batches that were processed with glucose. The glucose served as a carbon source for cell growth and as an inducer for xylanase production. In a 1-L batch system, a glucose concentration of 20 g L?1 and 80 % dissolved oxygen were found to provide the best conditions for the tested ranges. A xylanase activity of 75.53 U mL?1 was obtained. However, in the batch mode, glucose depletions reduced the synthesis of recombinant xylanase by K. lactis GG799. To maximise the production of xylanase, further optimisation was performed using exponential feeding. We investigated the effects of various nitrogen sources combined with the carbon to nitrogen (C/N) molar ratio on the production of xylanase. Of the various nitrogen sources, yeast extract was found to be the most useful for recombinant xylanase production. The highest xylanase production (110.13 U mL?1) was measured at a C/N ratio of 50.08. These conditions led to a 45.8 % increase in xylanase activity compared with the batch cultures. Interestingly, the further addition of 500 g L?1 glucose led to a 6.2-fold increase (465.07 U mL?1) in recombinant xylanase activity. These findings, together with those of the exponential feeding strategy, indicate that the composition of the C/N molar ratio has a substantial impact on recombinant protein production in K. lactis.  相似文献   

3.
4.
Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44), which catalyzes the reduction of cinnamoyl-CoA esters to their respective cinnamaldehydes, is considered as a key enzyme in lignin formation. The substrates of CCR, cinnamoyl-CoA esters, are products of 4-Coumarate-CoA ligase (4CL, EC 6.2.1.12), which is an enzyme upstream of CCR. The PtCCR and Pt4CL were isolated from Populus tomentosa and expressed in E. coli. Results showed that 4CL can catalyze the conversion of hydroxycinnamic acids to cinnamoyl-CoA esters, with high efficiency. The purification of esters using SPE cartridges suggested that 40 % methanol with 0.1 M of acetic acid was the optimal elution buffer for cinnamoyl-CoA esters. The optimization of prokaryotic expression demonstrated that the best expression conditions for recombinant PtCCR was 6 h of 0.4 mM IPTG induction at 37 °C. PtCCR enzyme assay illustrated that the recombinant protein can catalyze the reduction of cinnamoyl-CoA esters. Kinetics analysis showed that feruloyl-CoA has higher affinity to PtCCR with faster reaction speed (Vmax), indicating that feruloyl-CoA was the most favorable substrate for PtCCR catalysis. The recombinant protein was expressed in E. coli, purified through affinity column chromatography, and characterized by SDS-PAGE. SPE cartridges were used to purify the ester products of the Pt4CL reaction. HPLC-MS was used to analyze the structure of esters and evaluate their purity or quantity. Furthermore, the enzyme activity of recombinant CCR to feruloyl-CoA at different pHs indicated that compartmentalization may be an important factor in lignin monomer formation.  相似文献   

5.
Two-bicistronic vectors for the production of recombinant IgM monoclonal antibodies in the DG44 DHFR-negative cell line have been designed. We used tandem vectors, in which one bicistronic unit encoded the immunoglobulin light chain and DHFR and the other encoded the heavy chain and EGFP. The construct structure presumes that green cells surviving selection would be capable of producing both immunoglobulin chains. We found that the agglutinating IgM antibodies could be secreted in the absence of J-peptide. It was shown that the germinal leader peptide plays a key role in the expression of the genes for the light and heavy chains. A comparison of the chromatin regulatory elements demonstrated that construct-flanking 2xHS4 insulators stabilized the biosynthesis of the recombinant antibodies, whereas the 5′-MARLyz matrix attachment region proved to be less efficient. The strategy for obtaining a DG44-based producer cell line should include the following consecutive steps: selection on the medium without nucleoside → amplification of the inserted gene → cloning of transfectants → selection of high-productive clones. An attempt to clone before amplification and to amplify individual clones failed to result in effective producers. Cloning on a medium without selection pressure allows a more adequate assessment of the stability of the antibody production.  相似文献   

6.
Hepatocyte growth factor (HGF) is an effective anti-fibrotic factor because of its bioactivity in inhibiting fibrosis-related proteins in the development of hepatic fibrosis. However, high-level production of bioactive mature form HGF is difficult because of its complex structure. Here, we report a non-fusion protein expression system to obtain truncated variant of N-terminal hairpin and first kringle domains of HGF (tvNK1) in Escherichia coli to determine its anti-fibrotic effects on hepatic stellate cells (HSCs). Under the selected conditions of cultivation and isopropyl-β-D-1-thiogalactopyranoside induction, the expression level of tvNK1 accounted for approximately 65 % of the total cellular protein and 50 % of fusion protein in the supernatant of whole cell lysates. The recombinant protein could be purified in one step with Ni2+-affinity chromatograph. Finally, about 65 mg recombinant tvNK1 was obtained from 1 l fermentation culture with no <95 % purity. In vitro, the final purified tvNK1 was shown to inhibit the proliferation of HSCs and decrease the mRNA and protein expression levels of fibrosis-related COL1A1 and α-smooth muscle actin genes.  相似文献   

7.
As the world races towards a plant-based bioeconomy, plants known to be ideal and economical bioreactors are being harnessed for the production of recombinant proteins. The major immunodominant 10 kDa GroES TB antigen (Chaperonin 10) gene from Mycobacterium tuberculosis was selected for expression in plants as a putative tuberculosis (TB) subunit vaccine candidate. Two crops, tobacco and potato, were engineered by stable plant transformation for expression of the 10 kDa GroES TB antigen using non-viral binary vectors. The integration of the GroES TB gene into the genomes of tobacco and potato was confirmed by PCR and Southern blotting. The expression of the GroES TB antigen in tobacco was 0.04–1.2 % of the total soluble protein (TSP). However, the expression of the same TB antigen in the Indian potato cv. Kufri bahar was comparatively low (0.033 % of TSP). The recombinant GroES plant derived protein was characterised and confirmed by MALDI-TOF–TOF and ELISA. This is the first report of the expression of the 10 kDa chaperonin in tobacco and potato.  相似文献   

8.
In the present study, we attempted to improve the production of recombinant horseradish peroxidase C1a (HRP-C1a; a heme-binding protein) by Cryptococcus sp. S-2. Both native and codon-optimized HRP-C1a genes were expressed under the control of a high-level expression promoter. When the HRP-C1a gene with native codons was expressed, poly(A) tails tended to be added within the coding region, producing truncated messenger RNAs (mRNAs) that lacked the 3′ ends. Codon optimization prevented polyadenylation within the coding region and increased both the mRNA and protein levels of active HRP-C1a. To improve secretion of the recombinant protein, we tested five types of N-terminal signal peptide (NTP). These included the native HRP-C1a NTP (C1a-NTP), short and long xylanase secretion signals (X1-NTP and X2-NTP), cutinase signal (C-NTP), and amylase signal (A-NTP), with and without a C-terminal propeptide (CTP). X2-NTP without CTP resulted in the highest HRP-C1a secretion into the culture medium. HRP-C1a secretion was further increased by using xylose fed-batch fermentation. The production of HRP-C1a in this study was 2.7 and 15 times higher than the production reported in previous studies that used insect cell and Pichia expression systems, respectively.  相似文献   

9.
Using enrichment procedures, a lipolytic strain was isolated from a stinky tofu brine and was identified as Bacillus amyloliquefaciens (named B. amyloliquefaciens Nsic-8) by morphological, physiological, biochemical tests and 16S rDNA sequence analysis. Meanwhile, the key enzyme gene (named lip BA) involved in ester metabolism was obtained from Nsic-8 with the assistance of homology analysis. The novel gene has an open reading frame of 645 bp, and encodes a 214-amino-acid lipase (LipBA). The deduced amino acid sequence shows the highest identity with the lipase from B. amyloliquefaciens IT-45 (NCBI database) and belongs to the family of triacylglycerol lipase (EC 3.1.1.3). The lipase gene was expressed in Escherichia coli BL21(DE3) using plasmid pET-28a. The enzyme activity and specific activity were 250 ± 16 U/ml and 1750 ± 153 U/mg, respectively. The optimum pH and temperature of the recombinant enzyme were 9.0 and 40 °C respectively. LipBA showed much higher stability under alkaline conditions and was stable at pH 7.0–11.0. The Km and Vmax values of purified LipBA using 4-nitrophenyl palmitate as the substrate were 1.04 ± 0.06 mM and 119.05 ± 7.16 μmol/(ml min), respectively. After purification, recombinant lipase was immobilized with the optimal conditions (immobilization time 3 h at 30 °C, with 92 % enzyme recovery) and the immobilized enzyme was applied in biodiesel production. This is the first report of the lipase activity and lipase gene obtained from B. amyloliquefaciens (including wild strain and recombinant strain) and the recombinant LipBA with the detailed enzymatic properties. Also the preliminary study of the transesterification shows the potential value in biodiesel production applications.  相似文献   

10.
Skin fibroblasts modulate tissue repair, wound healing and immunological responses. Adrenergic receptors (ARs) mediate important physiological functions, such as endocrine, metabolic and neuronal activity. In this study, the expression α1A-ARs in human skin fibroblasts is examined and verified. Regulatory effects of α1-agonist cirazoline on cell migration and the production of transforming growth factor β1 (TGF-β1), insulin-like growth factor 1 (IGF-1), hyaluronan (HA), fibronectin and procollagen type I carboxy-terminal peptide (PIP) by human skin fibroblasts are assessed and validated. α1A-AR mRNA and protein were found in human skin fibroblasts WS1. Exposure of cirazoline doubled skin fibroblast migration and the increase in cell migration was attenuated by α1-antagonist prazosin. TGF-β1 mRNA and production were enhanced after exposure to cirazoline and IGF-1 production was also increased after treatment with cirazoline. Exposure to cirazoline also enhanced HA and PIP production. The increases in TGF-β1, IGF-1, HA and PIP production were partially abolished in fibroblasts transfected with α1A-AR short interfering RNAs, indicating that α1A-ARs are involved in the cirazoline-induced increases in TGF-β1, IGF-1, HA and PIP production. Thus, α1A-ARs are stably expressed and stimulate cell migration and TGF-β1, IGF-1, HA and PIP production in human skin fibroblasts. Moreover, TGF-β1, IGF-1, HA and PIP production and the cell migration of human skin fibroblasts are possibly modulated by natural catecholamines produced by the endocrine system or sympathetic innervation, which could directly or indirectly participate in cytokine secretion, fibroblast migration and matrix production of wound healing in the skin.  相似文献   

11.
Diol synthase from Aspergillus nidulans was cloned and expressed in Escherichia coli. Recombinant E. coli cells expressing diol synthase from A. nidulans converted linoleic acid to a product that was identified as 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The recombinant cells and the purified enzyme showed the highest activity for linoleic acid among the fatty acids tested. The optimal reaction conditions for the production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid using whole recombinant E. coli cells expressing diol synthase were pH 7.5, 35°C, 250 rpm, 5 g l?1 linoleic acid, 23 g l?1 cells, and 20% (v/v) dimethyl sulfoxide in a 250-ml baffled flask. Under these optimized conditions, whole recombinant cells expressing diol synthase produced 4.98 g l?1 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid for 150 min without detectable byproducts, with a conversion yield of 99% (w/w) and a productivity of 2.5 g l?1 h?1. This is the first report on the biotechnological production of dihydroxy fatty acid using whole recombinant cells expressing diol synthase.  相似文献   

12.
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs +/ech +).  相似文献   

13.
A diagnostic reagent based on carbon nanoparticles covalently functionalized with streptococcus G protein was applied to construct a system for monitoring and optimization of the technology of affinity purification of rabbit polyclonal antibodies to alpha-fetoprotein. The developed system allows a short-time (45 min) semiquantitative assessment of the immunoglobulins (IgG) of most higher animals and human beings in blood serum samples and eluate. IgG detection sensitivity using the carbon-G-protein diagnosticum was 80 ng/mL. Approaches to stabilizing the components of the analysis system, which ensures the preservation of their functional properties during long storage, were developed. The storage life of the diagnosticum was more than 20 years, and that of immunosorbents was more than year and a half. A technique of long-term immunosorbent storage was developed. Application of the developed test-system do not require registration equipment.  相似文献   

14.
An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.  相似文献   

15.

Key message

The yield of recombinant hEGF was increased approximately tenfold through a range of optimisations. Further, the recombinant protein was found to have biological activity comparable to commercial hEGF.

Abstract

Human epidermal growth factor (hEGF) is a powerful mitogen that can enhance the healing of a wide range of injuries, including burns, cuts, diabetic ulcers and gastric ulcers. However, despite its clinical value, hEGF is only consistently used for the treatment of chronic diabetic ulcers due to its high cost. In this study, hEGF was transiently expressed in Nicotiana benthamiana plants and targeted to the apoplast, ER and vacuole. Several other approaches were also included in a stepwise fashion to identify the optimal conditions for the expression of recombinant hEGF. Expression was found to be highest in the vacuole, while targeting hEGF to the ER caused a decrease in total soluble protein (TSP). Using a codon optimised sequence was found to increase vacuolar targeted hEGF yield by ~34 %, while it was unable to increase the yield of ER targeted hEGF. The use of the P19 silencing inhibitor was able to further increase expression by over threefold, and using 5-week-old plants significantly increased expression compared to 4- or 6-week-old-plants. The combined effect of these optimisations increased expression tenfold over the initial apoplast targeted construct to an average yield of 6.24 % of TSP. The plant-made hEGF was then shown to be equivalent to commercial E. coli derived hEGF in its ability to promote the proliferation of mouse keratinocytes. This study supports the potential for plants to be used for the commercial production of hEGF, and identifies a potential limitation for the further improvement of recombinant protein yields.  相似文献   

16.
A two-phase integrated sludge thickening and digestion (TISTD) reactor composed of an inner and an outer reactor was developed. Acidification of natural organic material was the primary process in the outer reactor, whilst methane production was the dominant bioreaction occurring in the inner one. The special structure of TISTD thus enables the effective separation of the acid production phase and methane production phase during sludge processing. Molecular biological technology, including 16S rRNA gene and PCR-TGGE, was utilized to investigate the overall microbial community structure and diversity, as well as the processes of dynamic change. Analysis was also conducted on succinate dehydrogenase and coenzyme F420 change trends at each dosing ratio. The microbial community structure of the system exhibited disorder gradually and led to collapse when the dosing ratio increased above 30 %.  相似文献   

17.
A strain, designated as FM-6, was isolated from fish. Based on the results of phenotypic, physiological characteristics, genotypic and phylogenetic analysis, strain FM-6 was finally identified as Paenibacillus sp. When albendazole was provided as the sole carbon source, strain FM-6 could grow and transform albendazole. About 82.7 % albendazole (50 mg/L) was transformed by strain FM-6 after 5 days incubation at 30 °C, 160 rpm. With HPLC–MS method, the transforming product of albendazole was researched. Based on the molecular weight and the retention time, product was identified as albendazole sulfoxide and the transforming pathway of albendazole by strain FM-6 was proposed finally. The optimum temperature and pH for the bacterium growth and albendazole transformation by strain FM-6 were both 30 °C and 7.0. Moreover, the optimum concentration of albendazole for the bacterium growth was 50 mg/L. Coupled with practical production, 50 mg/L was the optimum concentration of albendazole transformation for strain FM-6. This study highlights an important potential use of strain FM-6 for producing albendazole sulfoxide.  相似文献   

18.
Fluorescence and circular dichroism were used to follow thepH-dependent conformational changes of granulocyte colony stimulating factor (G-CSF). Tryptophan fluorescence of the spectra monitored at 344 nm, or after deconvolution of the emission spectra, at 345 nm, showed a decrease in intensity on going frompH 7 to 4, with a midtransitionpH of 5.8. On the other hand, tyrosine fluorescence measured either by the ratio of intensity at 308 nm to that at 344 nm, or by the fluorescence intensity at 303 nm after deconvolution of the spectra, increased in intensity as thepH was changed from 6 to 2.5, with a midtransitionpH of 4.5. Near UV circular dichroic spectra also showed changes betweenpH 7.5 and 4.5, which correlated with the transition monitored by the tryptophan fluorescence. The guanidine hydrochloride-induced conformational changes of G-CSF at fivepH values from 2.5 to 7.5 were also studied. Circular dichroic and fluorescence spectra revealed minor conformational changes by the addition of 1 or 2 M guanidine HCl at allpH values examined, while the major conformational transition occurred between 2 and 4 M guanidine hydrochloride. The secondary structure of the protein was most stable betweenpH 3.3 and 4.5. The guanidine HCl-induced denaturation of G-CSF involved more than a two-state transition, with detectable intermediate(s) present, and the structure of the intermediate(s) appeared to depend on thepH used. These results are consistent with thepH dependence of the structure described above, and demonstrate the complex conformational properties of G-CSF.  相似文献   

19.
Human-like collagen (HLC) is a novel biomedical material with promising applications. Usually, insoluble HLC was formed due to over-expression. In order to improve the production of soluble HLC, the effective chaperone proteins and their mediation roles on HLC were clarified. Trigger factor (TF) pathway with low specificity and high binding affinity to nascent chains could increase soluble HLC expression; GroEL-GroES could increase the expression level of HLC by assisting the correct folding of HLC and increase mRNA level of the gene coding for HLC by enhancing mRNA stability. DnaK chaperone system did not work positively on soluble HLC due to the unbalanced ratio of DnaK:DnaJ:GrpE, especially too high GrpE significantly inhibited DnaK-mediated refolding. The production of soluble HLC with co-expression of exogenous TF and GroEL-GroES was increased by 35.3 % in comparison with the highest value 0.26 g/L reported previously.  相似文献   

20.
Interferon gamma (IFN-γ) is an important immunoregulatory cytokine that has a central role against viral and bacterial infections. In this study, the cDNA encoding 141 amino acids of mature IFN-γ from mice splenocytes was cloned in a prokaryotic expression vector pQE 30. Optimization of expression conditions resulted in high IFN-γ protein. Western blot showed that recombinant IFN-γ was specifically recognized by its counterpart anti-mouse IFN-γ antibodies. In vitro dose-dependent studies, with A549 and HeLa cell lines, showed that cloned IFN-γ was safe and had no effect on cell proliferation. The protein prediction and analysis using SOPMA program, revealed that IFN-γ had 80 α-helices, 8 β-turns jointed by 9 extended strands and 44 random coils. A total of four major clusters were observed with murine IFN-γ sharing 39 % homology with human IFN-γ. Pair-wise alignment studies with human revealed 26 % identity and 43.3 % similarity. The recovery of bioactive proteins from inclusion bodies (IBs) is a complex process and various protocols have been developed. We report here a simple, robust and inexpensive purification approach for obtaining recombinant IFN-γ protein expressed as IBs in E.coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号