首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
2.
The level and intracellular redistribution of the two nucleo-cytoplasmic members of 70 kDa heat shock protein family (constitutive, Hsc70 or Hsp73, and inducible, Hsp72) were studied in rat liver during a 24-h period after exposure of the animals to 41 degrees C whole body hyperthermic stress. The examined proteins were detected in the liver cytosol and nuclei by Western blotting and immunohistochemical staining of paraffin sections, as well as by immnocytochemical staining of isolated nuclear smears. All three techniques applied were based on the use of monoclonal antibodies recognizing both constitutive and inducible Hsp70 isoforms or only the inducible isoform, and gave consistent results. The exposure of the animals to in vivo heat stress was shown to induce the synthesis of otherwise non-existing Hsp72, rendering Hsc70 level unchanged in comparison to unstressed controls. However, immediately after the stress the intracellular redistribution of Hsc70, i.e. its nuclear accumulation, was observed. The maximal level of Hsp70 both in the cytoplasm and in the nuclei was registered 5 h after the stress, which coincided with the maximal level of Hsp72 induction. The alterations in the level and intracellular distribution of examined proteins were still noticeable 24 h after the stress. The results of this study could shed some more light on, as yet uncertain, differences between cellular functions of these two proteins, as well as on the role of the constitutive form under normal and stress conditions.  相似文献   

3.
The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat “stress” have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6–8°C for L. elliptica and +8–10°C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past.  相似文献   

4.
5.
《The Journal of cell biology》1984,99(4):1316-1323
We have found that chicken reticulocytes respond to elevated temperatures by the induction of only one heat shock protein, HSP70, whereas lymphocytes induce the synthesis of all four heat shock proteins (89,000 mol wt, HSP89; 70,000 mol wt, HSP70; 23,000 mol wt, HSP23; and 22,000 mol wt, HSP22). The synthesis of HSP70 in lymphocytes was rapidly induced by small increases in temperature (2 degrees-3 degrees C) and blocked by preincubation with actinomycin D. Proteins normally translated at control temperatures in reticulocytes or lymphocytes were not efficiently translated after incubation at elevated temperatures. The preferential translation of mRNAs that encode the heat shock proteins paralleled a block in the translation of other cellular proteins. This effect was most prominently observed in reticulocytes where heat shock almost completely repressed alpha- and beta-globin synthesis. HSP70 is one of the major nonglobin proteins in chicken reticulocytes, present in the non-heat-shocked cell at approximately 3 X 10(6) molecules per cell. We compared HSP70 from normal and heat-shocked reticulocytes by two-dimensional gel electrophoresis and by digestion with Staphylococcus aureus V8 protease and found no detectable differences to suggest that the P70 in the normal cell is different from the heat shock-induced protein, HSP70. P70 separated by isoelectric focusing gel electrophoresis into two major protein spots, an acidic P70A (apparent pl = 5.95) and a basic P70B (apparent pl = 6.2). We observed a tissue-specific expression of P70A and P70B in lymphocytes and reticulocytes. In lymphocytes, P70A is the major 70,000-mol-wt protein synthesized at normal temperatures whereas only P70B is synthesized at normal temperatures in reticulocytes. Following incubation at elevated temperatures, the synthesis of both HSP70A and HSP70B was rapidly induced in lymphocytes, but synthesis of only HSP70B was induced in reticulocytes.  相似文献   

6.
Heat shock proteins (HSP) or stress proteins serve as biomarkers to identify the contribution of stress situations underlying the pathogenesis of degenerative diseases of the CNS. We have analyzed by immunoblot technique the constitutive and inducible occurrence of stress proteins in cultured rat brain oligodendrocytes subjected to heat shock or oxidative stress exerted by hydrogen peroxide, or a combination of both. The data demonstrate that oligodendrocytes constitutively express HSP32, HSP60 and the cognate form of the HSP70 family of proteins, HSC70. After heat shock, HSP25, alpha B-crystallin and HSP70 were up-regulated, while after oxidative stress the specific induction of HSP32 and alpha B-crystallin was observed. HSP32 represents heme oxygenase 1 (HO-1), a small stress protein with enzymatic activity involved in the oxidative degradation of heme which participates in iron metabolism. The presence of the iron chelators phenanthroline or deferoxamine (DFO), which previously has been shown to protect oligodendrocytes from oxidative stress-induced onset of apoptosis, caused a marked stimulation of HSP32 without affecting HSP70. This indicates that DFO possibly exerts its protective role by directly influencing the antioxidant capacity of HO-1. In summary, HSP in oligodendrocytes are differentially stimulated by heat stress and oxidative stress. Heme oxygenase-1 has been linked to inflammatory processes and oxidative stress, its specific up-regulation after oxidative stress in oligodendrocytes suggests that it is an ideal candidate to investigate the involvement of oxidative stress in demyelinating diseases.  相似文献   

7.
8.
《Research in virology》1991,142(1):25-31
Three major Mayaro virus proteins of 62, 50 and 34 kDa were detected in Aedes albopictus cells after 48 h postinfection at 28°C. When the infected cells were shifted from 28 to 37°C for 90 min (heat shock conditions), the synthesis of two major heat shock proteins (HSP) 82 and 70 kDa was induced concomitantly with strong inhibition of virus and normal protein synthesis. Total cellular RNA was isolated from mock and infected cells incubated at 28°C or under heat shock. Northern blot analysis with HSP genomic probes from Drosophila sp showed that (1) the probe for HSP 82 hybridized with an RNA of 2.6 kb present only in heat-shocked cells, (2) the HSP 70 probe hybridized with RNA species of 2.5 kb, present only in RNA from heat-shocked cells. These results showed that Mayaro virus was not able to alter the reprogrammation of gene expression induced by heat shock in A. albopictus cells.  相似文献   

9.
In this study, we analyzed the response of the temperate, shallow-water gorgonian, Leptogorgia virgulata, to temperature stress. Proteins were pulse labeled with (35)S-methionine/cysteine for 1 h to 2 h at 22 degrees C (control), or 38 degrees C, or for 4 h at 12.5 degrees C. Heat shock induced synthesis of unique proteins of 112, 89, and 74 kDa, with 102, 98 and 56 kDa proteins present in the control as well. Cold shock from 22 degrees C-12.5 degrees C induced the synthesis of a 25 kDa protein, with a 44 kDa protein present in the control as well. Control samples expressed unique proteins of 38, and 33 kDa. Non-radioactive proteins expressed under the same conditions as above, as well as natural field conditions, were tested for reactivity with antibodies to heat shock proteins (HSPs). HSP60 was the major protein found in L. virgulata. Although HSP47, HSP60, and HSP104 were present in all samples, the expression of HSP60 was enhanced in heat stressed colonies, while HSP47 and HSP104 expression were greatest in cold shocked samples. Inducible HSP70 was expressed in cold-shocked, heat-shocked, and field samples. Constitutively expressed HSP70 was absent from all samples. The expression of HSP90 was limited to heat shocked colonies. The expression of both HSP70 and HSP104 suggests that the organism may also develop a stress tolerance response.  相似文献   

10.
11.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

12.
The nuclear heat shock geneHSP70B ofChlamydomonas reinhardtii is inducible by heat stress and light. Induction by either environmental cue resulted in a transient elevation in HSP70B protein. Here we describe the organization and nucleotide sequence of theHSP70B gene. The deduced protein exhibits a distinctly higher homology to prokaryotic HSP70s than to those of eukaryotes, including the cytosolic HSP70A ofChlamydomonas reinhardtii. The HSP70B protein, as previously demonstrated by in vitro translation, is synthesized with a cleavable presequence. Using an HSP70B-specific antibody, this heat shock protein was localized to the chloroplast by cell fractionation experiments. A stromal location was suggested by the presence of a conserved sequence motif used for cleavage of presequences by a signal peptidase of the stroma. Amino acid alignments of HSP70 proteins from various organisms and different cellular compartments allowed the identification of sequence motifs, which are diagnostic for HSP70s of chloroplasts and cyanobacteria.  相似文献   

13.
Continuous exposure of a Xenopus laevis kidney epithelial cell line, A6, to either heat shock (33 degrees C) or sodium arsenite (50 microM) resulted in transient but markedly different temporal patterns of heat-shock protein (HSP) synthesis and HSP 70 and 30 mRNA accumulation. Heat-shock-induced synthesis of HSPs was detectable within 1 h and reached maximum levels by 2-3 h. While sodium arsenite induced the synthesis of some HSPs within 1 h, maximal HSP synthesis did not occur until 12 h. The pattern of HSP 70 and 30 mRNA accumulation was similar to the response observed at the protein level. During recovery from heat shock, a coordinate decline in HSPs and HSP 70 and 30 mRNA was observed. During recovery from sodium arsenite, a similar phenomenon occurred during the initial stages. However, after 6 h of recovery, HSP 70 mRNA levels persisted in contrast to the declining HSP 30 mRNA levels. Two-dimensional polyacrylamide gel electrophoresis revealed the presence of 5 HSPs in the HSP 70 family, of which two were constitutive, and 16 different stress-inducible proteins in the HSP 30 family. In conclusion, heat shock and sodium arsenite induce a similar set of HSPs but maximum synthesis of the HSP is temporally separated by 12-24 h.  相似文献   

14.
15.
The heat shock response of growing and fully-grown pig oocytes was analyzed in vitro by determining heat shock protein70 (HSP70) synthesis under both normal conditions (39 degrees C; 0 and 6h) and after heat shock (43 degrees C; 1, 4 and 6h). The expression of HSP70 in oocytes was detected by immunoblotting analysis. Growing oocytes measuring 80-99 microm synthesized a high number of HSP70 without heat shock effect, and these were capable of increasing the synthesis of HSP70 after heat shock to a maximum after 1h. Growing oocytes measuring 100-115 microm also synthesized HSP70 without heat shock and after it, but the HSP70 synthesis was not statistically changed by increasing duration of heat shock. In fully-grown oocytes, great amounts of HSP70 were found without heat shock treatment, and the contents of HSP70 significantly decreased after heat shock. These results indicate that growing oocytes are able to synthesize HSP70 after heat shock. This ability declines at the end of the growth period, and fully-grown oocytes are unable to induce HSP70 synthesis after heat shock. HSP70 is synthesized and stored during oocyte growth. The high HSP70 synthesis in non-heat-treated growing oocytes and a great amount of HSP70 in fully-grown oocytes support the hypothesis that HSP70 is important for oocyte growth and maturation.  相似文献   

16.
The human oesophageal epithelium is subject to damage from thermal stresses and low extracellular pH that can play a role in the cancer progression sequence, thus identifying a physiological model system that can be used to determine how stress responses control carcinogenesis. The classic heat shock protein HSP70 is not induced but rather is down-regulated after thermal injury to squamous epithelium ex vivo; this prompted a longer-term study to address the nature of the heat shock response in this cell type. An ex vivo epithelial culture system was subsequently used to identify three major proteins of 78, 70, and 58 kDa, whose steady-state levels are elevated after heat shock. Two of the three heat shock proteins were identified by mass spectrometric sequencing to be the calcium-calmodulin homologue transglutaminase-3 (78 kDa) and a recently cloned oesophageal-specific gene called C1orf10, which encodes a 53-kDa putative calcium binding protein we have named squamous epithelial heat shock protein 53 (SEP53). The 70-kDa heat shock protein (we have named SEP70) was not identifiable by mass spectrometry, but it was purified and studied immunochemically to demonstrate that it is distinct from HSP70 protein. Monoclonal antibodies to SEP70 protein were developed to indicate that: (a) SEP70 is induced by exposure of cultured cells to low pH or glucose starvation, under conditions where HSP70 protein was strikingly down-regulated; and (b) SEP70 protein exhibits variable expression in preneoplastic Barrett's epithelium under conditions where HSP70 protein is not expressed. These results indicate that human oesophageal squamous epithelium exhibits an atypical heat shock protein response, presumably due to the evolutionary adaptation of cells within this organ to survive in an unusual microenvironment exposed to chemical, thermal and acid reflux stresses.  相似文献   

17.
Heat shock proteins including the major stress protein HSP70 support intracellular homeostasis and prevent protein damage after a temperature increase and other stressful environmental stimuli, as well as during aging. We have shown earlier that prolonged administration of recombinant human HSP70 to mice exhibiting Alzheimer’s-like neurodegeneration as well as during sepsis reduces the clinical manifestations of these pathologies. Herein, we studied the action of recombinant human HSP70 on young and aged mouse mesenchymal stem cells (MSCs) in culture. The results obtained indicate that HSP70 at concentrations of 2 μg/ml and higher significantly stimulates growth of aged but not young MSCs. A similar effect is produced by application of a mild heat shock (42 °C 5 min) to the cells. Importantly, responses of young and aged MSCs to heat shock treatment of various durations differed drastically, and aged MSCs were significantly more sensitive to higher heat stress exposures than the young cells. Western blotting and protein labeling experiments demonstrated that neither mild heat shock nor exogenous HSP70 administration resulted in significant endogenous HSP70 induction in young and aged MSCs, whereas mild heat shock increased HSC70 levels in aged MSCs. The results of this study suggest that the administration of exogenous HSP70 and the application of mild heat stress may produce a certain “rejuvenating” effect on MSCs and possibly other cell types in vivo, and these interventions may potentially be used for life extension by delaying various manifestations of aging at the molecular and cellular level.  相似文献   

18.
Myocardial heat shock proteins during the development of heart failure   总被引:4,自引:0,他引:4  
When cardiomyocytes are exposed to stresses, production of heat shock proteins (HSPs) in the cells is enhanced. Such increase in cellular HSP production is considered to bring about tolerance against stress-induced cell damage. The exact role of the cellular HSPs remains unclear. In the present study, HSPs in the viable left ventricular myocardium were determined during the development of heart failure following coronary artery ligation (CAL). The rats after CAL showed symptoms of chronic heart failure (CHF) at the 8th week, but not at the 1st and 2nd weeks. Myocardial HSP27, which may bind to cytoskeletal protein, at the 1st, 2nd, and 8th weeks after CAL was approximately 180, 160, and 125% of the control, respectively. Myocardial HSP60, one of mitochondrial proteins, at the 8th week increased to 140% of the control, whereas those at the 1st and 2nd weeks did not change. Myocardial HSP72, an inducible form of HSP70 family, at the 1st week after CAL increased to 180% of the control, whereas that at the 2nd or 8th week was similar to control. Myocardial heat shock constitutive protein 73 (HSC73), a constitutively expressed form of HSP70 family, and HSP90, which may bind to steroid hormone receptor and actin fiber, of CAL rats did not alter throughout the experiment. These findings show that diverse changes in the production of myocardial HSPs occur during the development of heart failure. Only the increase in myocardial HSP60 production was associated with the development of CHF.  相似文献   

19.
20.
For a variety of species, changes in the expression of heat shock proteins (HSP) have been linked to key developmental changes, i.e., gametogenesis, embryogenesis, and metamorphosis. Many marine invertebrates are known to have a biphasic life cycle where pelagic larvae go through settlement and metamorphosis as they transition to the benthic life stage. A series of experiments were run to examine the expression of heat shock protein 70 (HSP 70) during larval and early spat (initial benthic phase) development in the Eastern oyster, Crassostrea virginica. In addition, the impact of thermal stress on HSP 70 expression during these early stages was studied. C. virginica larvae and spat expressed three HSP 70 isoforms, two constitutive, HSC 77 and HSC 72, and one inducible, HSP 69. We found differences in the expression of both the constitutive and inducible forms of HSP 70 among larval and early juvenile stages and in response to thermal stress. Low expression of HSP 69 during early larval and spat development may be associated with the susceptibility of these stages to environmental stress. Although developmental regulation of HSP 70 expression has been widely recognized, changes in its expression during settlement and metamorphosis of marine invertebrates are still unknown. The results of the current study demonstrated a reduction of HSP 70 expression during settlement and metamorphosis in the Eastern oyster, C. virginica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号