共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of proflavine to DNA has been studied by measuring the polarization and intensity of emission of DNA–dye complexes. Such measurements also permit the determination of the fluorescence of the bound dye as a function of the degree of binding. Techniques of emission spectroscopy permit the study of complexing at high phosphate to dye ratios, and we have examined complexes formed at up to 12,300:1 phosphates to dye. At high phosphate to dye ratios, we find that equilibrium plots of the binding data show only one type of binding. Reports in the literature of multiple binding constants are shown to be due to the incorrect assumption that the fluorescence of the bound dye is independent of the amount bound. The emission properties can be qualitatively accounted for by assuming that nearest-neighbor interaction between bound dyes quenches the fluorescence. We report that, within experimental error, the binding constant is insensitive to the base content of the DNA. The DNA-dye complexes show a temperature dependent depolarization, the cause of which is, as yet, unknown. Heat denaturation of the DNA–dye complex may be followed on a Perrin plot. 相似文献
2.
3.
The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%. 相似文献
4.
Rupashree Shyama Ray 《Inorganica chimica acta》2010,363(1):263-11925
We studied computationally uranyl monohydroxo monoacetate complexes in aqueous solution using a scalar relativistic all-electron density functional method. Such ternary uranyl complexes may serve as models of ternary uranyl humate complexes which are important for the speciation of uranyl in the environment. As for simple uranyl monocarboxylate complexes, we calculated bidentate coordination to be slightly preferred due to entropy and solvation effects. Compared to uranyl acetate, uranyl hydroxo acetate exhibits an elongated uranyl bond and a short U-OH bond of ∼214 pm. The latter may provide a signature for direct identification of such ternary complexes by EXAFS. As expected from the lower charge of uranyl monohydroxide, complexation by acetate is less exoenergetic than acetate complexation of uranyl. In contrast, experimental complexation constants of uranyl humate and uranyl hydroxo humate are quite similar. Thus, one may question the interpretation of experimental results that assign simple ternary complexes as result of uranyl humate complexation at neutral pH. 相似文献
5.
The interaction of several 3,6-diaminoacridines with DNAs of various base composition has been studied by steady-state and transient fluorescence measurements. The acridine dyes employed are of the following two classes: class I - proflavine, acriflavine and 10-benzyl proflavine; class II - acridine yellow, 10-methyl acridine yellow and benzoflavine. It is found that the fluorescence decay kinetics follows a single-exponential decay law for free dye and the poly[d(A-T)]-dye complex, while that of the dye bound to DNA obeys a two-exponential decay law. The long lifetime (tau 1) for each complex is almost the same as the lifetime for the poly[d(A-T)]-dye complex, and the amplitude alpha 1 decreases with increasing GC content of DNA. The fluorescence quantum yields (phi F) of dye upon binding to DNA decrease with increasing GC content; the phi F values for class I are nearly zero when bound to poly(dG) X poly(dC), but those for class II are not zero. This is in harmony with the finding that GMP almost completely quenches the fluorescence for class I, whereas a weak fluorescence arises from the GMP-dye complex for class II. The fluorescence spectra of the DNA-dye complexes gradually shift toward longer wavelengths with increasing GC content. In this connection, the fluorescence decay parameters show a dependence on the emission wavelength; alpha 1 decreases with an increase in the emission wavelength. In view of these results, it is proposed that the decay behavior of the DNA-dye complexes has its origin in the heterogeneity of the emitting sites; the long lifetime tau 1 results from the dye bound to AT-AT sites, while the short lifetime tau 2 is attributable to the dye bound in the vicinity of GC pairs. Since GC pairs almost completely quench the fluorescence for class I, partly intercalated or externally bound dye molecules may play an important role in the component tau 2. 相似文献
6.
7.
Probing the energetics of dissociation of carbonic anhydrase-ligand complexes in the gas phase.
下载免费PDF全文

This paper describes the use of electrospray ionization-Fourier transform ion cyclotron mass spectrometry (ESI-FTICR-MS) to study the relative stabilities of noncovalent complexes of carbonic anhydrase II (CAII, EC 4.2.1.1) and benzenesulfonamide inhibitors in the gas phase. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) was used to determine the energetics of dissociation of these CAII-sulfonamide complexes in the gas phase. When two molecules of a benzenesulfonamide (1) were bound simultaneously to one molecule of CAII, one of them was found to exhibit significantly weaker binding (DeltaE50 = 0.4 V, where E50 is defined as the amplitude of sustained off-resonance irradiation when 50% of the protein-ligand complexes are dissociated). In solution, the benzenesulfonamide group coordinates as an anion to a Zn(II) ion bound at the active site of the enzyme. The gas phase stability of the complex with the weakly bound inhibitor was the same as that of the inhibitor complexed with apoCAII (i.e., CAII with the Zn(II) ion removed from the binding site). These results indicate that specific interactions between the sulfonamide group on the inhibitor and the Zn(II) ion on CAII were preserved in the gas phase. Experiments also showed a higher gas phase stability for the complex of para-NO2-benzenesulfonamide-CAII than that for ortho-NO2-benzenesulfonamide-CAII complex. This result further suggests that steric interactions of the inhibitors with the binding pocket of CAII parallel those in solution. Overall, these results are consistent with the hypothesis that CAII retains, at least partially, the structure of its binding pocket in the gas phase on the time scale (seconds to minutes) of the ESI-FTICR measurements. 相似文献
8.
D P Ringer J L Etheredge B L Dalrymple J S Niedbalski 《Biochemical and biophysical research communications》1990,168(1):267-273
Phosphotyrosine, a biologically important protein residue, was investigated for the ability to enhance terbium (Tb3+) fluorescence. Spectroscopic analysis of the Tb3+: phosphotyrosine interaction indicated the development of a new excitation peak at 275 nm and strong Tb+ fluorescence enhancement at 488 and 540 nm that was linear over a range from 0.5 to 100 microM amino acid. Subsequent experiments comparing the ability of phosphotyrosine, phosphothreonine, phosphoserine and 20 other common non-phosphorylated amino acids showed that only phosphotyrosine produced significant Tb3+ fluorescence enhancement. Analysis of various phospho-sugars and nucleotides showed (with the expected exception of GMP) that they produced little or no significant fluorescence enhancement, indicating a further selectiveness for the phosphotyrosine: Tb3+ fluorescence enhancement event. These results establish a basis for the future use of Tb3+ fluorescence enhancement as a unique probe for the investigation of phosphotyrosine residues. 相似文献
9.
The fluorescence polarization properties of hen egg white lysozyme and of an iodine oxidized derivative of lysozyme in which tryptophan-108 was selectively modified, were investigated. Using the addition law of anisotropy of mixed systems, the contribution of tryptophan-108 to the anisotropy spectrum of lysozyme and lysozyme-chitotetraose complex was separated. The rate of fluorescence polarization was studied as a function of pH. The major contribution to this rate is shown to arise from internal rotations of the indole side-chain of tryptophan-108 as well as from structural changes around tryptophan-62 and 63. From the dependence of the fluorescence polarization of lysozyme and IL with saccharide concentration, the existence of the simultaneous binding of two saccharide molecules to the enzyme cleft was inferred. At low chitotetraose concentration, the subsites A, B and C are occupied with an association constant of 8 × 104m?1 whereas at high saccharide concentration, both subsites A–B–C and E–F are occupied. The association constants of a series of saccharides to subsites E–F were measured and all found to be around 2 × 102m?1. The dependence of the rate of depolarization with saccharide concentration was determined and showed that, upon binding of the first saccharide molecule to subsites A, B and C, the rate of internal rotation of tryptophan-108 and tryptophan-62 and 63 was much reduced whereas upon further binding of a saccharide molecule in subsites E–F the rates are enhanced. This behaviour was interpreted as an indication that the binding of saccharide in subsites E–F induces changes in conformation of the enzyme which affect the entire active site architecture. 相似文献
10.
Fluorescence of nucleic acid-terbium (3) complexes 总被引:1,自引:0,他引:1
C Formoso 《Biochemical and biophysical research communications》1973,53(4):1084-1087
Terbium(III) binds to nucleic acids and acts as an acceptor of electronic excitation energy. The transfer appears to be primarily from guanosine residues. Fluorescence from Tb3+ bound to 5′-GMP is very much larger than fluorescence from either free 5′-GMP or free Tb3+ When bound to 5′-AMP, Tb3+ shows an intense excitation band at 414 nm, where free Tb3+ has no excitation band. Fluorescence from bound Tb3+ appears to be potentially useful in nucleic acid studies. 相似文献
11.
No methods proposed thus far have the sensitivity to measure the transport of single molecules through single nuclear pore complexes (NPCs) in intact cells. Here we demonstrate that fluorescence correlation spectroscopy (FCS) combined with real-time tracking of the center of mass of single NPCs in live, unperturbed cells allows us to detect the transport of single molecules in a reference system of a pore with high temporal (millisecond) and spatial (limited by diffraction) resolution. We find that the transport of the classical receptor karyopherin-β1 (Kapβ1) is regulated so as to produce a peculiar distribution of characteristic times at the NPC. This regulation, which is spatially restricted to the pore, depends on the properties and metabolic energy of Kapβ1. As such, this method provides a powerful tool for studying nucleocytoplasmic shuttling at the nanometer scale under physiological conditions. 相似文献
12.
Fluorescence characteristics of DNA-specific dyes of bis-benzimidazole type in a wide range of pH and r = C/P were investigated. Fluorescence spectra of DNA complexes with bis-benzimidazoles have elements of a structure, which may result from a superposition of the spectra of dye molecules in different protonization group states that form different types of complexes with DNA. Experimental data do not contradict the idea of bis-benzimidazole dye binding into the minor groove of DNA. Bis-benzimide molecules in the deprotonization state have a major affinity to DNA. 相似文献
13.
Measurements of the relative quantum yield of fluorescence of proflavine bound to DNA as a function of the number of bound dyes per nucleotide and the ionic strength allow the determination of the binding constants and respective number of the two types of sites previously postulated. It is demonstrated that 2–3% of the base pairs form sites where the dye is strongly bound and fluoresces normally while in the other set of sites the binding constant is 3–4 times weaker and the fluorescence completely quenched. Comparison with complexes of Pro with double stranded polynucleotides poly (A + U), poly (I + C), poly(G + C), confirm that the strong binding sites correspond to A-T-rich regions of the DNA while the quenched sites seem to require the presence of a neighboring guanine. The role of charge transfer in quenching of fluorescence and mutagnic action is considered. An original method for the determination of free dye and bound dye, based upon the use of an external quencher is described in the Appendix. 相似文献
14.
The theory for the salt dependence of the free energy, entropy, and enthalpy of a polyelectrolyte in the PB (PB) model is extended to treat the nonspecific salt dependence of polyelectrolyte–ligand binding reactions. The salt dependence of the binding constant (K) is given by the difference in osmotic pressure terms between the react ants and the products. For simple 1-1 salts it is shown that this treatment is equivalent to the general preferential interaction model for the salt dependence of binding [C. Anderson and M. Record (1993) Journal of Physical Chemistry, Vol. 97, pp. 7116–7126]. The salt dependence, entropy, and enthalpy are compared for the PB model and one specific form of the preferential interaction coefficient model that uses counterion condensation/limiting law (LL) behavior. The PB and LL models are applied to three ligand–polyelectrolyte systems with the same net ligand charge: a model sphere–cylinder binding reaction, a drug–DNA binding reaction, and a protein–DNA binding reaction. For the small ligands both the PB and limiting law models give (ln K vs. In [salt]) slopes close in magnitude to the net ligand charge. However, the enthalpy/entropy breakdown of the salt dependence is quite different. In the PB model there are considerable contributions from electrostatic enthalpy and dielectric (water reorientation) entropy, compared to the predominant ion cratic (release) entropy in the limiting law model. The relative contributions of these three terms in the PB model depends on the ligand: for the protein, ion release entropy is the smallest contribution to the salt dependence of binding. The effect of three approximations made in the LL model is examined: These approximations are (1) the ligand behaves ideally, (2) the preferential interaction coefficient of the polyelectrolyte is unchanged upon ligand binding, and (3) the polyelectrolyte preferential interaction coefficient is given by the limiting law/counterion-condensation value. Analysis of the PB model shows that assumptions 2 and 3 break down at finite salt concentrations. For the small ligands the effects on the slope cancel, however, giving net slopes that are similar in the PB and LL models, but with a different entropy/enthalpy breakdown. For the protein ligand the errors from assumptions 2 and 3 in the LL model do not cancel. In addition, the ligand no longer behaves ideally due to its complex structure and charge distribution. Thus for the protein the slope is no longer related simply to the net ligand charge, and the PB model gives a much larger slope than the LL model. Additionally, in the PB model most of the salt dependence of the protein binding comes from the change in ligand activity, i.e. from nonspecific anion effects, in contrast to the small ligand case. While the absolute binding is sensitive to polyelectrolyte length, little length effect is seen on the salt dependence for the small ligands at 0.1M salt, and for lengths > 60 Å. Almost no DNA length dependenceis seen in the salt dependence of the protein binding, since this is determined primarily by the protein, not the DNA. © 1995 John Wiley & Sons, Inc. 相似文献
15.
According to previous authors, cytochrome b5, when extracted from bovine liver by a detergent method, is called cytochrome d-b5. On the other hand, the protein obtained after trypsin action, which eliminates an hydrophobic peptide of about 54 residues, is called cytochrome t-b5. Fluorescence polarization of the dansyl phosphatidylethanolamine probe inserted into phospholipid vesicles is very sensitive to the binding of proteins, and so is a useful method to study lipid-protein interactions. The chromophore mobility, R, decreases markedly when dipalmitoyl phosphatidylcholine vesicles are incubated with cytochrome d-b5, whereas R does not change for cytochrome c and cytochrome t-b5. This can be interpreted as a strengthening of bilayer, only due to the interaction of the hydrophobic peptide tail. Interaction of dipalmitoly phosphatidylcholine vesicles with cytochrome d-b5 occurs either below or above the melting temperature of the aliphatic chains (41 degrees C). Even for a high protein to lipid molar ratio (1 molecule of protein for 40 phospholipid molecules), the melting temperature is apparently unaffected. Phosphatidylserine and phosphatidylinositol do not interact at pH 7.7 with cytochrome d-b5, because electrostatic forces prevent formation of complexes. At low pH, the interaction with the protein occurs, but the binding is mainly of electrostatic nature. 相似文献
16.
Human complement protein C8 was labeled with the fluorescent chromophores fluorescein-5-isothiocyanate (FITC), 3-(4-isothiocyanatophenyl)-7-diethylamine-4-methyl coumarin (IPM), eosin-5-isothiocyanate (EOS), or Texas Red (sulforhodamine-101-sulfonyl chloride; TR) with only minor reduction in the specific hemolytic activity of the protein. The distribution of C5b-8 complexes bound to sheep erythrocyte membranes was investigated by monitoring fluorescence resonance energy transfer (RET) between the following RET donor/acceptor pairs of labeled C8: FITC-C8/EOS-C8, IPM-C8/EOS-C8, and FITC-C8/TR-C8. On binding to membranes containing pre-formed C5b67 complexes, specific RET was detected for each of the donor/acceptor pairs of labeled C8 investigated. In contrast, no energy transfer was observed for these RET donor/acceptor pairs of labeled C8 incubated in the presence of control membranes or in membrane-free solution. On the basis of a consideration of the transfer efficiency that would be expected for donor/acceptor pairs of labeled C8 that were uniformly dispersed on the membrane surface, these results suggest that C5b-8 complexes are aggregated into polymeric clusters when membrane-bound. The efficiency of donor-C8 to acceptor-C8 RET--and the hemolytic activity of membrane-bound C5b-8 (in the absence of C9)--are both related to the surface density of membrane-bound C5b67, suggesting that the physical clustering of the membrane-inserted C5b-8 complex may be related to the expression of its cytolytic activity. 相似文献
17.
18.
In an earlier paper which models the cell-cell (or virus-cell) fusion complex as two partial spherical vesicles joined at a narrow neck (Rubin, R. J., and Yi-der Chen. 1990. Biophys. J. 58:1157-1167), the redistribution by diffusion of lipid-like molecules through the neck between the two fused cell surfaces was studied. In this paper, we extend the study to the calculation of the kinetics of fluorescence increase in a single fusion complex when the lipid-like molecules are fluorescent and self-quenching. The formalism developed in this paper is useful in deducing fusion activation mechanisms from cuvette fluorescence measurements in cell-cell fusion systems. Two different procedures are presented: 1) an exact one which is based on the exact local density functions obtained from diffusion equations in our earlier study; and 2) an approximate one which is based on treating the kinetics of transfer of probes between the two fused cells as a two-state chemical reaction. For typical cell-cell fusion complexes, the fluorescence dequencing curves calculated from the exact and approximate procedures are very similar. Due to its simplicity, the approximate method should be very useful in future applications. The formalism is applied to a typical cell-cell fusion complex to study the sensitivity of dequenching curves to changes in various fusion parameters, such as the radii of the cells, the radius of the pore at the fusion junction, and the number of probes initially loaded to the complex. 相似文献
19.
We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as well as at elevated temperatures, utilizing a confocal microscope. The fluorescence peak wavelength of individual LH2 complexes was found to abruptly move between long-lived quasi-stable levels differing by up to 30 nm. The frequency and size of these fluorescence peak movements were found to increase linearly with the excitation intensity. These spectral shifts either to the blue or to the red were accompanied by a broadening and decrease of the intensity of the fluorescence spectrum. The probability for a particle to undergo significant spectral shift in either direction was found to be roughly the same. Using the modified Redfield theory, the observed changes in spectral shape and intensity were accounted for by changes in the realization of the static disorder. Long lifetimes of the quasi-stable states suggest large energetic barriers between the states characterized by different emission spectra. 相似文献
20.
Chudinova EA Dementieva EI Brovko LY Savitskii AP Ugarova NN 《Biochemistry. Biokhimii?a》1999,64(10):1097-1103
Quenching of tryptophan fluorescence of Luciola mingrelica (single tryptophan residue, Trp-419) and Photinus pyralis (two tryptophan residues, Trp-417 and Trp-426) luciferases with different quenchers (I-, Cs+, acrylamide) was studied. The conserved Trp-417(419) residue was shown to be not accessible to charged particles, and positively and negatively charged amino acid residues are located in close vicinity to it. We found previously unreported effective energy transfer from this tryptophan to luciferin during the quenching of the tryptophan fluorescence. The distance between the luciferin molecule and Trp-417(419) was calculated: 11-15 and 12-17 A for P. pyralis and L. mingrelica luciferases, respectively. The role of the conserved Trp residue in the catalysis is discussed. ATP and AMP are also quenchers of the tryptophan fluorescence of the luciferases. In this case, an allosteric mechanism of the interaction of Trp-417(419) with an excess of ATP (AMP) is proposed. 相似文献