首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel glucose-sensing molecule was created based on galactose/glucose-binding protein (GGBP). GGBP mutants at Asp14, a residue interacting with the 4th hydroxyl group of the sugar molecule, were constructed by mutagenesis to improve the ligand specificity of GGBP. The autofluorescence-based analysis of the binding abilities of these engineered GGBPs showed that the GGBP mutants Asp14Asn and Asp14Glu bound only to glucose in a concentration-dependent manner, without being affected by the presence of galactose. The Phe16Ala mutation, which leads to an increase in the K (d) value toward glucose, was then introduced into these two glucose-specific mutant GGBPs. One of the constructed GGBP double-mutants, Asp14Glu/Phe16Ala, had a glucose specificity with a K(d) value of 3.9 mM, which makes it suitable for use in the measurement of the physiological glucose concentration. Our results demonstrate that it is possible to construct a GGBP which specifically recognizes glucose and has a higher K(d) value and use it as a molecular recognition element of blood glucose monitoring systems by combining two different mutations based on the 3D structure of GGBP.  相似文献   

2.
Phosphopeptide pTyr-Glu-Glu-Ile (pYEEI) has been introduced as an optimal Src SH2 domain ligand. Peptides, Ac-K(IDA)pYEEIEK(IDA) (1), Ac-KpYEEIEK (2), Ac-K(IDA)pYEEIEK (3), and Ac-KpYEEIEK(IDA) (4), containing 0–2 iminodiacetate (IDA) groups at the N- and C-terminal lysine residues were synthesized and evaluated as the Src SH2 domain binding ligands. Fluorescence polarization assays showed that peptide 1 had a higher binding affinity (Kd = 0.6 μM) to the Src SH2 domain when compared with Ac-pYEEI (Kd = 1.7 μM), an optimal Src SH2 domain ligand, and peptides 24 (Kd = 2.9–52.7 μM). The binding affinity of peptide 1 to the SH2 domain was reduced by more than 2-fold (Kd = 1.6 μM) upon addition of Ni2+ (300 μM), possibly due to modest structural effect of Ni2+ on the protein as shown by circular dichroism experimental results. The binding affinity of 1 was restored in the presence of EDTA (300 μM) (Kd = 0.79 μM). These studies suggest that peptides containing IDA groups may be used for designing novel SH2 domain binding ligands.  相似文献   

3.
Bacterial chemotactic responses are initiated when certain small molecules (i.e., carbohydrates, amino acids) interact with bacterial chemoreceptors. Although bacterial chemotaxis has been the subject of intense investigations, few have explored the influence of attractant structure on signal generation and chemotaxis. Previously, we found that polymers bearing multiple copies of galactose interact with the chemoreceptor Trg via the periplasmic binding protein glucose/galactose binding protein (GGBP). These synthetic multivalent ligands were potent agonists of Escherichia coli chemotaxis. Here, we report on the development of a second generation of multivalent attractants that possess increased chemotactic activities. Strikingly, the new ligands can alter bacterial behavior at concentrations 10-fold lower than those required with the original displays; thus, they are some of the most potent synthetic chemoattractants known. The potency depends on the number of galactose moieties attached to the oligomer backbone and the length of the linker tethering these carbohydrates. Our investigations reveal the plasticity of GGBP; it can bind and mediate responses to several carbohydrates and carbohydrate derivatives. These attributes of GGBP may underlie the ability of bacteria to sense a variety of ligands with relatively few receptors. Our results provide insight into the design and development of compounds that can modulate bacterial chemotaxis and pathogenicity.  相似文献   

4.
Protein free energy landscapes remodeled by ligand binding   总被引:1,自引:0,他引:1       下载免费PDF全文
Glucose/galactose binding protein (GGBP) functions in two different larger systems of proteins used by enteric bacteria for molecular recognition and signaling. Here we report on the thermodynamics of conformational equilibrium distributions of GGBP. Three fluorescence components appear at zero glucose concentration and systematically transition to three components at high glucose concentration. Fluorescence anisotropy correlations, fluorescent lifetimes, thermodynamics, computational structure minimization, and literature work were used to assign the three components as open, closed, and twisted conformations of the protein. The existence of three states at all glucose concentrations indicates that the protein continuously fluctuates about its conformational state space via thermally driven state transitions; glucose biases the populations by reorganizing the free energy profile. These results and their implications are discussed in terms of the two types of specific and nonspecific interactions GGBP has with cytoplasmic membrane proteins.  相似文献   

5.
6.
The D-glucose/D-galactose-binding protein (GGBP) of Escherichia coli serves as an initial component for both chemotaxis toward D-galactose and D-glucose and high-affinity active transport of the two sugars. GGBP is a monomer with a molecular weight of about 32 kDa that binds glucose with micromolar affinity. The sugar-binding site is located in the cleft between the two lobes of the bilobate protein. In this work, the local and global structural features of GGBP were investigated by a strategic fluorescence labeling procedure and spectroscopic methodologies. A mutant form of GGBP containing the amino acid substitution Met to Cys at position 182 was realized and fluorescently labeled to probe the effect of glucose binding on the local and overall structural organization of the protein. The labeling of the N-terminus with a fluorescence probe as well as the protein intrinsic fluorescence were also used to obtain a complete picture of the GGBP structure and dynamics. Our results showed that the binding of glucose to GGBP resulted in no stabilizing effect on the N-terminus portion of GGBP and in a moderate stabilization of the protein matrix in the vicinity of the ligand-binding site. On the contrary, it was observed that the binding of glucose has a strong stabilization effect on the C-terminal domain of the GGBP structure.  相似文献   

7.
Fluorescent protein biosensors, which exhibit a significant change in fluorescence based on the physical interaction between protein and ligand, may prove to be effective tools to measure a variety of analytes. In particular, real-time monitoring of glucose levels has potential applications in bioprocess monitoring and in minimizing health complications caused by diabetes. In this work, site-directed mutagenesis of the Escherichia coli glucose/galactose binding protein (GGBP) was used to engineer double-cysteine mutations that allowed selective covalent attachment of thiol-reactive dyes. Because GGBP undergoes a large conformational change on the addition of glucose, rational placement of these sites allowed glucose-dependent spatial realignment of the two fluorophores, which was monitored as a change in fluorescence intensity and extinction coefficients. Using targeted mutagenesis of the GGBP binding pocket, glucose biosensors were created to measure concentrations spanning five orders of magnitude (0.04-12,000 microM). The glucose biosensor retained its function in complex solutions that contained realistic concentrations of protein and potential interfering agents found in blood serum. In addition to the development of a fluorescent protein sensor for glucose, this work helps to expand the spectroscopic tools used for the detection of conformational movements within a single polypeptide chain.  相似文献   

8.
The gene expression plasmid, pET-Lmluc, for the fusion protein of the hyaluronan binding domain from human TSG-6 [product of tumor necrosis factor (TNF)-stimulated gene-6] and luciferase from Renilla reniformis was constructed. The fused gene was expressed in Escherichia coli and the resulted insoluble Lm-luc fusion protein was purified and refolded to recover both the hyaluronan binding capability and the luciferase activity. Hyaluronan as low as 1 ng ml–1 was detected by using the indirect enzymatic immunological assay with the refolded Lm-luc fusion protein.  相似文献   

9.
We report here the first pre-clinical demonstration of continuous glucose tracking by fluorophore-labeled and genetically engineered glucose/galactose binding protein (GGBP). Acrylodan-labeled GGBP was immobilized in a hydrogel matrix at the tip of a small diameter optical fiber contained in a stainless steel needle. The fiber optic biosensors were inserted subcutaneously into Yucatan and Yorkshire swine, and the sensor response to changing glucose levels was monitored at intervals over a 7-day period. Sensor mean percent error on day 7 was 16.4±5.0% using a single daily reference blood glucose value to calibrate the sensor. The GGBP sensor's susceptibility to common interferents was tested in a well-plate system using human sera. No significant interference was observed from the tested interferents except for tetracycline at the drug's maximum plasma concentration. The robust performance of the GGBP-based fiber optic sensor in swine models and resistance to interferents indicates the potential of this technology for continuous glucose monitoring in humans.  相似文献   

10.
Maize β-glucosidase aggregating factor (BGAF) and its homolog Sorghum Lectin (SL) are modular proteins consisting of an N-terminal dirigent domain and a C-terminal jacalin-related lectin (JRL) domain. BGAF is a polyspecific lectin with a monosaccharide preference for galactose, whereas SL displays preference for GalNAc. Here, we report that deletion of the N-terminal dirigent domain in the above lectins dramatically changes their sugar-specificities. Deletions in the N-terminal region of the dirigent domain of BGAF abolished binding to galactose/lactose, but binding to mannose was unaffected. Glucose, which was a poor inhibitor of hemagglutinating activity of BGAF, displayed higher inhibitory effect on the hemagglutinating activity of deletion mutants. Deletion of the dirigent domain in SL abolished binding to GalNAc, but binding to mannose was not affected. Surprisingly, fructose, an extremely poor inhibitor (minimum inhibitory concentration (MIC) = 125 mM) of SL hemagglutinating activity, was found to be a very potent inhibitor (MIC = 1 mM) of hemagglutinating activity of its JRL domain. These results indicate that the dirigent domain in this class of modular lectins, at least in the case of maize BGAF and SL, influences sugar specificity.  相似文献   

11.
The nuclear export protein (NEP) (NS2) of the highly pathogenic human-derived H5N1 strain A/Thailand/1(KAN-1)/2004 with the adaptive mutation M16I greatly enhances the polymerase activity in human cells in a concentration-dependent manner. While low NEP levels enhance the polymerase activity, high levels are inhibitory. To gain insights into the underlying mechanism, we analyzed the effect of NEP deletion mutants on polymerase activity after reconstitution in human cells. This revealed that the polymerase-enhancing function of NEP resides in the C-terminal moiety and that removal of the last three amino acids completely abrogates this activity. Moreover, compared to full-length NEP, the C-terminal moiety alone exhibited significantly higher activity and seemed to be deregulated, since even the highest concentration did not result in an inhibition of polymerase activity. To determine transient interactions between the N- and C-terminal domains in cis, we fused both ends of NEP to a split click beetle luciferase and performed fragment complementation assays. With decreasing temperature, increased luciferase activity was observed, suggesting that intramolecular binding between the C- and N-terminal domains is preferentially stabilized at low temperatures. This stabilizing effect was significantly reduced with the adaptive mutation M16I or a combination of adaptive mutations (M16I, Y41C, and E75G), which further increased polymerase activity also at 34°C. We therefore propose a model in which the N-terminal moiety of NEP exerts an inhibitory function by back-folding to the C-terminal domain. In this model, adaptive mutations in NEP decrease binding between the C- and N-terminal domains, thereby allowing the protein to “open up” and become active already at a low temperature.  相似文献   

12.
We developed a split luciferase complementation assay to study protein-protein interactions in Arabidopsis protoplasts. In this assay, the N- and C-terminal fragments of Renilla reniforms luciferase are translationally fused to bait and prey proteins, respectively. When the proteins interact, split luciferase becomes activated and emits luminescence that can be measured by a microplate luminometer. Split luciferase activity was measured by first transforming protoplasts with a DNA vector in a 96-well plate. DNA vector expressing both bait and prey genes was constructed through two independent in vitro DNA recombinant reactions, Gateway and Cre-loxP. As proof of concept, we detected the protein-protein interactions between the nuclear histones 2A and 2B, as well as between membrane proteins SYP (syntaxin of plant) 51 and SYP61, in Arabidopsis protoplasts.  相似文献   

13.
Rho family GTPases are critical regulators of many important cellular processes and the dysregulation of their activities is implicated in a variety of human diseases including oncogenesis and propagation of malignancy. The traditional methods, such as “pull-down” or two-hybrid procedures, are poorly suited to dynamically evaluate the activity of Rho GTPases, especially in living mammalian cells. To provide a novel alternative approach to analyzing Rho GTPase-associated signaling pathways in vivo, we developed a series of bioluminescent biosensors based on the genetically engineered firefly luciferase. These split-luciferase-based biosensors enable non-invasive visualization and quantification of the activity of Rho GTPases in living subjects. The strategy is to reasonably split the gene of firefly luciferase protein into two inactive fragments and then respectively fuse the two fragments to Rho GTPase and the GTPase-binding domain (GBD) of the specific effector. Upon Rho GTPase interacting with the binding domain in a GTP-dependent manner, these two luciferase fragments are brought into close proximity, leading to luciferase reconstitution and photon production in the presence of the substrate. Using these bimolecular luminescence complementation (BiLC) biosensors, we successfully visualized and quantified the activities of the three best characterized Rho GTPases by measuring the luminescence in living cells. We also experimentally investigated the sensitivity of these Rho GTPase biosensors to upstream regulatory proteins and extracellular ligands without lysing cells and doing labor-intensive works. By virtue of the unique functional characteristics of bioluminescence imaging, the BiLC-based biosensors provide an enormous potential for in vivo imaging of Rho GTPase signaling pathways and high-throughput screening of therapeutic drugs targeted to Rho GTPases and (or) upstream molecules in the near future.  相似文献   

14.
Cryopreservation of equine embryos > 300 μm in diameter results in low survival rates using protocols that work well for smaller equine embryos. These experiments tested the potential benefit of incorporating a dehydration step prior to standard cryopreservation procedures. Forty-six, day 7–8, grade 1, equine embryos 300–1350 μm in diameter were subjected to one of the following treatments: (A) 2 min in 0.6 M galactose, 10 min in 1.5 M glycerol, slow freeze (n = 21); (B) 10 min in 1.5 M glycerol, slow freeze (n = 15); (C) 2 min in 0.6 M galactose, 10 min in 1.5 M glycerol, followed by exposure to thaw solutions, then culture medium (n = 5); (D) transferred directly to culture medium (n = 5). Frozen embryos were thawed and subjected to a three-step cryoprotectant removal. Five embryos from each treatment were evaluated morphologically after 24 and 48 h culture (1 = excellent, 5 = degenerate/dead). All treatments had at least 4/5 embryos with a quality score  3 at these time points except treatment B (2/5 at 24 h, 1/5 at 48 h). Subsequent embryos from treatment A (n = 16) or B (n = 10) were matched in sets of two for size and treatment, thawed, and immediately transferred in pairs to 13 recipients. Only two recipient mares were pregnant; one received two 400 μm embryos from treatment A, and the other one 400 and one 415 μm embryo from treatment B. There was no advantage of incorporating a 2 min dehydration step into the cryopreservation protocol for large equine embryos.  相似文献   

15.
The effect of the pressure on the structure and stability of the D-Galactose/D-Glucose binding protein (GGBP) from Escherichia coli was studied by steady-state and time-resolved fluorescence spectroscopy, and the ability of glucose ligand to stabilize the GGBP structure was also investigated. Steady-state fluorescence experiments showed a marked quenching of fluorescence emission of GGBP in the absence of glucose. Instead, the presence of glucose seems to stabilize the structure of GGBP at low and moderate pressure values. Time-resolved fluorescence measurements showed that the GGBP taumean in the absence of glucose varies significantly up to 600 bar, while in the presence of the ligand it is almost unaffected by pressure increase up to 600 bar. The effect of the pressure on GGBP was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results and confirm that the presence of glucose is able to contrast the negative effects of pressure on the protein structure. Taken together, the spectroscopic and computer simulation studies suggest that at pressure values up to 2000 bar the structure of GGBP in the absence of glucose remains folded, but a significant perturbation of the protein secondary structures can be detected. The binding of glucose reduces the negative effect of pressure on protein structure and confers protection from perturbation especially at moderate pressure values.  相似文献   

16.
Due to its small size and intense luminescent signal, Gaussia princeps luciferase (GLuc) is attractive as a potential imaging agent in both cell culture and small animal research models. However, recombinant GLuc production using in vivo techniques has only produced small quantities of active luciferase, likely due to five disulfide bonds being required for full activity. Cell-free biology provides the freedom to control both the catalyst and chemical compositions in biological reactions, and we capitalized on this to produce large amounts of highly active GLuc in cell-free reactions. Active yields were improved by mutating the cell extract source strain to reduce proteolysis, adjusting reaction conditions to enhance oxidative protein folding, further activating energy metabolism, and encouraging post-translational activation. This cell-free protein synthesis procedure produced 412 μg/mL of purified GLuc, relative to 5 μg/mL isolated for intracellular Escherichia coli expression. The cell-free product had a specific activity of 4.2×1024 photons/s/mol, the highest reported activity for any characterized luciferase.  相似文献   

17.
For the removal of galactose inhibition, the predicted galactose binding residues, which were determined by sequence alignment, were replaced separately with Ala. The activities of the Ala-substituted mutant enzymes were assessed with the addition of galactose. As a consequence, amino acid at position 349 was correlated with the reduction in galactose inhibition. The F349S mutant exhibited the highest activity in the presence of galactose relative to the activity measured in the absence of galactose among the tested mutant enzymes at position 349. The K i of the F349S mutant (160 mM), which was 13-fold that of the wild-type enzyme, was the highest among the reported values of β-galactosidase. The wild-type enzyme hydrolyzed 62% of 100 g lactose/l with the addition of 30 g galactose/l, whereas the F349S mutant hydrolyzed more than 99%.  相似文献   

18.
We present here a novel whole-cell biosensor to detect early-stages of apoptosis based on Apaf-1 oligomerization and apoptosome formation using the split luciferase strategy. The amino-fragment (1-416 amino acids) and carboxy-fragment (395-550 amino acids) of firefly luciferase were fused to amino-terminal of Apaf-1. The cotransfected HEK cells were then treated with doxorubicin for induction of apoptosis. The performance of our biosensor for monitoring of programmed cell death over 24h was investigated by measuring bioluminescence activities. We observed a significant increase (~15 fold) in luminescence signal compared to control cells 4h after apoptosis induction. It reached a maximum activity over 10h (~155 fold). Moreover, juxtapositioning of Apaf-1 monomer and apoptosome formation occur about 5h earlier than the appearance of significant caspase3/7 activity upon induction of apoptosis by doxorubicin. The time-response curve of split luciferase shows a sigmoidal pattern which indicates cooperativity in oligomerization of Apaf-1 upon binding of cytochrome c. This biosensor can be used as a new platform, based on the protein fragment complementation strategy for assessing potential chemotherapeutic drugs as well as a sensitive and dynamic system in the time- and dose-dependent studies of apoptosis.  相似文献   

19.
The effect of the depletion of calcium on the structure and thermal stability of the D-galactose/D-glucose-binding protein (GGBP) from Escherichia coli was studied by fluorescence spectroscopy and Fourier-transform infrared spectroscopy. The calcium-depleted protein (GGBP-Ca) was also studied in the presence of glucose (GGBP-Ca/Glc). The results show that calcium depletion has a small effect on the secondary structure of GGBP, and, in particular it affects a population of alpha-helices with a low exposure to solvent. Alternatively, glucose-binding to GGBP-Ca eliminates the effect induced by calcium depletion by restoring a secondary structure similar to that of the native protein. In addition, the infrared and fluorescence data obtained reveal that calcium depletion markedly reduces the thermal stability of GGBP. In particular, the spectroscopic experiments show that the depletion of calcium mainly affects the stability of the C-terminal domain of the protein. However, the binding of glucose restores the thermal stability of GGBP-Ca. The thermostability of GGBP and GGBP-Ca was also studied by molecular dynamics simulations. The simulation data support the spectroscopic results. New insights into the role of calcium in the thermal stability of GGBP contribute to a better understanding of the protein function and constitute important information for the development of biotechnological applications of this protein. Mutations and/or labelling of amino acid residues located in the protein C-terminal domain may affect the stability of the whole protein structure.  相似文献   

20.
Abstract

The development of techniques for detection and tracking of microorganisms in natural environments has been accelerated by the requirement for assessment of the risks associated with environmental release of genetically engineered microbial inocula. Molecular marker systems are particularly appropriate for such studies and luminescence-based markers have the broadest range of applications, involving the introduction of prokaryotic (lux) or eukaryotic (luc) genes for the enzyme luciferase.

Lux or luc genes can be detected on the basis of unique DNA sequences by gene probing and PCR amplification, but the major advantage of luminescence-based systems is the ability to detect light emitted by marked organisms or by luciferase activity in cell-free extracts. Luminescent colonies can be detected by eye, providing distinction from colonies of indigenous organisms, and the sensitivity of plate counting can be increased greatly by CCD imaging. Single cells or microcolonies of luminescent organisms can also be detected in environmental samples by CCD image-enhanced microscopy, facilitating study of their spatial distribution. The metabolic activity of luminescence-marked populations can be quantified by luminometry and does not require extraction of cells or laboratory growth. Metabolic activity, and potential activity, of marked organisms therefore can be measured during colonization of soil particles and plant material in real time without disturbing the colonization process.

In comparison with traditional activity techniques, luminometry provides significant increases in sensitivity, accuracy, and, most importantly, selectivity, as activity can be measured in the presence of indigenous microbial communities. The sensitivity, speed, and convenience of luminescence measurements make this a powerful technique that is being applied to the study of an increasingly wide range of ecological problems. These include microbial survival and recovery, microbial predation, plant pathogenicity, phylloplane and rhizosphere colonization and reporting of gene expression in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号