首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A physiological compartmental model of alpha-linolenic acid metabolism was derived from the plasma concentration-time curves for d5-18:3n-3, d5-20:5n-3, d5-22:5n-3, and d5-22:6n-3 in eight healthy subjects. Subjects received a 1-g oral dose of an isotope tracer of alpha-linolenate (d5-18:3n-3 ethyl ester) while subsisting on a rigorously controlled beef-based diet. By utilizing the Windows Simulation and Analysis Modeling program, kinetic parameters were determined for each subject. Half-lives and mean transit times of the n-3 fatty acids in the plasma were also determined. The model predicted plasma values for the n-3 fatty acids in good accordance with the measured steady state concentrations and also predicted dietary linolenic acid intake for each subject in accordance with values determined by lipid analysis of the diet. Only about 0.2% of the plasma 18:3n-3 was destined for synthesis of 20:5n-3, approximately 63% of the plasma 20:5n-3 was accessible for production of 22:5n-3, and 37% of 22:5n-3 was available for synthesis of 22:6n-3. The inefficiency of the conversion of 18:3n-3 to 20:5n-3 indicates that the biosynthesis of long-chain n-3 PUFA from alpha-linolenic acid is limited in healthy individuals. In contrast, the much greater rate of transfer of mass from the plasma 20:5n-3 compartment to 22:5n-3 suggests that dietary eicosapentaenoic acid may be well utilized in the biosynthesis of 22:6n-3 in humans.  相似文献   

2.
Although α-linolenic acid is nearly absent from Cyanidium caldarium cultured at 53 °C, it is the most abundant unsaturated fatty acid in 20 °C-grown cells. A sudden growth temperature shift of 55 to 25 °C does not stimulate the immediate biosynthesis of α-linolenic acid. However, after an induction period of 48 h, synthesis of α-linolenic acid from acetate can be detected, and the fatty acid accumulates in phosphatidyl choline and sulfolipid. The newly synthesized α-linolenic acid appears to be formed primarily by de novo synthesis and to a much lesser extent from the elongation of a previously formed hexadecatrienoic acid precursor. On the other hand, when a cell-free algal preparation was presented with a hexadecatrienoic acid precursor in the presence of [14C] malonyl-CoA, the α-linolenic acid formed demonstrated a synthesis by elongation of the precursor. While the cell appears enzymatically capable of α-linolenic acid biosynthesis by both the de novo and elongation processes, de novo synthesis of α-linolenic acid appears to be the more significant mode of synthesis.  相似文献   

3.
4.
The antral hormone gastrin is synthesized by processing progastrin into different peptides that stimulate gastric secretion. The effect on acid secretion depends mainly on the metabolic clearance rate of the peptides, but some of them may differ in potency and maximum acid output at similar concentrations in plasma. Sulfated and nonsulfated gastrin-6 are the smallest circulating bioactive gastrins in humans. Their effect and metabolism have now been investigated in nine normal subjects and compared with nonsulfated gastrin-17, a main product of progastrin. Maximum acid output after stimulation with gastrin-17, sulfated gastrin-6, and nonsulfated gastrin-6 were 28.3 +/- 2.0, 24.5 +/- 2.0 (P < 0.02), and 19.3 +/- 2. 3 (P < 0.05) mmol H(+)/50 min, respectively, and the corresponding EC(50) values were 43 +/- 6, 24 +/- 2 (P < 0.01), and 25 +/- 2 (not significant) pmol/l. The half-life of gastrin-17 was 5.3 +/- 0.3 min, the metabolic clearance rate (MCR) was 16.5 +/- 1.3 ml. kg(-1). min(-1), and the apparent volume of distribution (V(d)) was 124.3 +/- 9.6 ml/kg. The half-lives of sulfated and nonsulfated gastrin-6 were 2.1 +/- 0.3 and 1.9 +/- 0.3 min, the MCRs were 42.8 +/- 3.7 and 139.4 +/- 9.6 ml kg(-1) min(-1) (P < 0.01), and the V(d) were 139.0 +/- 30.5 and 392.0 +/- 81.6 (P < 0.01) ml kg(-1). All pharmacokinetic parameters differed significantly from gastrin-17 (P < 0.01). We conclude that gastrin 6 has a higher potency but a lower efficacy than gastrin-17. The efficacy of gastrin-6 is increased by tyrosine O-sulfation, which also enhances the protection against elimination.  相似文献   

5.
Alpha-linolenic acid is one of the fatty acids known as omega 3. Previous studies have shown the antioxidant and anti-inflammatory effects of alpha-linolenic acid, which prevented cell damage by inhibiting apoptotic pathway. Also, it is known that gentamicin activates apoptotic mediators and causes necrosis in the kidney. Due to this reason, we planned a study to evaluate the protective effects of alpha-linolenic acid on gentamicin induced ototoxicity by evaluating inflammation and apoptotic mediators. For this purpose, 100?mg/kg gentamicin (i.p; intraperitoneally) and 200?mg/kg alpha-linolenic acid (gavage) are administered to mice for 9?days. On 9th and 10th days, rotarod performance was assessed to test the effect of gentamicin and alpha-linolenic acid treatment on the motor coordination of mice. Gentamicin treatment decreased fall latency of mice and gentamicin treatment together with alpha-linolenic acid increased fall latency of mice. Gentamicin treatment also increased expression of phospholipase A2(plA2), cyclooxygenase-2(COX-2) and inducible nitric oxide syntheses (iNOS). Furthermore, it increased Bax and caspase-3, which are proapoptotic proteins and decreased bcl-2 that is an antiapoptotic protein. Gentamicin treatment together alpha-linolenic acid recovered the change of expression of these enzymes. In conclusion, this study showed that alpha-linolenic acid will be useful to prevent gentamicin-induced ototoxicity by inhibiting apoptosis and inflammation.  相似文献   

6.
Metabolism of 17 alpha-ethynylestradiol in humans   总被引:5,自引:0,他引:5  
F P Guengerich 《Life sciences》1990,47(22):1981-1988
17 alpha-Ethynylestradiol is extensively sulfated but the sulfate is thought to primarily be a storage form of this estrogen. 2-Hydroxylation is clearly the major oxidative reaction, and the 2-hydroxy derivative is further transformed by methylation and glucuronidation prior to urinary and fecal excretion. Alterations in the rate of 2-hydroxylation can have major effects on the pharmacokinetics and effectiveness of 17 alpha-ethynylestradiol as a contraceptive. The major human catalyst of the 2-hydroxylation reaction is liver microsomal cytochrome P-450 IIIA4. Lesser amounts of this enzyme are found in other tissues such as the intestine and may contribute to overall clearance of the orally administered contraceptive. In individuals with very low amounts of this enzyme other forms of cytochrome P-450 may make some contribution. Levels of cytochrome P-450 IIIA4 vary widely among individuals and can explain the variation in rates of 17 alpha-ethynylestradiol 2-hydroxylation. The known inducibility of the enzyme by barbiturates and rifampicin explains their effects in enhancing 17 alpha-ethynylestradiol clearance and reducing the effectiveness of the drug. Mechanism-based inactivation of cytochrome P-450 IIIA4 can be seen with 17 alpha-ethynylestradiol and other 17 alpha-acetylenic steroids, and the progestogen gestodene appears to be unusually active in this regard. Other unknown factors may also modulate levels of cytochrome P-450 IIIA4 and its ability to catalyze 17 alpha-ethynylestradiol 2-hydroxylation.  相似文献   

7.
Docosahexaenoic acid (DHA), a crucial nervous system n-3 PUFA, may be obtained in the diet or synthesized in vivo from dietary alpha-linolenic acid (LNA). We addressed whether DHA synthesis is regulated by the availability of dietary DHA in artificially reared rat pups, during p8 to p28 development. Over 20 days, one group of rat pups was continuously fed deuterium-labeled LNA (d5-LNA) and no other n-3 PUFA (d5-LNA diet), and a second group of rat pups was fed a d5-LNA diet with unlabeled DHA (d5-LNA + DHA diet). The rat pups were then euthanized, and the total amount of deuterium-labeled docosahexaenoic acid (d5-DHA) (synthesized DHA) as well as other n-3 fatty acids present in various body tissues, was quantified. In the d5-LNA + DHA group, the presence of dietary DHA led to a marked decrease (3- to 5-fold) in the total amount of d5-DHA that accumulated in all tissues that we examined, except in adipose. Overall, DHA accretion from d5-DHA was generally diminished by availability of dietary preformed DHA, inasmuch as this was found to be the predominant source of tissue DHA. When preformed DHA was unavailable, d5-DHA and unlabeled DHA were preferentially accreted in some tissues along with a net loss of unlabeled DHA from other organs.  相似文献   

8.
In order to meet dietary requirements, the consumption of alpha-linolenic acid (ALA, 18:3 n-3) must be promoted. However, its effects on triglyceride (TG) and cholesterol metabolism are still controversial, and may be dose-dependent. The effects of increasing dietary ALA intakes (1%, 10%, 20% and 40% of total FA) were investigated in male hamsters. ALA replaced oleic acid while linoleic and saturated FA were kept constant. Triglyceridemia decreased by 45% in response to 10% dietary ALA and was not affected by higher intakes. It was associated with lower hepatic total activities of acetyl-CoA-carboxylase (up to -29%) and malic enzyme (up to -42%), which were negatively correlated to ALA intake (r(2) = 0.33 and r(2) = 0.38, respectively). Adipose tissue lipogenesis was 2-6 fold lower than in the liver and was not affected by dietary treatment. Substitution of 10% ALA for oleic acid increased cholesterolemia by 15% but, as in TG, higher ALA intakes did not amplify the response. The highest ALA intake (40%) dramatically modified the hepatobiliary metabolism of sterols: cholesterol content fell by 45% in the liver and increased by 28% in the faeces. Besides, faecal bile acids decreased by 61%, and contained more hydrophobic and less secondary bile acids. Thus, replacing 10% oleic acid by ALA is sufficient to exert a beneficial hypotriglyceridemic effect, which may be counteracted by the slight increase in cholesterolemia. Higher intakes did not modify these parameters, but a very high dose resulted in adverse effects on sterol metabolism.  相似文献   

9.
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one; DHA) and DHA-sulfate are abundantly produced adrenal steroids, whose serum concentrations exceed those of other adrenal steroids. Serum concentrations of DHA and DHA-sulfate, in contrast to other adrenal steroids, exhibit a progressive age-related decline. The mechanism(s) for this selective decline in serum DHA and DHA-sulfate levels and the biologic function of these steroids remain unknown. Studies examining insulin's regulation of adrenal androgens are reviewed. These studies show that experimentally-induced hyperinsulinemia lowers serum DHA and DHA-sulfate levels, and suggest that insulin reduces serum concentrations of these steroids by inhibiting production rather than by increasing clearance. Studies examining the actions of short-term pharmacologic DHA administration to young nonobese and obese men are also reviewed. These studies suggest that DHA may possess hypolipidemic and, possibly, anti-obesity properties. They have failed, however, to demonstrate any effect of DHA on tissue insulin sensitivity.  相似文献   

10.
One of the major oxysterols in the human circulation is 4 beta-hydroxycholesterol formed from cholesterol by the drug-metabolizing enzyme cytochrome P450 3A4. Deuterium-labeled 4 beta-hydroxycholesterol was injected into two healthy volunteers, and the apparent half-life was found to be 64 and 60 h, respectively. We have determined earlier the half-lives for 7 alpha-, 27-, and 24-hydroxycholesterol to be approximately 0.5, 0.75, and 14 h, respectively. Patients treated with certain antiepileptic drugs have up to 20-fold increased plasma concentrations of 4 beta-hydroxycholesterol. The apparent half-life of deuterium-labeled 4 beta-hydroxycholesterol in such a patient was found to be 52 h, suggesting that the high plasma concentration was because of increased synthesis rather than impaired clearance. 4 beta-Hydroxycholesterol was converted into acidic products at a much slower rate than 7 alpha-hydroxycholesterol in primary human hepatocytes, and 4 beta-hydroxycholesterol was 7 alpha-hydroxylated at a slower rate than cholesterol by recombinant human CYP7A1. CYP7B1 and CYP39A1 had no activity toward 4 beta-hydroxycholesterol. These results suggest that the high plasma concentration of 4 beta-hydroxycholesterol is because of its exceptionally slow elimination, probably in part because of the low rate of 7 alpha-hydroxylation of the steroid. The findings are discussed in relation to a potential role of 4 beta-hydroxycholesterol as a ligand for the nuclear receptor LXR.  相似文献   

11.
Human lipid intake contains various amounts of trans fatty acids. Refined vegetable and frying oils, rich in linoleic acid and/or alpha-linolenic acid, are the main dietary sources of trans-18:2 and trans-18:3 fatty acids. The aim of the present study was to compare the oxidation of linoleic acid, alpha-linolenic acid, and their major trans isomers in human volunteers. For that purpose, TG, each containing two molecules of [1-(13)C]linoleic acid, alpha-[1-(13)C]linolenic acid, [1-(13)C]-9cis,12trans-18:2, or [1-(13)C]-9cis,12cis,15trans-18:3, were synthesized. Eight healthy young men ingested labeled TG mixed with 30 g of olive oil. Total CO(2) production and (13)CO(2) excretion were determined over 48 h. The pattern of oxidation was similar for the four fatty acids, with a peak at 8 h and a return to baseline at 24 h. Cumulative oxidation over 8 h of linoleic acid, 9cis,12trans-18:2, alpha-linolenic acid, and 9cis,12cis,15trans-18:3 were, respectively, 14.0 +/- 4.1%, 24.7 +/- 6.7%, 23.6 +/- 3.3%, and 23.4 +/- 3.7% of the oral load, showing that isomerization increases the postprandial oxidation of linoleic acid but not alpha-linolenic acid in men.  相似文献   

12.
This study describes the effect of substituting dietary linoleic acid (18:2 n-6) with alpha-linolenic acid (18:3 n-3) on sucrose-induced insulin resistance (IR). Wistar NIN male weanling rats were fed casein based diet containing 22 energy percent (en%) fat with approximately 6, 9 and 7 en% saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) respectively for 3 months. IR was induced by replacing starch (ST) with sucrose (SU). Blends of groundnut, palmolein, and linseed oil in different proportions furnished the following levels of 18:3 n-3 (g/100 g diet) and 18:2 n-6/18:3 n-3 ratios respectively: ST-220 (0.014, 220), SU-220 (0.014, 220), SU-50 (0.06, 50), SU-10 (0.27, 10) and SU-2 (1.1, 2). The results showed IR in the sucrose fed group (SU-220) as evidenced by increase in fasting plasma insulin and area under the curve (AUC) of insulin in response to oral glucose load. In SU-220, the increase in adipocyte plasma membrane cholesterol/phospholipid ratio was associated with a decrease in fluidity, insulin stimulated glucose transport, antilipolytic effect of insulin and increase in basal and norepinephrine stimulated lipolysis in adipocytes. In SU-50, sucrose induced alterations in adipocyte lipolysis and antilipolysis were normalized. However, in SU-2, partial corrections in plasma insulin, AUC of insulin and adipocyte insulin stimulated glucose transport were observed. Further, plasma triglycerides and cholesterol decreased in SU-2. In diaphragm phospholipids, the observed dose dependent increase in long chain (LC) n-3 PUFA was associated with a decrease in LC-n-6 PUFA but insulin stimulated glucose transport increased only in SU-2. Thus, this study shows that the substitution of one-third of dietary 18:2 n-6 with 18:3 n-3 (SU-2) results in lowered blood lipid levels and increases peripheral insulin sensitivity, possibly due to the resulting high LCn-3 PUFA levels in target tissues of insulin action. These findings suggest a role for 18:3 n-3 in the prevention of insulin resistant states. The current recommendation to increase 18:3 n-3 intake for reducing cardiovascular risk may also be beneficial for preventing IR in humans.  相似文献   

13.
Two groups of fatty acids are essential to the body, the omega6 (n6) series derived from linoleic acid (18:2, n-6) and the omega3 (n3) series derived from alpha-linolenic acid (18:3, n-3). Fatty acids provide energy, are an integral part of the cell membranes and are precursors of prostaglandins, thromboxanes and leukotrienes collectively known as eicosanoids. Eicosanoids participate in development and synthesis of immunological and inflammatory responses. The fixed oils (1, 2, 3 ml/kg) containing alpha-linolenic acid, obtained from the seeds of Linseed (Linum usitatissimum), Soyabean (Glycine max) and Holy basil (Ocimum sanctum) were screened for their antiinflammatory activity using carrageenan, leukotriene and arachidonic acid induced paw edema models in rats and the antiinflammatory effects were compared with the standard drug indomethacin. Significant inhibition of paw edema was produced by all the oils in the highest dose (3 ml/kg) in all the models. While O. sanctum oil produced the maximum percentage inhibition in leukotriene induced paw edema, L. usitatissimum oil produced maximum percentage inhibition in carrageenan and arachidonic acid induced paw edema models. The results show that oils with higher alpha-linolenic acid content (L. usitatissimum and O. sanctum) produced a greater inhibition of paw edema suggesting that modulation of the course of inflammatory disorders may be achieved by altering the eicosanoid precursor (i.e. poly unsaturated fatty acids: PUFA) availability through dietary manipulation.  相似文献   

14.
Two decades of research conclusively demonstrated the antithrombotic properties of the long-chain n-3 polyunsaturated fatty acids (PUFA) present in lipids from marine fishes. Most American consumers, however, given their preference for meat, will not realize the benefits of a fish-rich diet. Could α-linolenic acid (18:3, n-3) be similarly effective via modulation of the synthesis of vasoactive eicosanoids, i.e., thromboxane and prostacyclin? The present pilot study is a contribution toward answering this question. We determined that the urinary excretion of 11-dehydrothromboxane B2 declined by 34% from baseline level 7 weeks after the ratio of dietary PUFA was reduced from 28:1 to 1:1. The excretion of 2,3-dinor-6-oxo-prostaglandin F was similarly affected. The dietary adjustment was brought about by substituting measured amounts of canola and flaxseed oils (3:1) for measured amounts of olive and corn oils (3:1) in an otherwise fat-free basal diet. This study demonstrates that dietary α-linolenic acid is an effective modulator of thromboxane and prostacyclin biosynthesis. Therefore, we can expect that the eicosanoid-mediated effects of α-linolenic acid are similar to those elicited by marine lipids.  相似文献   

15.
We examined the effect of altering the linoleic acid (LA, 18:2n-6) to alpha-linolenic acid (ALA, 18:3n-3) ratio in the dietary fats of 3 day old piglets fed formula for 3 weeks. The LA-ALA ratios of the experimental formulas were 0.5:1, 1:1, 2:1, 4:1, and 10:1. The level of LA was held constant at 13% of total fats while the level of ALA varied from 1.3% (10:1 group) to 26.8% (0.5:1 group). Incorporation of the n-3 long chain PUFA EPA and 22:5n-3 into erythrocytes, plasma, liver, and brain tissues was linearly related to dietary ALA. Conversely, incorporation of DHA into all tissues was related to dietary ALA in a curvilinear manner, with the maximum incorporation of DHA appearing to be between the LA-ALA ratios of 4:1 and 2:1. Feeding LA-ALA ratios of 10:1 and 0.5:1 resulted in lower and similar proportions of DHA in tissues despite the very different levels of dietary ALA (1.3 vs. 26.8% of total fats, respectively). These results are relevant to term infant studies in that they confirm our earlier findings of the positive effect on DHA status by lowering the LA-ALA ratio from 10:1 to 3:1 or 4:1, and they predict that ratios of LA-ALA below 4:1 would have little further beneficial effect on DHA status.  相似文献   

16.
17.
The principal biological role of alpha-linolenic acid (alphaLNA; 18:3n-3) appears to be as a precursor for the synthesis of longer chain n-3 polyunsaturated fatty acids (PUFA). Increasing alphaLNA intake for a period of weeks to months results in an increase in the proportion of eicosapentaenoic acid (EPA; 20:5n-3) in plasma lipids, in erythrocytes, leukocytes, platelets and in breast milk but there is no increase in docosahexaenoic acid (DHA; 22:6n-3), which may even decline in some pools at high alphaLNA intakes. Stable isotope tracer studies indicate that conversion of alphaLNA to EPA occurs but is limited in men and that further transformation to DHA is very low. The fractional conversion of alphaLNA to the longer chain n-3 PUFA is greater in women which may be due to a regulatory effect of oestrogen. A lower proportion of alphaLNA is used for beta-oxidation in women compared with men. Overall, alphaLNA appears to be a limited source of longer chain n-3 PUFA in humans. Thus, adequate intakes of preformed long chain n-3 PUFA, in particular DHA, may be important for maintaining optimal tissue function. Capacity to up-regulate alphaLNA conversion in women may be important for meeting the demands of the fetus and neonate for DHA.  相似文献   

18.
The effect of dietary alpha-linolenic acid intake on linoleic acid metabolism and prostaglandin (PG) biosynthesis was investigated in two groups of six healthy females (25-32 yr). They were given isocaloric formula diets (FD) containing linoleic acid at a constant intake (4% of calories), with different amounts of alpha-linolenic acid: 0% (FD4/0), 4% (FD4/4), 8% (FD4/8) (group I) and 12% (FD4/12) or 16% (FD4/16) (group II); the diets were given for 2 weeks each. Comparing diet FD4/0 to FD4/16, enrichment of alpha-linolenic acid was greatest in cholesteryl esters (+6.8% in plasma, +7.1% in low density lipoproteins (LDL), +5.9% in high density lipoproteins (HDL)), less in phosphatidylcholine (+2.5% in plasma, +2.9% in LDL, +2.7% in HDL), and least in platelet lipids (+0.7%). The accumulation of alpha-linolenic acid was compensated by a decrease of oleic acid. Eicosapentaenoic acid (EPA), which was excluded from the diet, increased in all plasma lipids with augmented alpha-linolenic acid intake, indicating a chain elongation and desaturation of alpha-linolenic acid to EPA. However, even at the end of FD4/16, EPA was less than 2% of total fatty acids in all plasma lipids. Plasma linoleic acid levels were constant during all dietary regimes, according to the constant dietary intake of this fatty acid. No replacement of linoleic acid by alpha-linolenic acid could be observed. The percentage of arachidonic acid in all lipids was unaffected by alpha-linolenic acid intake. As arachidonic acid was not provided by the diet, it can be concluded that alpha-linolenic acid does not inhibit chain elongation and desaturation of linoleic acid to arachidonic acid in man.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Osaterone acetate (17 alpha-acetoxy-6-chloro-2-oxa-4,6-pregnadiene-3,20-dione; OA) is a steroidal antiandrogen. In order to clarify the species differences, metabolites of OA were examined in plasma, urine, and feces of dogs and humans after oral administration of OA. Eleven metabolites in plasma, urine, and feces were identified by their spectral properties and comparison to appropriate standards. The primary routes of OA metabolism involve 11 beta-, 15 beta- and 21-hydroxylation, 17 alpha-deacetylation, and dechlorination. Other metabolites arise from combinations of these pathways to form multiple oxidized metabolites. All metabolites observed in humans occurred in dogs. 11 beta-Hydroxylated metabolites (11 beta-OH OA and 11-oxo OA) were found in the plasma and urine of dogs, but there was no evidence of their presence in humans. 11 beta-Hydroxylation of exogenous steroids represents a distinctive biotransformation pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号