首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane-bound enzyme 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3β-HSD) catalyses an essential step in the transformation of all 5-pregnen-3β-ol and 5-androsten-3β-ol steroids into the corresponding 3-keto-4-ene-steroids, namely progesterone as well as all the precursors of androgens, estrogens, glucocorticoids and mineralocorticoids. We have recently characterized two types of human 3β-HSD cDNA clones and the corresponding genes which encode type I and II 3β-HSD isoenzymes of 372 and 371 amino acids, respectively, and share 93.5% homology. The human 3β-HSD genes containing 4 exons were assigned by in situ hybridization to the p11-p13 region of the short arm of chromosome 1. Human type I 3β-HSD is the almost exclusive mRNA species present in the placenta and skin while the human type II is the predominant mRNA species in the adrenals, ovaries and testes. The type I protein possesses higher 3β-HSD activity than type II. We elucidated the structures of three types of rat 3β-HSD cDNAs as well that of one type of 3β-HSD from bovine and macaque ovary λgt11 cDNA libraries, which all encode a 372 amino acid protein. The rat type I and II 3β-HSD proteins expressed in the adrenals, gonads and adipose tissue share 93.8% homology. Transient expression of human type I and II as well as rat type I and II 3β-HSD cDNAs in HeLa human cervical carcinoma cells reveals that 3β-ol dehydrogenase and 5-ene-4-ene isomerase activities reside within a single protein. These expressed 3β-HSD proteins convert 3β-hydroxy-5-ene-steroids into 3-keto-4-ene derivatives and catalyze the interconversion of 3β-hydroxy and 3-keto-5α-androstane steroids. By site-directed mutagenesis, we demonstrated that the lower activity of expressed rat type II compared to rat type I 3β-HSD is due to a change of four residues probably involved in a membrane-spanning domain. When homogenates from cells transfected with a plasmid vector containing rat type I 3β-HSD is incubated in the presence of dihydrotestosterone (DHT) using NAD? as co-factor, 5α-androstanedione was formed (A-dione), indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD. We cloned a third type of rat cDNA encoding a predicted type III 3β-HSD specifically expressed in the rat liver, which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells reveals that the type III isoenzyme does not display oxidative activity for the classical substrates of 3β-HSD. However, in common with the type I enzyme, it converts A-dione and DHT to the corresponding 3β-hydroxysteroids, thus showing an exclusive 3-ketosteroid reductase activity. When NADPH is used as co-factor, the affinity for DHT of the type III enzyme becomes 10-fold higher than that of the type I. Rat type III mRNA was below the detection limit in intact female liver. Following hypophysectomy, its concentration increased to 55% of the values measured in intact or hypophysectomized male rats, an increase which can be blocked by administration of ovine prolactin (oPRL). Treatment with oPRL for 10 days starting 15 days after hypophysectomy markedly decreased ovarian 3β-HSD mRNA accumulation accompanied by a similar decrease in 3β-HSD activity and protein levels. Treatment with the gonadotropin hCG reversed the potent inhibitory effect of oPRL on these parameters and stimulated 3β-HSD mRNA levels in ovarian interstitial cells. These data indicate that the presence of multiple 3β-HSD isoenzymes offers the possibility of tissue-specific expression and regulation of this enzymatic activity that plays an essential role in the biosynthesis of all hormonal steroids in classical as well as peripheral intracrine steroidogenic tissues.  相似文献   

2.
3.
The isoenzymes of the 3β-hydroxysteroid dehydrogenase/5-ene-4-ene-isomerase (3β-HSD) gene family catalyse the transformation of all 5-ene-3β-hydroxysteroids into the corresponding 4-ene-3-keto-steroids and are responsible for the interconversion of 3β-hydroxy- and 3-keto-5-androstane steroids. The two human 3β-HSD genes and the three related pseudogenes are located on the chromosome 1p13.1 region, close to the centromeric marker D1Z5. The 3β-HSD isoenzymes prefer NAD+ to NADP+ as cofactor with the exception of the rat liver type III and mouse kidney type IV, which both prefer NADPH as cofactor for their specific 3-ketosteroid reductase activity due to the presence of Tyr36 in the rat type III and of Phe36 in mouse type IV enzymes instead of Asp36 found in other 3β-HSD isoenzymes. The rat types I and IV, bovine and guinea pig 3β-HSD proteins possess an intrinsic 17β-HSD activity psecific to 5-androstane 17β-ol steroids, thus suggesting that such “secondary” activity is specifically responsible for controlling the bioavailability of the active androgen DHT. To elucidate the molecular basis of classical form of 3β-HSD deficiency, the structures of the types I and II 3β-HSD genes in 12 male pseudohermaphrodite 3β-HSD deficient patients as well as in four female patients were analyzed. The 14 different point mutations characterized were all detected in the type II 3β-HSD gene, which is the gene predominantly expressed in the adrenals and gonads, while no mutation was detected in the type I 3β-HSD gene predominantly expressed in the placenta and peripheral tissues. The mutant type II 3β-HSD enzymes carrying mutations detected in patients affected by the salt-losing form exhibit no detectable activity in intact transfected cells, at the exception of L108W and P186L proteins, which have some residual activity (1%). Mutations found in nonsalt-loser patients have some residual activity ranging from 1 to 10% compared to the wild-type enzyme. Characterization of mutant proteins provides unique information on the structure-function relationships of the 3β-HSD superfamily.  相似文献   

4.
The enzyme 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase (3β-HSD) is essential for the production of all classes of steroid hormones. Multiple isozymes of this enzyme have been demonstrated in the kidney and liver of both the rat and the mouse, although the function of the enzyme in these tissues is unknown. We have characterized three isozymes of 3β-HSD expressed in various tissues of the hamster. Both western and northern blot analyses demonstrated very high levels of 3β-HSD in the adrenal, kidney and male liver. Conversely, there were extremely low levels of enzyme expression in the female liver. cDNA libraries prepared from RNA isolated from hamster adrenal, kidney and liver were screened with a full-length cDNA encoding human type 1 3β-HSD. Separate cDNAs encoding three isoforms of 3β-HSD were isolated from these libraries. To examine the properties of the isoforms, the cDNAs were ligated into expression vectors for over-expression in 293 human fetal kidney cells. The type 1 isoform, isolated from an adrenal cDNA library, was identified as a high-affinity 3β-hydroxysteroid dehydrogenase. A separate isoform, designated type 2, was isolated from the kidney, and this was also a high-affinity dehydrogenase/isomerase. Two cDNAs were isolated from the liver, one identical in sequence to type 2 of the kidney, and a distinct cDNA encoding an isoform designated type 3. The type 3 3β-HSD possessed no steroid dehydrogenase activity but was found to function as a 3-ketosteroid reductase. Thus male hamster liver expresses a high-affinity 3β-HSD (type 2) and a 3-ketosteroid reductase (type 3), whereas the kidney of both sexes express the type 2 3β-HSD isoform. These differ from the type 1 3β-HSD expressed in the adrenal cortex.  相似文献   

5.
The formation of 4-ene-3-ketosteroids from 3β-hydroxy-5-ene precursors is an obligatory step in the biosynthesis of hormonal steroids such as glucocorticoids, mineralocorticoids, estrogens and androgens. In the adrenal cortex, pregnenolone, 17-hydroxy-pregnenolone and dehydroisoandrosterone are converted to progesterone, 17-hydroxy-progesterone and androstenedione, respectively, by the enzymatic system 3β-hydroxy-5-ene steroid dehydrogenase and 3-keto-5-ene steroid isomerase (3β-HSD/I).

The present work reports a two step purification procedure which yields an homogenous preparation of 3β-HSD/I from bovine adrenal cortex. It uses solubilization of the microsomal proteins followed by two chromatographic steps, i.e. DEAE-cellulose and heparine-sepharose columns. The enzyme was obtained as an homogeneous protein exhibiting an apparent molecular size of 45 kDa upon SDS-gel electrophoresis and of 81 kDa upon gel filtration. The purified enzyme exhibits both the 5-ene-3β-ol steroid dehydrogenase and isomerase activities in contrast to previous work using a more complex procedure which yielded a final preparation having lost its isomerase activity [Hiwatashi et al., Biochem. J. 98 (1985) 1519–1525]. N-terminal aminoacid (29 residues) sequence of the purified protein was determined and was found identical to that predicted from the nucleic acid sequence of the recently identified enzyme cDNA [Zhas et al. FEBS Lett. 259 (1989) 153–157].  相似文献   


6.
Evidence that endogenous progesterone (PROG) is neuroprotective after traumatic brain injury (TBI) is supported by the findings that pseudopregnant female rats present less edema and achieve better functional recovery than do male rats. PROG in the nervous system may originate from steroidogenic glands or can be locally synthesized. 3β-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3β-HSD) is the key enzyme in the biosynthesis of PROG. In the present study, we investigated the effects of pseudopregnancy and TBI on brain 3β-HSD mRNA expression and on PROG levels. Twenty-four hours after bilateral contusion of the medial prefrontal cortex of rats, 3β-HSD mRNA expression was analyzed by in situ hybridization while PROG levels were measured by gas chromatography/mass spectrometry. Similar levels of 3β-HSD mRNA expression were observed in males and pseudopregnant females in the non-injured groups. At this time point, there was a significant decrease in the 3β-HSD mRNA expression in the contusion site within the frontal cortex in both males and pseudopregnant females. In all other regions analyzed, 3β-HSD mRNA expression was not affected by TBI and there was no difference between males and pseudopregnant females. The high decrease in the expression of the 3β-HSD mRNA in the lesion site 24 h after TBI suggests a possible decrease in locally synthesized PROG in lesion site without change in the other brain regions. This decrease has less impact in pseudopregnant females since they have high plasmatic and brain levels of PROG compared to males.  相似文献   

7.
The interconversion of estrone (E1) and 17β-estradiol (E2), androstenedione (4-ene-dione) and testosterone (T), as well as dehydroepiandrosterone and androst-5-ene-3β,17β-diol is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD). The enzyme 17β-HSD thus plays an essential role in the formation of all active androgens and estrogens in gonadal as well as extragonadal tissues. The present study investigates the tissue distribution of 17β-HSD activity in the male and female rat as well as in some human tissues and the distribution of 17β-HSD mRNA in some human tissues. Enzymatic activity was measured using 14C-labeled E1, E2, 4-ene-dione and T as substrates. Such enzymatic activity was demonstrated in all 17 rat tissues examined for both androgenic and estrogenic substrates. While the liver had the highestlevel of 17β-HSD activity, low but significant levels of E2 as well as T formation were found in rat brain, heart, pancreas and thymus. The oxidative pathway (E2→E1, T→4-ene-dione) was favored over the reverse reaction in almost all rat tissues while in the human, almost equal rates were found in most of the 15 tissues examined. The widespread distribution of 17β-HSD in rat and human tissues clearly indicates the importance of this enzyme in peripheral sex steroid formation or intracrinology.  相似文献   

8.
The classical form of the enzyme 5-ene-3β-hydroxysteroid dehydrogenase/isomerase (3βHSD), expressed in adrenal glands and gonads, catalyzes the conversion of 5-ene-3β-hydroxysteroids to 4-ene-3-ketosteroids, an essential step in the biosynthesis of all active steroid hormones. To date, four distinct mouse 3βHSD cDNAs have been isolated and characterized. These cDNAs are expressed in a tissue-specific manner and encode proteins of two functional classes. Mouse 3βHSD I and III function as 3β-hydroxysteroid dehydrogenases and 5-en→4-en isomerases using NAD+ as a cofactor. The enzymatic function of 3βHSD II has not been completely characterized. Mouse 3βHSD IV functions only as a 3-ketosteroid reductase using NADPH as a cofactor. The predicted amino acid sequences of the four isoforms exhibit a high degree of identity. Forms II and III are 85 and 83% homologous to form I. Form IV is most distant from the other three with 77 and 73% sequence identity to I and III, respectively. 3βHSD I is expressed in the gonads and adrenal glands of the adult mouse. 3βHSD II and III are expressed in the kidney and liver with the expression of form II greater in kidney and form III greater in liver. Form IV is expressed exclusively in the kidney. Although the amino acid composition of forms I, III and IV predicts proteins of the same molecular weight, the proteins have different mobilities on SDS-polyacrylamide gel electrophoresis. This characteristic allows for differential identification of the expressed proteins. The four structural genes encoding the different isoforms are closely linked within a segment of mouse chromosome 3 that is conserved on human chromosome 1.  相似文献   

9.
Prolactin (PRL) exerts both stimulatory and inhibitory effects upon testicular steroidogenesis in vivo. The direct effects of PRL on biosynthesis of testicular androgen were studied in primary cultures of testicular cells obtained from adult, hypophysectomized or neonatal, intact rats. In cells from adult animals, treatment with human chorionic gonadotropin (hCG) (10 ng/ml) significantly increased testosterone and progesterone production relative to their respective controls. In contrast, neither steroid was increased by treatment with rat PRL (rPRL) or ovine PRL (oPRL) alone. Upon addition of 0.1-3 ng/ml of either rPRL or oPRL to the hCG-treated cultures, testosterone production was progressively increased up to a maximum of 70% greater than with hCG alone. However, when PRL exceeded 3 ng/ml, the testosterone response began to decline and was 39 or 24% less than from cells treated with hCG alone at 300 ng/ml of rPRL or oPRL, respectively. A similar biphasic response pattern was observed in cells from neonatal animals. In contrast to the biphasic effect of PRL on production of androgen, PRL treatment enhanced hCG-stimulated production of progesterone in a dose-related manner without exerting an inhibitory effect. At 3 and 300 ng/ml, rPRL augmented hCG action by 2.5- and 8-fold, respectively. Similarly, in the presence of inhibitors of pregnenolone metabolism, rPRL also enhanced hCG-stimulated production of pregnenolone. Quantitation of steroid intermediates in the testosterone biosynthetic pathway revealed that the stimulatory effect of 3 ng/ml rPRL on testosterone production was associated with 1.3- and 2.8-fold increases in accumulation of androstenedione and 17 alpha-hydroxyprogesterone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
The appropriate expression of 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase (3β-HSD) is vital for mammalian reproduction, fetal growth and life maintenance. Several isoforms of 3β-HSD, the products of separate genes, have been identified in various species including man. Current investigations are targeted toward defining the processes that regulate the levels of specific isoforms in various steroidogenic tissues of man. High levels of expression of 3β-HSD were observed in placental tissues. It has been generally considered that the multinucleated syncytiotrophoblastic cells are the principal sites of 3β-HSD expression and, moreover, that 3β-HSD expression is intimately associated with cyclic AMP-promoted formation of syncytia. Herein we report the presence of 3β-HSD immunoreactive and mRNA species in uninucleate cytotrophoblasts in the chorion laeve, similar to that in syncytia but not cytotrophoblast placenta. In vitro, 3β-HSD levels in chorion laeve cytotrophoblasts were not increased with time nor after treatment with adenylate cyclase activators, whereas villous cytotrophoblasts spontaneously demonstrated progressive, increased 3β-HSD expression. Moreover, 3β-HSD synthesis appeared to precede morphologic syncytial formation. Thus high steroidogenic enzyme expression in placenta is not necessarily closely linked to formation of syncytia. Both Western immunoblot and enzymic activity analyses also indicated that the 3β-HSD expressed in these cytotrophoblastic populations was the 3β-HSD type I gene product (Mr, 45K) and not 3β-HSD type II (Mr, 44K) expressed in fetal testis. In cultures of fetal zone and definitive zone cell of human fetal adrenal, 3β-HSD expression was not detected until ACTH was added. ACTH, likely acting in a cyclic AMP-dependent process, induced 3β-HSD type II activity and mRNA expression. The higher level of 3β-HSD mRNA in definitive zone compared with fetal zone cells was associated with parallel increases in cortisol secretion relative to dehydroepiandrosterone sulfate formation.  相似文献   

12.
17β-hydroxysteroid dehydrogenases (17β-HSD) catalyze the conversion of estrogens and androgens at the C17 position. The 17β-HSD type I, II, III and IV share less than 25% amino acid similarity. The human and porcine 17β-HSD IV reveal a three-domain structure unknown among other dehydrogenases. The N-terminal domains resemble the short chain alcohol dehydrogenase family while the central parts are related to the C-terminal parts of enzymes involved in peroxisomal β-oxidation of fatty acids and the C-terminal domains are similar to sterol carrier protein 2. We describe the cloning of the mouse 17β-HSD IV cDNA and the expression of its mRNA. A probe derived from the human 17β-HSD IV was used to isolate a 2.5 kb mouse cDNA encoding for a protein of 735 amino acids showing 85 and 81% similarity with human and porcine 17β-HSD IV, respectively. The calculated molecular mass of the mouse enzyme amounts to 79,524 Da. The mRNA for 17β-HSD IV is a single species of about 3 kb, present in a multitude of tissues and expressed at high levels in liver and kidney, and at low levels in brain and spleen. The cloning and molecular characterization of murine, human and porcine 17β-HSD IV adds to the complexity of steroid synthesis and metabolism. The multitude of enzymes acting at C17 might be necessary for a precise control of hormone levels.  相似文献   

13.
After solubilization of rat adrenal microsomes with sodium cholate, 3 beta-hydroxysteroid dehydrogenase with steroid 5-ene-4-ene isomerase (abbreviated as steroid isomerase) activity was purified to a homogeneous state. The following characteristics of the enzyme were obtained: 3 beta-Hydroxysteroid dehydrogenase together with steroid isomerase was detected as a single protein band in SDS-polyacrylamide gel electrophoresis, where its mol. wt was estimated as 46,500. Either NAD+ or NADH was required for demonstration of steroid isomerase activity. Treatment of the enzyme with 5'-p-fluorosulfonylbenzoyladenosine, an affinity labeling reagent for NAD+-dependent enzyme, diminished both the enzyme activities.  相似文献   

14.
We have used our recently characterized human 3 beta-hydroxy-5-ene steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) cDNA as probe to isolate cDNAs encoding bovine 3 beta-HSD from a bovine ovary lambda gtll cDNA library. Nucleotide sequence analysis of two overlapping cDNA clones of 1362 bp and 1536 bp in length predicts a protein of 372 amino acids with a calculated molecular mass of 42,093 (excluding the first Met). The deduced amino acid sequence of bovine 3 beta-HSD displays 79% homology with human 3 beta-HSD while the nucleotide sequence of the coding region shares 82% interspecies similarity. Hybridization of cloned cDNAs to bovine ovary poly(A)+ RNA shows the presence of an approximately 1.7 kb mRNA species.  相似文献   

15.
Elimination of adrenergic nerve endings by chemical sympathectomy with 6-hydroxydopamine of normally cycling rats produced no differences in the weights of body, uterus, ovaries or adrenals, but suppressed significantly proestrus/estrus stages. Unilateral fully denervated (autotransplanted) ovaries showed the following changes in [14C]progesterone metabolism: the formation of 20-hydroxy-4-pregnen-3-one increased, whereas 5-pregnane-3,20- and 3ß,20-diol, 3- and 3ß-hydroxy-5-pregnan-20-one, 20-hydroxy-5-pregnan-3-one, an unidentified metabolite Y and a group of hydrophobic metabolites decreased dramatically. Enzyme activities could not be restored with epinephrine. Sympathectomy changed the spectrum of [14C] progesterone metabolites in the same direction, but only at diestrus and metestrus. Autotransplantation suppressed 5-reductase, 3- and 3ß-hydroxysteroid dehydrogenase activities (-HSD) measured by the sum of all 5-, 3, and 3ß-metabolites, respectively. Sympathectomy suppressed significantly 5-reductase and 3-HSD at metestrus. 20-HSD was not changed in any experiment. These studies provide evidence that 5-reductase depends on adrenergic input in ovaries of rats at metestrus, a stage of nadir of gonadotropins. During the estrous cycle 5-reductase may be a regulatory enzyme for progesterone metabolism and also influence estradiol biosynthesis.  相似文献   

16.
The purified multifunctional enzyme, 3 beta-hydroxysteroid dehydrogenase with steroid 5-ene-4-ene isomerase from rat testes and adrenals showed similar catalytic properties. They exhibited the same molecular weight of 46,500. Either NAD+ or NADH was required for steroid isomerizing activity, probably as an allosteric effector. It was clearly demonstrated by using the purified enzyme that without NAD(H) no isomerizing activity was detected. In the presence of NADH, or its analogue, 3 beta-hydroxysteroid dehydrogenase obtained from both tissues was inhibited; however, steroid isomerizing activity remained due to the allosteric effect. The results suggest that in these endocrine organs, both enzyme activities reside within the same protein.  相似文献   

17.
The fungus Aspergillus tamarii metabolizes progesterone to testololactone in high yield through a sequential four step enzymatic pathway which, has demonstrated flexibility in handling a range of steroidal probes. These substrates have revealed that subtle changes in the molecular structure of the steroid lead to significant changes in route of metabolism. It was therefore of interest to determine the metabolism of a range of 5-ene containing steroidal substrates. Remarkably the primary route of 5-ene steroid metabolism involved a 3β-hydroxy-steroid dehydrogenase/Δ5–Δ4 isomerase (3β-HSD/isomerase) enzyme(s), generating 3-one-4-ene functionality and identified for the first time in a fungus with the ability to handle both dehydroepiansdrosterone (DHEA) as well as C-17 side-chain containing compounds such as pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one. Uniquely in all the steroids tested, 3β-HSD/isomerase activity only occurred following lactonization of the steroidal ring-D. Presence of C-7 allylic hydroxylation, in either epimeric form, inhibited 3β-HSD/isomerase activity and of the substrates tested, was only observed with DHEA and its 13α-methyl analogue. In contrast to previous studies of fungi with 3β-HSD/isomerase activity DHEA could also enter a minor hydroxylation pathway. Pregnenolone and 3β-hydroxy-16α,17α-epoxypregn-5-en-20-one were metabolized solely through the putative 3β-HSD/isomerase pathway, indicating that a 17β-methyl ketone functionality inhibits allylic oxidation at C-7. The presence of the 3β-HSD/isomerase in A. tamarii and the transformation results obtained in this study highlight an important potential role that fungi may have in the generation of environmental androgens.  相似文献   

18.
The regulation of the production of steroids and steroid sulfates and the activity of aromatase in human luteinized granulosa cells were investigated. The cells were cultured for 48 h in the presence or absence of hCG and FSH. Basal production of pregnenolone (Pre, 0.3 +/- 0.03 ng/micrograms protein) and progesterone (P, 19.3 +/- 1.7 ng/micrograms protein) were high compared with that of other steroids beyond P in the steroidogenic pathway. The concentration of 17 alpha-hydroxyprogesterone (17-OHP) was lower 0.17 +/- 0.06 ng/micrograms and that of other steroids in the 4-ene and 5-ene pathways and steroid sulfates less than 0.05 ng/micrograms. Both hCG and FSH (100 ng/ml) stimulated the production of Pre and P 3- to 5-fold, but only minimal stimulation of other steroids and steroid sulfates was observed. Aromatase activity of granulosa-luteal cells was measured from the rate of formation of 3H2O from 1 beta-[3H]androstenedione (1 beta[3H]A) after exposing the cells to hCG, FSH or estradiol (E2) for 48 h. Basal aromatase activity was relatively low, but hCG and FSH stimulated aromatase 8- and 4-fold, respectively. The incubation of granulosa-luteal cells with E2 did not affect basal aromatase activity, but E2 augmented FSH-stimulated aromatase 1.4-fold (P less than 0.025). The results suggest that there is low 17 alpha-hydroxylase and steroid sulfokinase activity in human granulosa-luteal cells. Aromatase activity in these cells is regulated by both hCG and FSH, and intra-ovarian estrogens may regulate granulosa cell aromatase activity.  相似文献   

19.
Estrogens play an important role in the development and progression of breast cancer. 17β-Hydroxysteroid dehydrogenase (17β-HSD) type 2 and type 5 are involved in sex steroid metabolism. 17β-HSD type 2 converts estradiol to estrone while 17β-HSD type 5 converts androstenedione to testosterone. Using immunocytochemistry, we have studied the expression of 17β-HSD type 2 and type 5 in 50 specimens of breast carcinoma and adjacent non-malignant tissues. The results were correlated with the estrogen receptor α (ERα) and β (ERβ), progesterone receptor A (PRA) and B (PRB), androgen receptor and CDC47 and with the tumor stage, tumor size, nodal status and menopausal status. 17β-HSD type 2 was expressed in 20% and 17β-HSD type 5 in 56% of breast cancer specimens. In adjacent normal tissues, both enzymes were highly expressed in almost all the patients. No significant association could be found between the expression of 17β-HSD type 2 and 17β-HSD type 5 and between the expression of each enzyme and the clinicopathological parameters studied. The decrease in 17β-HSD type 2 and 17β-HSD type 5 expressions in breast cancer may play a predominant role in the development and/or progression of the cancer by modifying the intratumoral levels of estrogens and androgens.  相似文献   

20.
The matrix metalloproteinases (MMPs) are postulated to facilitate follicular rupture. In the present study, expression of the stromelysins (MMP3, MMP10, MMP11) was analyzed in the periovulatory human and rat ovary. Human granulosa and theca cells were collected from the dominant follicle at various times after human chorionic gonadotropin (hCG). Intact rat ovaries, granulosa cells, and residual tissue (tissue remaining after granulosa cell collection) were isolated from equine CG (eCG)-hCG-primed animals. Mmp10 mRNA was highly induced in human granulosa and theca cells and intact rat ovaries, granulosa cells, and residual tissue. Localization of MMP10 to granulosa and theca cells in both human and rat ovarian follicles was confirmed by immunohistochemistry. Mmp3 mRNA was unchanged in human cells and rat granulosa cells, but increased in intact rat ovaries and residual tissue. Mmp11 mRNA decreased following hCG treatment in human granulosa and theca cells as well as rat granulosa cells. Regulation of Mmp10 in cultured rat granulosa cells revealed that the EGF inhibitor AG1478 and the progesterone receptor antagonist RU486 suppressed the induction of Mmp10 mRNA, whereas the prostaglandin inhibitor NS398 had no effect. Studies on the Mmp10 promoter demonstrated that forskolin plus PMA stimulated promoter activity, which was dependent upon a proximal AP1 site. In conclusion, there are divergent patterns of stromelysin expression associated with ovulation, with a marked induction of Mmp10 mRNA and a decrease in Mmp11 mRNA, yet a species-dependent pattern on Mmp3 mRNA expression. The induction of Mmp10 expression suggests an important role for this MMP in the follicular changes associated with ovulation and subsequent luteinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号