首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LT/Sv strain mice ovulate both primary and secondary oocytes. These are fertilizable and give rise to digynic triploid and normal diploid conceptuses, respectively. A previous study [Kaufman and Speirs, 1987] had indicated that just over 20% of embryos recovered on the 10th day of gestation from spontaneously ovulating females had a triploid chromosome constitution. This value was considerably lower than might have been expected by extrapolation from earlier studies in which LT/Sv mice had been given exogenous gonadotrophins. In the present study, therefore, cytogenetic analysis of fertilized eggs was performed at the first cleavage mitosis in (1) spontaneously ovulating females mated to F1 hybrid males, and (2) superovulated females mated to similar males. Additional females from group (1) were autopsied on the 10th day of gestation, and the ploidy of embryos isolated at this stage of gestation was determined. Exposure to exogenous gonadotrophins significantly increased the proportion of eggs that were ovulated as primary oocytes (34.4%), compared to the situation observed following spontaneous ovulation (24.4%). All the triploids encountered in both series were of the digynic type and characteristically (for LT/Sv mice) had an oocyte-derived set with 40 chromosomes present, and a sperm-derived set containing 20 chromosomes. Similar numbers of eggs were recovered from spontaneously ovulating females on the 1st and 10th days of gestation, and the incidence of triploidy observed on the 10th day was 22.1%. The influence of exogenous hormones in increasing the “spontaneous” level of triploidy in LT/Sv and in other strains of mice is briefly reviewed.  相似文献   

2.
Triploid oysters were induced using cytochalasin B upon retention of either the first (meiosis I triploids) or the second (meiosis II triploids) polar body in embryos from a single cohort derived from mixed parentage. Allozyme and microsatellite assays enabled the confirmation of both parentage and triploidy status in each oyster. Comparison of meiosis I triploids, meiosis II triploids and diploid siblings established that improved physiological performance in triploids was associated with increased allelic variation, rather than with the quantitative dosage effects of ploidy status. An unidentified maternal influence also interacted with genotype. Among full sibs, allelic variation measured as multi-locus enzyme heterozygosity accounted for up to 42% of the variance in physiological performance; significant positive influences were identified upon feeding rate, absorption efficiency, net energy balance and growth efficiency (= net energy balance divided by energy absorbed). Whilst allelic variation was greater in both meiosis I and meiosis II triploids than in diploid siblings, both allelic variation and net energy balance were highest in triploids induced at meiosis I. This suggests that it may be preferable to induce triploidy by blocking meiosis I, rather than meiosis II as has traditionally been undertaken during commercial breeding programmes.  相似文献   

3.
禾本科三倍体的形成途径包括2n配子融合、倍性间杂交、多精受精和胚乳培养。其中, 2n配子融合和倍性间杂交分别为自然界和人工合成三倍体的主要途径。该文介绍了形态学观测、染色体分析、流式细胞术和分子标记等倍性鉴定方法在禾本科三倍体中的应用及其优缺点。目前, 三倍体在禾谷类作物中无直接应用价值, 但可作为通往多倍体、非整倍体和转移异源基因的遗传桥梁。多年生禾本科三倍体(特别是异源三倍体)在饲草或能源作物中已得到广泛应用, 在该类型禾本科作物中均可直接尝试三倍体育种。多倍体的三倍体育种和无融合生殖三倍体育种可作为未来禾本科三倍体的研究方向。三倍性胚乳培养可以一步合成三倍体, 多精受精可以实现遗传上3个不同基因组的一步融合, 在三倍体研究中应予以重视。鉴于2n配子融合、多精受精的稀有特性和倍性间杂交、胚乳培养频繁的染色体变异, 高通量三倍体鉴定技术的发展将是三倍体研究实现突破的关键。  相似文献   

4.
Felip A  Zanuy S  Carrillo M  Piferrer F 《Genetica》2001,111(1-3):175-195
The induction of triploidy and gynogenesis by chromosome set manipulation has traditionally been studied more intensively in freshwater than in marine fish. In the last years, however, several studies have applied these manipulations in about a dozen marine species, including mainly sparids, moronids and flatfishes. This paper focuses on the methodologies used to induce, verify, and assess performance of both triploids and gynogenetics of these marine species. Since many of them are batch spawners and have small and fragile eggs and larvae, peculiarities relating to broodstock management, gamete quality and mortality assessment during early larval stages are also taken into account. However, data show that if handling is correct and the treatments are optimized, triploid and gynogenetic rates of 100% can be easily achieved. Survival of triploids with respect to the controls is about 70–80%, whereas in gynogenetics it is generally low and more variable, depending on the species considered. In the marine fish investigated so far, triploidy has not resulted in significantly higher growth rates. On the other hand, the induction of gynogenesis has resulted in the production of both all-female and mix-sex stocks. Throughout the paper, special reference is made to the European sea bass (Dicentrarchus labrax L.), a species of both basic and applied interest, for which a comprehensive study has been carried out on the induction, verification and performance of triploids and gynogenetics.Author for correspondence  相似文献   

5.
When spontaneously ovulating LT/Sv female mice are mated with fertile males, between one third and one half of the zygotes analyzed at the first cleavage mitosis are found to be triploid. This is due to the fact that LT/Sv females ovulate both primary and secondary oocytes, all of which are capable of being fertilized. Fertilization of the former group results in the production of digynic triploid conceptuses, while their diploid littermates result from the fertilization of normal secondary oocytes. The present study was therefore carried out in order to investigate the 'spontaneous' level of triploidy in these mice, and to provide insight into the developmental fate of the LT/Sv triploid embryos, as previous studies had indicated that in this species triploids invariably fail to develop beyond the early postimplantation period. This study revealed that when autopsies were carried out on the 7th and 8th days of gestation, it was generally difficult to distinguish between the karyologically normal diploids and the digynic triploid conceptuses when only morphological criteria were used. However, by the 10th day of gestation, the triploid conceptuses could usually be readily distinguished from their diploid littermates by their smaller size and (occasionally) by their disorganized or abnormal morphological appearance.  相似文献   

6.
PRODUCTION OF TRIPLOID AND GYNOGENETIC DIPLOID XENOPUS BY COLD TREATMENT   总被引:1,自引:1,他引:0  
Methods are described for producing triploids and gynogenetic diploids of Xenopus laevis. A high frequency of triploids was obtained when the eggs were refrigerated at 2-3 C for 15 min, starting 10–16 min after insemination. By this procedure, the suppression of second polar body emission was cytologically evident. The occurrence of triploidy was confirmed by chromosome and nucleolar counts, as well as microspectrophotomctric determination of nuclear DNA contents. Thus, more than 60% of the feeding tadpoles were triploids. Using the refrigeration method for inducing triploids, gynogenetic diploids were produced by inseminating eggs by sperm previously irradiated with ultraviolet light. Triploids and gynogenelic diploids thus obtained developed normally beyond metamorphosis, and have been growing well for more than 1.5 years.  相似文献   

7.
Summary A comparative study has been made of glycosaminoglycan (GAG) accumulation in human fibroblasts with trisomy 7 and triploidy from spontaneous abortuses, fibroblasts with triploidy from induced abortuses, fibroblasts from patients with Down's syndrome and diploid fibroblasts from age-matched controls. The study demonstrated that the incorporation of [3H]glucosamine into hyaluronic acid by fibroblasts with trisomy 7 and triploidy, established from spontaneous abortuses, and from two out of three induced abortuses with triploidy, was 2.6–5.3 times lower than control incorporation. One strain of fibroblasts from an induced abortus with triploidy (IMG-1062) did not show any differences in GAG production when compared with diploid fibroblasts. However, the strains from children with Down's syndrome revealed normal or even increased levels of hyaluronic acid production. The data support the contention that the decreased hyaluronic acid synthesis in fibroblasts with an abnormal karyotype is related to spontaneous abortion.  相似文献   

8.
Henry IM  Dilkes BP  Young K  Watson B  Wu H  Comai L 《Genetics》2005,170(4):1979-1988
Polyploidy, the inheritance of more than two genome copies per cell, has played a major role in the evolution of higher plants. Little is known about the transition from diploidy to polyploidy but in some species, triploids are thought to function as intermediates in this transition. In contrast, in other species triploidy is viewed as a block. We investigated the responses of Arabidopsis thaliana to triploidy. The role of genetic variability was tested by comparing triploids generated from crosses between Col-0, a diploid, and either a natural autotetraploid (Wa-1) or an induced tetraploid of Col-0. In this study, we demonstrate that triploids of A. thaliana are fertile, producing a swarm of different aneuploids. Propagation of the progeny of a triploid for a few generations resulted in diploid and tetraploid cohorts. This demonstrated that, in A. thaliana, triploids can readily form tetraploids and function as bridges between euploid types. Genetic analysis of recombinant inbred lines produced from a triploid identified a locus on chromosome I exhibiting allelic bias in the tetraploid lines but not in the diploid lines. Thus, genetic variation was subject to selection contingent on the final ploidy and possibly acting during the protracted aneuploid phase.  相似文献   

9.
Using triploidy as an experimental model, we examined whether cell size limits the post-exercise recovery process in fish. Because triploids generally possess larger cells, which could affect many physiological and biochemical processes, we hypothesized that triploids would take longer to recover from exhaustive exercise compared to diploids. To test this, we measured plasma lactate, glucose and osmolality, and white muscle energy stores (glycogen, phosphocreatine and ATP) and lactate before and immediately following exhaustive exercise and during recovery at 2 and 4 h post-exercise. In addition, oxygen consumption and ammonia excretion rates were determined before and after exhaustive exercise. Overall, diploid and triploid brook trout showed similar metabolic responses exercise, but plasma osmolality, white muscle lactate, white muscle ATP and post-exercise oxygen consumption rates recovered earlier in triploids compared to diploids. The results of this study suggest that the characteristic larger cell size of triploidy does not limit the physiological response to, or recovery from, exhaustive exercise.  相似文献   

10.
Lachowska D  Rozek M  Holecová M 《Genetica》2008,134(2):235-242
Parthenogenesis and, in particular, polyploidy are rare in animals. A number of cases, known among weevils, represent apomictic parthenogenesis-a reproductive mode in which eggs undergo one maturation division, the chromosomes divide equationally, and no reduction takes place. Among parthenogenetic weevils there are two diploids, 48 triploids, 18 tetraploids, six pentaploids, three hexaploids and one decaploid. Eight examined parthenogenetic species are triploids with 33 chromosomes of different morphology, confirming that triploidy is the most common level of ploidy in weevils. The karyotypes are heterogeneous with the presence of meta-, submeta-, subtelo- and acrocentric chromosomes. The C-banding method showed that only two species possess a large amount of heterochromatin visible as a band around the centromere during mitotic metaphase. This agrees with observations that weevils are characterized by a small amount of heterochromatin, undetectable in metaphase plates after C-banding. In three species an atypical course of apomictic oogenesis occurs with stages similar to meiosis, in which chromosomes form bivalents and multivalent clusters. This association of chromosomes probably represents the remnants of meiosis, although these events have nothing to do with recombination. The results support the hypothesis that the evolution of apomictic parthenogenesis in weevils has proceeded through a stage of automixis.  相似文献   

11.
Adult triploid zebrafish Danio rerio has previously been reported to be all male. This phenomenon has only been reported in one other gonochoristic fish species, the rosy bitterling Rhodeus ocellatus, despite the fact that triploidy is induced in numerous species. To investigate the mechanism responsible, we first produced triploid zebrafish and observed gonad development. Histological sections of juvenile triploid gonads showed that primary growth oocytes were able to develop in the juvenile ovary, but no cortical alveolus or more advanced oocytes were found. All adult triploids examined were male (n = 160). Male triploids were able to induce oviposition by diploid females during natural spawning trials, but fertilization rates were low (1.0 ± 3.1%) compared with diploid male siblings (67.4 ± 16.6%). The embryos produced by triploid sires were aneuploid with a mean ploidy of 2.4 ± 0.1n, demonstrating that triploid males produce aneuploid spermatozoa. After confirming that adult triploids are all male, we produced an additional batch of triploid zebrafish and exposed them (and a group of diploid siblings) to 100 ng/L estradiol (E2) from 5 to 28 dpf. The E2 treated triploids and nontreated triploids were all male. The nontreated diploids were also all male, but the E2 treated diploids were 89% female. This demonstrates that triploidy acts downstream of estrogen synthesis in the sex differentiation pathway to induce male development. Based on this and the observations of juvenile gonad development in triploids, we suggest that triploidy inhibits development of oocytes past the primary growth stage, and this causes female to male sex reversal.  相似文献   

12.
Heat-, cold- and hydrostatic pressure shocks were applied in order to improve triploidy induction in European catfish ( Silurus glanis L . ). A 41°C heat shock (45 s, starting 9 min after gamete activation) provided 88% triploids and a high percentage of malformation (38.8 ± 4.1%). The superior 6°C cold shock (20 min, starting 9 min after gamete activation) gave 100% triploids and a 33.4 ± 3.8% triploid yield. The earliest hydrostatic treatments (600 kg cm2), lasting 4 min and starting 3 min after gamete activation, gave 97.8 ± 1.8% triploids and a 33.7 ± 16.9% triploid yield. The ploidy level was investigated using four approaches: karyotyping, quantification of Ag-stained nucleoli per cell, flow cytometry, and erythrocyte nuclear sizing by computer-assisted image analysis. Induction of triploidy under mass conditions in three experiments gave triploid percentages of 74%, 83% and 66%. Five months later, the percentage of triploids significantly decreased to 12.4%, 8.2% and 21.4%. The growth performance of yearlings was better in diploids than in triploids. Differences between diploids and triploids were 13.5% (NS), 27.6% (P   < 0.001) and 25.4% (P   < 0.05) in the three experiments. Analysis of variance showed the influence of ploidy (P   < 0.001) on growth rate, and multiple range analysis (LSD) assessed differences between total diploids (12.6 g) and total triploids (9.5 g) at the P   < 0.01 level.  相似文献   

13.
V S Baranov 《Ontogenez》1983,14(6):573-589
A review of recent studies on mammalian embryos, mostly mice, with chromosomal aberrations. Morphological, biochemical and cytological studies on mice with polyploidy, aneuploidy and some structural aberrations are discussed. Some types of chromosomal aberrations, especially monosomy for individual chromosomes (2, 5, 7, or 17), are already evident during early cleavage and are inevitably lethal by the morula stage. A direct relationship exists between the duration of survival and chromosome aberrations (trisomy and monosomy) for every chromosome. Differential gene activity of the mouse autosomes becomes evident already at the very early developmental stages. Some feasible causes of the early death of embryos with autosomal monosomy are discussed and a hypothetical mechanism for the activation of homologous autosomes at the early developmental stages is proposed. Perspectives of future studies in cytogenetics of mammalian development are outlined.  相似文献   

14.
Developmental manipulations that can alter nerve-limb relationships can assist in understanding the neural control of limb regeneration. Pressure-induced triploidy in Rana pipiens tadpoles results in alterations of the quantitative characteristics of the spinal motor neurons that innervate the limbs, whereas the limbs appear unaltered. Unilateral midthigh amputations at larval stages IX, XI, and XIII of diploid and triploid animals resulted in complete regeneration for only stage IX animals regardless of ploidy. Nevertheless, triploid limbs regenerated much faster than did diploids, an event that can be related to the differential dynamics of nerve fiber extension and/or the altered numbers and sizes of triploid spinal motor neurons. Although normal limb development from stage IX to the endpoint at stage XVIII was the same in diploids and triploids, the rate of regeneration in triploids was nearly twice that of diploids. The data of this noninvasive means of altering the quantitative relationship of nerve-to-peripheral target suggest a unique means of studying nerve-dependent limb regeneration in an animal that progressively loses its regenerative capability during development.  相似文献   

15.
Muscle fibre growth dynamics in diploid and triploid rainbow trout   总被引:1,自引:0,他引:1  
The effect of triploidy on muscle fibre growth was determined by comparing hyperplasia and hypertrophy of white muscle fibres in all-female, diploid and triploid rainbow trout Oncorhynchus mykiss (100–400 mm total length). Conventional morphometry and protein and DNA concentrations were used to assess muscle fibre hyperplasia and hypertrophy in white muscle samples derived from an anterio-dorsal location. Muscle fibre distributions were significantly different between triploids and diploids in trout <300 mm. The proportion of fibres <20 μm was higher in diploids than in triploids and the proportion of fibres in the 20–40 μm category was higher in triploids than in diploids. This indicates that the hyperplastic fibres of triploids are larger than those of diploids. Larger hyperplastic fibres in triploids are probably due to the combined effect of increased nuclear size in triploids and the relatively high nucleus: cell ratio observed in small muscle fibres. These larger fibres may be less favourable to cellular metabolic exchange because of their smaller surface area to volume ratios, and perhaps account for reduced viability and growth observed in triploids during early life stages. On the other hand, the lack of difference in the distribution of fibres <20 μm between diploids and triploids at larger body size ranges (301–400 mm) imply that triploid trout may have higher rates of new fibre recruitment and growth capacity at these sizes. There was no difference between diploid and triploid trout in the mean size of muscle fibres; however, the number of fibres per unit area was reduced by 10% in triploids. No differences were observed in protein or DNA concentrations in muscle tissues between the two genetic groups. Since triploid nuclei have 1·5 times more DNA than diploid nuclei, this deviation from the expected muscle DNA concentration (1·3–1·4 times more DNA in triploids when the 10% reduction in fibre density is considered) suggests that the number of nuclei per muscle fibre is reduced. In both diploids and triploids, mean fibre size increased with body length while fibre density decreased. Similarly, protein concentration in the muscle tissue increased and DNA concentration declined with increasing body length. Protein/DNA ratio was strongly and positively correlated with fibre size. These results demonstrate that changes in DNA and protein concentrations can be used to assess hyperplasia and hypertrophy in muscle tissues. However, the morphometric procedure provides better insight into muscle fibre growth as it enables the direct visualization and analysis of muscle fibre distribution patterns.  相似文献   

16.
This paper details for the first time the gonad development characteristics and sex ratio of triploid shrimp (Fenneropenaeus chinensis). In triploid shrimp the development of gonad is apparently impaired, especially in females. In the ovary of triploids, germ cells mainly remain at oogonia stage during September through December. From January to February of the next year, partial primary oocytes developed in the ovary lobes. Spermatocytes and spermatids could be observed in the testes of triploids, and a few sperm were observed in the vas deferens and spermatophores. The morphology of sperms in triploid shrimp was abnormal. Flow cytometry was used to detect the ploidy of sperm in the vas deferens. The data showed that triploidy could affect the sex ratio in Chinese shrimp. The female-to-male ratio in triploids of about 4:1 will favor triploid shrimp aquaculture.  相似文献   

17.
Two distinct phenotypes of triploid fetuses have been previously described and a correlation with parental origin of the triploidy has been suggested. We have studied the parental origin of the extra haploid set of chromosomes in nine triploid fetuses using analysis of DNA polymorphisms at a variety of loci. Maternal origin of the triploidy (digyny) was demonstrated in six fetuses with type II phenotype, paternal origin (diandry) in two cases with type I phenotype, and nonpaternity in one case. The predominance of digynic triploids in our study contrasts with the results reported in previous studies in which, through analysis of cytogenetic polymorphisms, paternal origin was found to account for the majority of triploid conceptuses. This difference may be accounted for by a combination of factors — the different methods of parental assignment used and analysis of a different subset of triploid conceptuses. The correlation between the observed phenotypes and the parental origin of triploidy may represent another example of imprinting in human development.  相似文献   

18.
Triploidy can occur naturally or be induced in fish and shellfish during artificial propagation in order to produce sterile individuals. Fisheries managers often stock these sterile triploids as a means of improving angling opportunities without risking unwanted reproduction of the stocked fish. Additionally, the rearing of all‐triploid individuals has been suggested as a means to reduce the possibility of escaped aquaculture fish interbreeding with wild populations. Efficient means of determining if an individual is triploid or diploid are therefore needed both to monitor the efficacy of triploidy‐inducing treatments and, when sampling fish from a body of water that has a mixture of diploids and triploids, to determine the ploidy of a fish prior to further analyses. Currently, ploidy is regularly measured through flow cytometry, but this technique typically utilizes a fresh blood sample. This study presents an alternative, cost‐effective method of determining ploidy by analysing amplicon‐sequencing data for biallelic single‐nucleotide polymorphisms (SNPs). For each sample, heterozygous genotypes are identified and the likelihoods of diploidy and triploidy are calculated based on the read counts for each allele. The accuracy of this method is demonstrated using triploid and diploid brook trout (Salvelinus fontinalis) genotyped with a panel of 234 SNPs and Chinook salmon (Oncorhynchus tshawytscha) genotyped with a panel of 298 SNPs following the GT‐seq methodology of amplicon sequencing.  相似文献   

19.
The goal of this study was to compare the reproductive physiology of triploid and diploid European sea bass (Dicentrarchus labrax L.). Gonads of diploid and triploid fish (males and females) were examined both microscopically and macroscopically, together with the plasma levels of the major sex steroids produced (testosterone and estradiol-17beta) when fish were adults. Prior to sexual maturation, the gonadosomatic index (GSI) of triploid males was similar to that of diploids. However, the GSI in 4-year-old adult triploid males was 1.8 times lower than that of diploids (P < 0.05). All diploid males exhibited normal gonadal development. In contrast, in triploid males spermatogenesis was impaired during late meiosis, affecting severely spermiogenesis. This was achieved by an increasing imbalance in the amount of DNA present in daughter cells of the same type as spermatogenesis progressed, as demonstrated by abnormal cell sizes, culminating in inviable spermatids. Thus, no spermiating triploid fish were observed during 4 years, which included three full consecutive maturation cycles. Furthermore, the germ cells from triploids were significantly larger than those from diploids (P < 0.001). Seasonal profiles of plasma levels of testosterone in 4-year-old males were essentially similar in both ploidies. On the other hand, triploid females had rudimentary ovaries containing oogonia and primary oocytes that were arrested during meiotic prophase I, while diploid females exhibited all stages of ovarian development. Diploid females showed levels of testosterone and estradiol-17beta significantly higher than those of triploids (P < 0.05), in which no endocrine signs of maturation were observed at all. Regarding sex ratios, triploids had 10% more females than diploids (P < 0.05) but in both ploidies males predominated, as is usually found in this species under culture conditions. These results show that triploidy blocked the initial phases of meiosis in females and the latter ones in males, resulting in the absence of or reduced gonadal development, respectively. In conclusion, we provide an explanation for the lack of gonadal development in triploid male fish, and, to the best of our knowledge, we report for the first time a case in which induced triploidy completely blocks meiosis in both sexes, thus conferring functional sterility in the sea bass.  相似文献   

20.
The use of sterile triploid stock in the Atlantic salmon (Salmo salar, L) farming industry is the only commercially available means to prevent the ecological impact of domesticated escapees. This study compared the seawater (SW) performance and deformity prevalence of diploid and triploid post-smolts from 2 full-sib families produced out-of-season. Triploids completed smoltification 4 weeks earlier and at a significantly higher body-weight. Growth and survival in SW were not significantly affected by ploidy. The incidence of external deformities, dominated by jaw malformation, was ~12% in triploids and below 5% in diploids. Vertebral deformities were more prevalent in the fastest growing triploid family only. Heart morphometry differed between ploidies which may relate to a higher cardiac workload in triploids. No clear alteration of the gill apparatus was detected. The most significant detrimental effect of triploidy was on the rate and severity of cataract that were observed from August onward (50% and 92% of diploids and triploids respectively affected after 1-year in SW). At that time, cataracts were diagnosed by histological examinations as irreversible with a probable osmotic origin which could arise from factors such as water quality, nutritional deficiencies or thermal variations. This study warrants further research aiming at adapting rearing practices to the needs of triploid stocks as to improve their performance and welfare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号