首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used 16 human × mouse somatic cell hybrids containing a variable number of human chromosomes to demonstrate that the human α-globin gene is on chromosome 16. Globin gene sequences were detected by annealing purified human α-globin complementary DNA to DNA extracted from hybrid cells. Human and mouse chromosomes were distinguished by Hoechst fluorescent centromeric banding, and the individual human chromosomes were identified in the same spreads by Giemsa trypsin banding. Isozyme markers for 17 different human chromosomes were also tested in the 16 clones which have been characterized. The absence of chromosomal translocation in all hybrid clones strongly positive for the α-globin gene was established by differential staining of mouse and human chromosomes with Giemsa 11 staining. The presence of human chromosomes in hybrid cell clones which were devoid of human α-globin genes served to exclude all human chromosomes except 6, 9, 14 and 16. Among the clones negative for human α-globin sequences, one contained chromosome 2 (JFA 14a 5), three contained chromosome 4 (AHA 16E, AHA 3D and WAV R4D) and two contained chromosome 5 (AHA 16E and JFA14a 13 5) in >10% of metaphase spreads. These data excluded human chromosomes 2, 4 and 5 which had been suggested by other investigators to contain human globin genes. Only chromosome 16 was present in each one of the three hybrid cell clones found to be strongly positive for the human α-globin gene. Two clones (WAIV A and WAV) positive for the human α-globin gene and chromosome 16 were counter-selected in medium which kills cells retaining chromosome 16. In each case, the resulting hybrid populations lacked both human chromosome 16 and the α-globin gene. These studies establish the localization of the human α-globin gene to chromosome 16 and represent the first assignment of a nonexpressed unique gene by direct detection of its DNA sequences in somatic cell hybrids.  相似文献   

2.
Evidence for assigning the locus determining the structure of adenine phosphoribosyltransferase (APRT) to human chromosome No. 16 is presented. Hybrids of APRT-deficient mouse cells and of human fibroblasts having normal APRT were isolated by fusing the parental cells with Sendai virus, blocking de novo purine nucleotide synthesis with azaserine and selecting for hybrids that could use exogenous adenine. The hybrid clones that were studied had only APRT activity that was indistinguishable from human APRT with regard to electrophoretic migration and reaction with antibodies against the partially purified human enzyme. No. 16 was the only human chromosome consistently present in all of the clones, and in one clone, it was the only human chromosome detected. Selection against hybrid cells with 2,6-diaminopurine (DAP) yielded DAP-resistant survivors that lacked chromosome No. 16. One hybrid that originally had an intact No. 16 yielded adenine-utilizing subclones that lacked No. 16 but had a new submetacentric chromosome. The distribution of centromere-associated heterochromatin and the fluorescence pattern indicated that this chromosome consisted of a mouse telocentric chromosome and the long arm of No. 16. Cells having the submetacentric chromosome had human APRT. Both the enzyme and the chromosome were absent in DAP-resistant derivatives. These results suggest that the structure of APRT is defined by a locus on the long arm of human chromosome No. 16.  相似文献   

3.
The human adenine phosphoribosyltransferase gene (APRT) was mapped with respect to the haptoglobin gene (HP) and the fragile site at 16q23.2 (FRA16D). A subclone of APRT and a cDNA clone of HP were used for molecular hybridization to DNA from mouse-human hybrid cell lines containing specific chromosome 16 translocations. The APRT subclone was used for in situ hybridization to chromosomes expressing FRA16D. APRT was found to be distal to HP and FRA16D and was localized at 16q24, making the gene order cen-FRA16B-HP-FRA16D-APRT-qter.  相似文献   

4.
The expression of human mitochondrial thymidine kinase (mt TK) was investigated by polyacrylamide electrophoresis in 19 independent human-mouse somatic cell hybrids which allowed all human chromosomes to be analyzed. In 8 hybrid clones the presence of this enzymatic activity could be demonstrated. Human mt TK segregated concordantly with human adenine phosphoribosyltransferase (APRT) and human chromosome 16. Discordant segregation with all other human chromosomes was demonstrated by karyotype and isozyme analyses. These results suggest that human mt TK is coded for by a gene on chromosome 16 of the nucleus. Thus human mt TK is genetically different from human cytosol thymidine kinase which is coded for by a gene on chromosome 17. The appearance of one heteropolymer band after electrophoretic separation of human and murine mt TK supports the notion that both enzymes have dimeric structures.  相似文献   

5.
Cloning the complete human adenine phosphoribosyl transferase gene   总被引:5,自引:0,他引:5  
A M Murray  E Drobetsky  J E Arrand 《Gene》1984,31(1-3):233-240
We have isolated a clone from a human genomic lambda library which cross-hybridises with the cloned hamster adenine phosphoribosyl transferase gene (aprt). After restriction mapping and further hybridisation to the hamster gene, a series of putative human aprt-containing fragments has been isolated and tested for ability to transform adenine phosphoribosyl transferase-deficient (aprt-) strains of Chinese hamster ovary (CHO) cells to APRT proficiency. Transforming activity was detected in a 48-kb lambda clone, the 17.4-kb EcoRI insert, and an 8.6-kb HincII fragment. Smaller fragments have thus far shown no transforming activity. Transformants appear to be stable for the APRT+ phenotype, and human aprt DNA sequences are present in the hamster transformants. The 8.6-kb HincII fragment has been subcloned and the insert mapped. Nonrepetitive regions of this subclone have been identified, and should prove valuable for chromosome walking studies on human chromosome 16, familial studies of a human aprt- trait, the analysis of restriction fragment length polymorphisms (RFLPs) in the area surrounding the aprt gene, and the fine structure mapping of the mutations induced by chemical carcinogens and alkylating agents.  相似文献   

6.
7.
 前文~[1]曾报道广西一个α,β地中海贫血复合家系的血红蛋白组成及α珠蛋白基因分析结果,并讨论了各成员可能的β珠蛋白基因结构情况。本文利用先进的PCR即基因扩增技术,结合特异寡核苷酸探针斑点杂交及扩增后直接测定DNA序列的技术,进一步研究并彻底搞请了该家系各成员的β珠蛋白基因结构情况。结果显示:母亲及两个弟弟都是编码子41—42TTCT四个碱基缺失造成框架位移所致β地中海贫血的杂合子。父亲与先证者的β基因均属正常。前三个成员均为α地贫复合β地贫,其α与β珠蛋白链合成的不均衡状态得到改善,贫血症状也明显轻。  相似文献   

8.
A mouse-human hybrid cell panel for mapping human chromosome 16   总被引:21,自引:0,他引:21  
A mouse-human hybrid cell panel for human chromosome 16 was constructed from human cell lines with breakpoints on chromosome 16 at p13.11, q13, q22 and q24. Fusions with the human fibroblast line GM3884, t(X;16)(q26;q24) allowed the isolation of clones with either the derivative X or the derivative 16 as the only human chromosome. This was a consequence of both the genes APRT and HPRT being involved in the translocation. The breakpoints of the line GM3884 were confirmed by aphidicolin induction of the common fragile site at 16q23. The results of the fusions with this line suggest a localisation of the APRT gene at 16q24 and confirm the localisation of HPRT to Xq26 to Xq27.3. These hybrid cell lines enable the localisation of genes and DNA fragments to six clearly defined regions. Further localisation within three of these regions is possible by use of the three fragile sites on chromosome 16. In situ hybridisation with the probe pBLUR confirmed that of three lines tested all contained a single human chromosome.  相似文献   

9.
Four mutants of Arabidopsis thaliana that are deficient in adenine phosphoribosyl transferase (APRT) activity have been isolated by selecting for germination of seeds and growth of the plantlets on a medium containing 2,6-diaminopurine (DAP), a toxic analog of adenine. In all mutants, DAP resistance is due to a recessive nuclear mutation at a locus designated apt. The mutants are male sterile due to pollen abortion after meiosis. Furthermore, it has been shown that metabolism of cytokinins is impaired in the mutant BM3, which has the lowest level of APRT activity among the mutants tested. However, three different cDNAs encoding APRT have been isolated in A. thaliana and this raised the question of the nature of the mutation which results in low APRT activity. The mutation was genetically mapped to chromosome I and lies within 6 cM of the phenotypic marker dis2, indicating that the mutation affects the APT1 gene, a result confirmed by sequencing of mutant alleles. The mutation in the allele apt1-3 is located at the 5′ splicing site of the third intron, and eliminates a BstNI restriction site, as verified by Southern blotting and PCR fragment length analysis.  相似文献   

10.
11.
The Aprt locus of Drosophila melanogaster encodes the structural gene for adenine phosphoribosyltransferase (APRT). DNA cloned from microdissected salivary gland polytene chromosome region 62B7-12 was used in conjunction with chromosome walking and hybrid selection of mRNA to isolate the Aprt gene. Aprt lies at cytogenetic position 62B9 and is closely flanked by other genes of unknown function. Nucleotide sequencing shows that four APRT cDNAs have a common 5' terminus with an apparent cap consensus sequence but two different 3' sites of polyadenylation. The distribution of conserved amino acid sequences in APRT from vertebrates, insects and bacteria suggests that they may have shared a common ancestral gene for this ubiquitous enzyme.  相似文献   

12.
13.
A permanent lymphocyte cell line of a heterozygote with Yunnanese (Aγδβ)0-thalassemia deletion, associated with an increased production of Cry globin in adult, was founded using Epstein-Barr virus transformation. The hybrids of the lymphocyte cell and mouse erythroleukemia cell (MEL) were achieved and the hybrids containing human chromosome 11 were selected with the monoclonal antibody 53/6. The subclones containing only either the normal or the abnormal human chromosome 11 were separated and the expression of the human globin genes was studied. Expression of the β-globin gene, but not the Cγ and Aγ, was observed in the hybrids containing only the normal human chromosome 11, while active expression of the Cγ globin gene was observed in the hybrids containing only the abnormal human chromosome 11. These results have confirmed that the DNA deletion in the β-globin gene cluster is the cause of persistent active expression of the Cγ globin gene in the Yunnanese mutant.  相似文献   

14.
Independently obtained mutations (apt) of resistance to DAP (2,6-diaminopurine) and MP (6-methylpurine), that affect adenine phosphoribosyltransferase (APRT) in Escherichia coli, are different in their effect on the conversion of several substrates of APRT, such as DAP, MP, MAP (6-methylaminopurine) and adenine, to their nucleotide derivatives. Most of mutants were resistant to DAP and MP, unable to utilize MAP (as purine source) and differed in their ability to uptake adenine from the medium. Among the mutants capable to utilize adenine the following types are found: (1) resistant to DAP and MP, but capable of utilizing MAP, and (2) resistant to DAP, capable of utilizing MAP, but sensitive to MP. The gene apt encoding APRT is located between genes proC and purE; the frequency of cotransduction between proC and several apt mutations is found to be 1.7--2% and purE-apt--to be 5--10.8%. Mutations apt block up the ability of purine-dependent (pur) bacteria lacking purine nucleoside phosphorylase (pup) to use purine ribonucleosides as purine sources. The degree of that blocking depends on the ability of apt mutants to convert adenine to AMP via APRT. These observations confirm our previous data, that the ability of pur pup mutants to use purine ribonucleosides depends on the activity of APRT.  相似文献   

15.
Four mutants of Arabidopsis thaliana that are deficient in adenine phosphoribosyl transferase (APRT) activity have been isolated by selecting for germination of seeds and growth of the plantlets on a medium containing 2,6-diaminopurine (DAP), a toxic analog of adenine. In all mutants, DAP resistance is due to a recessive nuclear mutation at a locus designated apt. The mutants are male sterile due to pollen abortion after meiosis. Furthermore, it has been shown that metabolism of cytokinins is impaired in the mutant BM3, which has the lowest level of APRT activity among the mutants tested. However, three different cDNAs encoding APRT have been isolated in A. thaliana and this raised the question of the nature of the mutation which results in low APRT activity. The mutation was genetically mapped to chromosome I and lies within 6 cM of the phenotypic marker dis2, indicating that the mutation affects the APT1 gene, a result confirmed by sequencing of mutant alleles. The mutation in the allele apt1-3 is located at the 5′ splicing site of the third intron, and eliminates a BstNI restriction site, as verified by Southern blotting and PCR fragment length analysis. Received: 20 February 1997 / Accepted: 28 August 1997  相似文献   

16.
We have chosen human fibroblast x mouse erythroleukemia hybrid cells as a model system to examine regulation of unique genes. The globin genes were studied as a marker of erythroid differentiation. Three separate hybrid cell lines were incubated in 2% dimethylsulfoxide, an agent which induces erythroid differentiation of the parental erythroleukemia cells. Neither human nor mouse globin mRNA sequences could be detected by a sensitive molecular hybridization assay which utilized globin complementary D N A. However, td n a from one of the cell lines was shown to contain both the mouse and humand globin genes. Thus, loss of the genes by chromosomal segregation did not account for their failure to be expressed. Cocultivation of the mouse erythroleukemia cells with excess human fibroblasts did not prevent erythroid differentiation of the erythroleukemia cells in the presence of dimethylsulfoxide. Similarly globin gene expression was preserved in tetraploid cells generated by fusion of two erythroleukemia lines. Thus, extinction of globin geneated by fusion of two erythroleukemia lines. Thus, extinction of blobin gene expression in the human fibroblast x erythroleukemia hybrids occurred at the level of mRNA production and appeared to be due to the presence of the fibroblast genome within the hybrial cell.  相似文献   

17.
18.
Cloning and expression of a mouse adenine phosphoribosyltransferase gene   总被引:6,自引:0,他引:6  
A functional mouse adenine phosphoribosyltransferase (APRT) gene was identified and cloned by screening a mouse sperm genomic DNA library in lambda Charon 4A. The probe utilized for screening was a restriction fragment encoding much of the hamster APRT gene. Six recombinants that hybridized with the probe were identified, and after digestion with restriction enzymes EcoRI and PvuII revealed three different patterns of digestion for each enzyme. Of the six recombinants, five representing two of the restriction patterns possessed transforming activity. A sixth recombinant, which has a unique restriction pattern, lacks transforming activity but hybridizes well with hamster APRT coding sequences and is a possible candidate for a pseudogene. We used three criteria for conclusively identifying the mouse APRT genes. (1) DNA from the recombinant lambda phage hybridizes with DNA encoding hamster APRT. (2) The recombinant lambda phages and their DNAs transform mouse, hamster and human APRT- cells to the APRT+ phenotype. (3) The hamster and human transformants display APRT activity that migrates with a mobility characteristic of mouse APRT and not of hamster or human. A 3.1-kb EcoRI-SphI restriction fragment which retains transforming activity has been subcloned into the plasmid pBR328. Comparison of restriction enzyme sites with those contained in a mouse APRT cDNA, coupled with loss of transforming activity after enzyme digestion, indicates that the mouse APRT gene is larger than 1.8 kb and contains at least three introns.  相似文献   

19.
Fibroblast cultures prepared from mice homozygous for a Robertsonian translocation (centric fusion) between autosomes 8 and 17 [Rb(8.17)] were used as donors in microcell-mediated chromosome transfer experiments. By using hamster recipient cells deficient in adenine phosphoribosyltransferase (APRT-) and selecting for expression of murine APRT (a chromosome 8 marker), microcell hybrids were isolated which retained only the mouse Rb(8.17) translocation in addition to the hamster chromosome complement. The translocation was stable in cells maintained under APRT+ selective pressure, and mouse marker traits encoded by genes on both chromosomes 8 and 17 segregated concordantly. A second family of hybrid clones was constructed by fusing microcells derived from wild-type mouse fibroblasts with APRT- hamster cells. Four of six clones analyzed retained only mouse chromosome 8. These studies demonstrated that microcell hybrids containing specific Robertsonian translocations as the only donor-derived genetic material can be obtained. Furthermore, a number of Robertsonian translocations between chromosomes which carry selectable markers (chromosomes 3, 8, and 11) and other autosomes have been described. By using fibroblast cultures prepared from mice containing these translocations as donors in microcell fusions, 18 of the 20 mouse chromosomes could be selectively fixed in different hybrid clones. Thus, a collection of 20 hybrid clones, each containing a single, specific mouse chromosome, can be constructed by using the strategy described in this report. The potential utility of such a monochromosomal hybrid panel is discussed.  相似文献   

20.
A mouse embryonal carcinoma cell line isolated for resistance to the adenine analogue 2,6-diaminopurine (DAP) was found to have near-wild-type levels of adenine phosphoribosyltransferase (APRT) activity in a cell-free assay. This DAP-resistant (DAPr) cell line, termed H29D1, also exhibited near-wild-type levels of adenine accumulation and the ability to grow in medium containing azaserine and adenine. Growth in this medium requires high levels of intracellular APRT activity. Using the polymerase chain reaction (PCR) and the dideoxy chain termination sequencing technique, an A-->G transition was discovered in exon 3 of the aprt gene in H29D1. This mutation resulted in an Arg-to-Gln change at amino acid 87 of the APRT protein that, in turn, resulted in a decreased affinity for adenine. An increased sensitivity of APRT to inhibition by AMP was observed when comparing H29D1 to P19, the parental cell line. Using a transgene containing the A-->G mutation, we demonstrated that this mutation is responsible for the biochemical and cellular phenotypes observed for the H29D1 cell line. The approach used in this study provides a definitive method for linking a mutation to a specific cellular phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号