首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that the Streptomyces species S. lividans and S. coelicolor , morphologically complex Gram-positive soil bacteria, contain a developmentally regulated endoribonuclease activity (here named RNase ES) that functionally and immunologically resembles Escherichia coli RNase E. In Streptomyces cells, RNA I — the antisense repressor of replication of ColE1-type plasmids — is cleaved at sites attacked by RNase E. A Mg2+-dependent endonuclease that produces RNase E-like cleavages in RNA I and 9S ribosomal RNA was identified in S. lividans cell extracts. A Streptomyces peptide migrating at 70 kDa in SDS/polyacrylamide gels binds to RNase E substrates and reacts with three separate anti-RNase E monoclonal antibodies; the endonucleolytic cleavage activity co-purified with the immunoreactive 70 kDa peptide. We show that RNase ES activity is regulated during the Streptomyces life cycle: activity increased as cells progressed from exponential growth to stationary phase in liquid culture, or from mycelial growth to sporulation on solid media. While mutations that interfere with S. coelicolor development late in its life cycle did not prevent this developmentally associated increase in RNase ES activity, the increase was blocked by a mutation ( bldA ) that interferes early with both morphological and physiological differentiation.  相似文献   

2.
RNase E (Rne) plays a major role in the decay and processing of numerous RNAs in E. coli, and protein inhibitors of RNase E, RraA and RraB, have recently been discovered. Here, we report that coexpression of RraA or RraB reduces the ribonucleolytic activity in rne-deleted E. coli cells overproducing RNase ES, a Streptomyces coelicolor functional ortholog of RNase E, and consequently rescues these cells from growth arrest. These findings suggest that the regulators of ribonuclease activity have a conserved intrinsic property that effectively acts on an RNase E-like enzyme found in a distantly related bacterial species.  相似文献   

3.
The Streptomyces coelicolor gene SCC88.10c encodes a protein (RNase ES) which is homologous to endoribonucleases in the RNase E/G family. We expressed S. coelicolor RNase ES as a 6 x His-tagged protein in an Escherichia coli mutant carrying a rng (which encodes RNase G) or a rne (which encodes RNase E) mutation to study whether S. coelicolor RNase ES is able to complement these mutations in host E. coli cells. The results clearly indicated that the S. coelicolor RNase ES can partially abrogate either the rng::cat or rne-1 mutation, as measured by the ability to suppress the several aberrant phenotypes resulting from the rng or rne mutation. Thus, S. coelicolor RNase ES appears to have the dual ability to supplant the functions of both RNase G and RNase E in E. coli.  相似文献   

4.
RraA is a protein inhibitor of RNase E (Rne), which catalyzes the endoribonucleolytic cleavage of a large proportion of RNAs in Escherichia coli. The antibiotic-producing bacterium Streptomyces coelicolor also contains homologs of RNase E and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2, respectively. Here, we report that RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. Analyses of the steady-state level of RNase E substrates indicated that coexpression of RraAS2 in E. coli cells overproducing Rns effectively inhibits the ribonucleolytic activity of full-length RNase ES, but its inhibitory effects were moderate or undetectable on other truncated forms of Rns, in which the N- or/and C-terminal scaffold domain was deleted. In addition, RraAS2 more efficiently inhibited the in vitro ribonucleolytic activity of RNase ES than that of a truncated form containing the catalytic domain only. Coimmunoprecipitation and in vivo cross-linking experiments further showed necessity of both scaffold domains of RNase ES for high-affinity binding of RraAS2 to the enzyme, resulting in decreased RNA-binding capacity of RNase ES. Our results indicate that RraAS2 is a protein inhibitor of RNase ES and provide clues to how this inhibitor affects the ribonucleolytic activity of RNase ES.  相似文献   

5.
Endoribonuclease RNase E appears to control the rate-limiting step that mediates the degradation of many mRNA species in bacteria. In this work, an RNase E-like activity in Archaea is described. An endoribonucleolytic activity from the extreme halophile Haloarcula marismortui showed the same RNA substrate specificity as the Escherichia coli RNase E and cross-reacted with a monoclonal antibody raised against E. coli RNase E. The archaeal RNase E activity was partially purified from the extreme halophilic cells and shown, contrary to the E. coli enzyme, to require a high salt concentration for cleavage specificity and stability. These data indicate that a halophilic RNA processing enzyme can specifically recognize and cleave mRNA from E. coli in an extremely salty environment (3 M KCI). Having recently been shown in mammalian cells (A. Wennborg, B. Sohlberg, D. Angerer, G. Klein, and A. von Gabain, Proc. Natl. Acad. Sci. USA 92:7322-7326, 1995), RNase E-like activity has now been identified in all three evolutionary domains: Archaea, Bacteria, and Eukarya. This strongly suggests that mRNA decay mechanisms are highly conserved despite quite different environmental conditions.  相似文献   

6.
7.
Streptomyces coelicolor produces four genetically and structurally distinct antibiotics in a growth-phase-dependent manner. S. coelicolor mutants globally deficient in antibiotic production (Abs(-) phenotype) have previously been isolated, and some of these were found to define the absB locus. In this study, we isolated absB-complementing DNA and show that it encodes the S. coelicolor homolog of RNase III (rnc). Several lines of evidence indicate that the absB mutant global defect in antibiotic synthesis is due to a deficiency in RNase III. In marker exchange experiments, the S. coelicolor rnc gene rescued absB mutants, restoring antibiotic production. Sequencing the DNA of absB mutants confirmed that the absB mutations lay in the rnc open reading frame. Constructed disruptions of rnc in both S. coelicolor 1501 and Streptomyces lividans 1326 caused an Abs(-) phenotype. An absB mutation caused accumulation of 30S rRNA precursors, as had previously been reported for E. coli rnc mutants. The absB gene is widely conserved in streptomycetes. We speculate on why an RNase III deficiency could globally affect the synthesis of antibiotics.  相似文献   

8.
9.
RraA is a protein inhibitor of RNase E, which degrades and processes numerous RNAs in Escherichia coli. Streptomyces coelicolor also contains homologs of RNase E and RraA, RNase ES and RraAS1/RraAS2, respectively. Here, we report that, unlike other RraA homologs, RraAS1 directly interacts with the catalytic domain of RNase ES to exert its inhibitory effect. We further show that rraAS1 gene deletion in S. coelicolor results in a higher growth rate and increased production of actinorhodin and undecylprodigiosin, compared with the wild-type strain, suggesting that RraAS1-mediated regulation of RNase ES activity contributes to modulating the cellular physiology of S. coelicolor.  相似文献   

10.
L V Wray  S H Fisher 《Gene》1988,71(2):247-256
The Streptomyces coelicolor glutamine synthetase (GS) structural gene (glnA) was cloned by complementing the glutamine growth requirement of an Escherichia coli strain containing a deletion of its glnALG operon. Expression of the cloned S. coelicolor glnA gene in E. coli cells was found to require an E. coli plasmid promoter. The nucleotide sequence of an S. coelicolor 2280-bp DNA segment containing the glnA gene was determined and the complete glnA amino acid sequence deduced. Comparison of the derived S. coelicolor GS protein sequence with the amino acid sequences of GS from other bacteria suggests that the S. coelicolor GS protein is more similar to the GS proteins from Gram-negative bacteria than it is with the GS proteins from two Gram-positive bacteria, Bacillus subtilis and Clostridium acetobutylicum.  相似文献   

11.
We have investigated the crr gene of Streptomyces coelicolor that encodes a homologue of enzyme IIAGlucose of Escherichia coli, which, as a component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays a key role in carbon regulation by triggering glucose transport, carbon catabolite repression, and inducer exclusion. As in E. coli, the crr gene of S. coelicolor is genetically associated with the ptsI gene that encodes the general phosphotransferase enzyme I. The gene product IIACrr was overproduced, purified, and polyclonal antibodies were obtained. Western blot analysis revealed that IIACrr is expressed in vivo. The functionality of IIACrr was demonstrated by phosphoenolpyruvate-dependent phosphorylation via enzyme I and the histidine-containing phosphoryl carrier protein HPr. Phosphorylation was abolished when His72, which corresponds to the catalytic histidine of E. coli IIAGlucose, was mutated. The capacity of IIACrr to operate in sugar transport was shown by complementation of the E. coli glucose-PTS. The striking functional resemblance between IIACrr and IIAGlucose was further demonstrated by its ability to confer inducer exclusion of maltose to E. coli. A specific interaction of IIACrr with the maltose permease subunit MalK from Salmonella typhimurium was uncovered by surface plasmon resonance. These data suggest that this IIAGlucose-like protein may be involved in carbon metabolism in S. coelicolor.  相似文献   

12.
13.
Ohtani N  Saito N  Tomita M  Itaya M  Itoh A 《The FEBS journal》2005,272(11):2828-2837
The SCO2299 gene from Streptomyces coelicolor encodes a single peptide consisting of 497 amino acid residues. Its N-terminal region shows high amino acid sequence similarity to RNase HI, whereas its C-terminal region bears similarity to the CobC protein, which is involved in the synthesis of cobalamin. The SCO2299 gene suppressed a temperature-sensitive growth defect of an Escherichia coli RNase H-deficient strain, and the recombinant SCO2299 protein cleaved an RNA strand of RNA.DNA hybrid in vitro. The N-terminal domain of the SCO2299 protein, when overproduced independently, exhibited RNase H activity at a similar level to the full length protein. On the other hand, the C-terminal domain showed no CobC-like activity but an acid phosphatase activity. The full length protein also exhibited acid phosphatase activity at almost the same level as the C-terminal domain alone. These results indicate that RNase H and acid phosphatase activities of the full length SCO2299 protein depend on its N-terminal and C-terminal domains, respectively. The physiological functions of the SCO2299 gene and the relation between RNase H and acid phosphatase remain to be determined. However, the bifunctional enzyme examined here is a novel style in the Type 1 RNase H family. Additionally, S. coelicolor is the first example of an organism whose genome contains three active RNase H genes.  相似文献   

14.
15.
A promoter which controls expression of the pristinamycin multidrug resistance gene ( ptr ) in Streptomyces pristinaspiralis could be induced by physiological stresses in both Streptomyces spp. and Escherichia coli . In S. pristinaspiralis , the ptr promoter ( Pptr ) was induced by pristinamycin I (PI) or pristinamycin II (PII). Streptomyces lividans was adopted as a convenient heterologous host for studies of Pptr regulation since it has no known pristinamycin biosynthetic genes. Two key regulatory features were documented in these studies: many (19 of 70) antibiotics and chemicals with no common targets or structural features induced the Pptr ; induction with PI was most efficient during a transition phase when antibiotic biosynthetic genes are switched on. In Streptomyces coelicolor, Pptr activity was similarly inducible by PI and not dependent on sigma factors HrdA, HrdC, or HrdD. In E. coli, Pptr cloned in the bifunctional promoter probe vector plJ2839 was functional and activated upon entry into stationary phase in the absence of exogenous inducer. Finally, gel-retardation studies demonstrated a Pptr -binding protein in S. lividans (where its activity was PI-inducible), S. coelicolor and S. pristinaespiralis . The fact that this activity was not detected in E. coli suggested the existence of another regulatory system perhaps also present in Streptomyces .  相似文献   

16.
E J Cho  J B Bae  J G Kang    J H Roe 《Nucleic acids research》1996,24(22):4565-4571
The rpoA gene, encoding the alpha subunit of RNA polymerase, was cloned from Streptomyces coelicolor A3(2). It is preceded by rpsK and followed by rplQ, encoding ribosomal proteins S11 and L17, respectively, similar to the gene order in Bacillus subtilis. The rpoA gene specifies a protein of 339 amino acids with deduced molecular mass of 36,510 Da, exhibiting 64.3 and 70.7% similarity over its entire length to Escherichia coli and B. subtilis alpha subunits, respectively. Using T7 expression system, we overexpressed the S. coelicolor alpha protein in E. coli. A small fraction of this protein was found to be assembled into E. coli RNA polymerase. Antibody against S. coelicolor alpha protein crossreacted with that of B. subtilis more than with the E. coli alpha subunit. The ability of recombinant alpha protein to assemble beta and beta' subunits into core enzyme in vitro was examined by measuring the core enzyme activity. Maximal reconstitution was obtained at alpha2:beta+beta' ratio of 1:2.3, indicating that the recombinant alpha protein is fully functional for subunit assembly. Similar results were also obtained for natural alpha protein. Limited proteolysis with endoproteinase Glu-C revealed that S. coelicolor alpha contains a tightly folded N-terminal domain and the C-terminal region is more protease-sensitive than that of E. coli alpha.  相似文献   

17.
In bacterial RNA metabolism, mRNA degradation is an important process for gene expression. Recently, a novel ribonuclease (RNase), belonging to the beta-CASP family within the metallo-beta-lactamase superfamily, was identified as a functional homologue of RNase E, a major component for mRNA degradation in Escherichia coli. Here, we have determined the crystal structure of TTHA0252 from Thermus thermophilus HB8, which represents the first report of the tertiary structure of a beta-CASP family protein. TTHA0252 comprises two separate domains: a metallo-beta-lactamase domain and a "clamp" domain. The active site of the enzyme is located in a cleft between the two domains, which includes two zinc ions coordinated by seven conserved residues. Although this configuration is similar to those of other beta-lactamases, TTHA0252 has one conserved His residue characteristic of the beta-CASP family as a ligand. We also detected nuclease activity of TTHA0252 against rRNAs of T. thermophilus. Our results reveal structural and functional aspects of novel RNase E-like enzymes with a beta-CASP fold.  相似文献   

18.
RraA and RraB are recently discovered protein inhibitors of RNAse E, which forms a large protein complex termed the degradosome that catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli . Here, we report that these E. coli protein inhibitors physically interact with RNAse ES, a Streptomyces coelicolor functional ortholog of RNAse E, and inhibit its action in vivo as well as in vitro ; however, unlike their ability to differentially modulate E. coli RNAse E action in a substrate-dependent manner by altering the composition of the degradosome, both proteins appear to have a general inhibitory effect on the ribonucleolytic activity of RNAse ES, which does not interact with E. coli polynucleotide phosphorylase, a major component of the degradosome. Our findings suggest that these regulators of RNAse activity have a conserved intrinsic property enabling them to directly act on RNAse E-related enzymes and inhibit their general ribonucleolytic activity.  相似文献   

19.
The last step of proline biosynthesis is typically catalysed by the enzyme Δ(1)-pyrroline-5-carboxylate reductase, encoded by the proC gene. Complete genome sequencing of Streptomyces coelicolor, a soil-dwelling Gram-positive bacterium that uses proline as a precursor for synthesis of prodiginine, revealed a single copy of this gene. Unexpectedly, disruption of this proC homologue (Sco3337) in S. coelicolor M145 yielded a prototrophic strain, yet the reductase activity of Sco3337 was confirmed by complementation of an Escherichia coli proC mutant. Multicopy proC within different genetic contexts elicited a transient production of prodiginines, which showed differential production kinetics of the two most common forms of this natural product produced by S. coelicolor, i.e. streptorubin B (cyclic) and undecylprodigiosin (linear). The metabolic and evolutionary implications of these observations are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号