首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

2.
Since neurotransmitter releasing into the synaptic space delivers electrical signals from presynaptic neural cell to the postsynaptic cell, neurotransmitter secretion must be much orchestrated. Crowded intracellular vesicles involving neurotransmitters present a question of the how secretory vesicles fuse onto the plasma membrane in a fast synchronized fashion. Complexin is one of the most experimentally studied proteins that regulate assembly of fusogenic four‐helix SNARE complex to synchronized neurotransmitter secretion. We used MD simulation to investigate the interaction of complexin with the neural SNARE complex in detail. Our results show that the SNARE complex interacts with the complexin central helix by forming salt bridges and hydrogen bonds. Complexin also can interact with the Q‐SNARE complex instead of synaptobrevin to decrease the Q‐SNARE flexibility. The complexin alpha‐accessory helix and the C‐terminal region of synaptobrevin can interact with the same region of syntaxin. Although the alpha‐accessory helix aids the tight binding of the central helix to the SNARE complex, its proximity with synaptobrevin causes the destabilization of syntaxin and Sn1 helices. This study suggests that the alpha‐accessory helix of complexin can be an inhibiting factor for membrane fusion by competing with synaptobrevin for binding to the Q‐SNARE complex. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 560–570, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
X-ray structure of a neuronal complexin-SNARE complex from squid   总被引:2,自引:0,他引:2  
Nerve terminals release neurotransmitters from vesicles into the synaptic cleft upon transient increases in intracellular Ca(2+). This exocytotic process requires the formation of trans SNARE complexes and is regulated by accessory proteins including the complexins. Here we report the crystal structure of a squid core complexin-SNARE complex at 2.95-A resolution. A helical segment of complexin binds in anti-parallel fashion to the four-helix bundle of the core SNARE complex and interacts at its C terminus with syntaxin and synaptobrevin around the ionic zero layer of the SNARE complex. We propose that this structure is part of a multiprotein fusion machinery that regulates vesicle fusion at a late pre-fusion stage. Accordingly, Ca(2+) may initiate membrane fusion by acting directly or indirectly on complexin, thus allowing the conformational transitions of the trans SNARE complex that are thought to drive membrane fusion.  相似文献   

4.
The Ca(2+)-triggered release of neurotransmitters is mediated by fusion of synaptic vesicles with the plasma membrane. The molecular machinery that translates the Ca(2+) signal into exocytosis is only beginning to emerge. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin, SNAP-25, and synaptobrevin are central components of the fusion apparatus. Assembly of a membrane-bridging ternary SNARE complex is thought to initiate membrane merger, but the roles of other factors are less understood. Complexins are two highly conserved proteins that modulate the Ca(2+) responsiveness of neurotransmitter release. In vitro, they bind in a 1:1 stoichiometry to the assembled synaptic SNARE complex, making complexins attractive candidates for controlling the exocytotic fusion apparatus. We have now performed a detailed structural, kinetic, and thermodynamic analysis of complexin binding to the SNARE complex. We found that no major conformational changes occur upon binding and that the complexin helix is aligned antiparallel to the four-helix bundle of the SNARE complex. Complexins bound rapidly (approximately 5 x 10(7) m(-1) s(-1)) and with high affinity (approximately 10 nm), making it one of the fastest protein-protein interactions characterized so far in membrane trafficking. Interestingly, neither affinity nor binding kinetics was substantially altered by Ca(2+) ions. No interaction of complexins was detectable either with individual SNARE proteins or with the binary syntaxin x SNAP-25 complex. Furthermore, complexin did not promote the formation of SNARE complex oligomers. Together, our data suggest that complexins modulate neuroexocytosis after assembly of membrane-bridging SNARE complexes.  相似文献   

5.
The calcium-triggered neurotransmitter release requires three SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins: synaptobrevin 2 (or vesicle-associated membrane protein 2) on the synaptic vesicle and syntaxin 1 and SNAP-25 (synaptosome-associated protein of 25 kDa) at the presynaptic plasma membrane. This minimal fusion machinery is believed to drive fusion of the vesicle to the presynaptic membrane. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a major regulator of synaptic vesicle exocytosis. Stimulatory and inhibitory effects of complexin have both been reported, suggesting the duality of its function. To shed light on the molecular basis of the complexin's dual function, we have performed an EPR investigation of the complexin-SNARE quaternary complex. We found that the accessory α-helix (amino acids 27-48) by itself has the capacity to replace the C-terminus of the SNARE motif of vesicle-associated membrane protein 2 in the four-helix bundle and makes the SNARE complex weaker when the N-terminal region of complexin I (amino acids 1-26) is removed. However, the accessory α-helix remains detached from the SNARE core when the N-terminal region of complexin I is present. Thus, our data show the possibility that the balance between the activities of the accessory α-helix and the N-terminal domain might determine the final outcome of the complexin function, either stimulatory or inhibitory.  相似文献   

6.
Exocytosis is one of the most crucial and ubiquitous processes in all of biology. This event is mediated by the formation of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, ternary assemblies of syntaxin, SNAP23/SNAP25 (synaptosomal-associated protein of 23 or 25 kDa), and synaptobrevin. The exocytotic process can be further regulated by complexin, which interacts with the SNARE complex. Complexin is involved in a Ca2+-triggered exocytotic process. In eukaryotic cells, multiple isoforms of SNARE proteins are expressed and are involved in distinct types of exocytosis. To understand the underlying biochemical mechanism of various exocytotic processes mediated by different SNARE protein isoforms, we systematically analyzed the interactions among syntaxin, SNAP23/SNAP25, synaptobrevin, and complexin by employing a newly developed yeast four-hybrid interaction assay. The efficiency of SNARE complex formation and the specificity of complexin binding are regulated by the different SNARE protein isoforms. Therefore, various types of exocytosis, occurring on different time scales with different efficiencies, can be explained by the involved SNARE complexes composed of different combinations of SNARE protein isoforms.  相似文献   

7.
Upon Ca2+ influx synaptic vesicles fuse with the plasma membrane and release their neurotransmitter cargo into the synaptic cleft. Key players during this process are the Q-SNAREs syntaxin 1a and SNAP-25 and the R-SNARE synaptobrevin 2. It is thought that these membrane proteins gradually assemble into a tight trans-SNARE complex between vesicular and plasma membrane, ultimately leading to membrane fusion. Tomosyn is a soluble protein of 130 kDa that contains a COOH-terminal R-SNARE motif but lacks a transmembrane anchor. Its R-SNARE motif forms a stable core SNARE complex with syntaxin 1a and SNAP-25. Here we present the crystal structure of this core tomosyn SNARE complex at 2.0-A resolution. It consists of a four-helical bundle very similar to that of the SNARE complex containing synaptobrevin. Most differences are found on the surface, where they prevented tight binding of complexin. Both complexes form with similar rates as assessed by CD spectroscopy. In addition, synaptobrevin cannot displace the tomosyn helix from the tight complex and vice versa, indicating that both SNARE complexes represent end products. Moreover, data bank searches revealed that the R-SNARE motif of tomosyn is highly conserved throughout all eukaryotic kingdoms. This suggests that the formation of a tight SNARE complex is important for the function of tomosyn.  相似文献   

8.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

9.
Complexin is an important protein that functions during Ca2+-dependent neurotransmitter release. Substantial evidence supports that complexin performs its role through rapid interaction with SNARE complex with high affinity. However, alpha-SNAP/NSF, which can disassemble the cis-SNARE complex in the presence of MgATP, competes with complexin to bind to SNARE complex. In addition, injection of alpha-SNAP into chromaffin cells enhances the size of the readily releasable pool, and mutation disrupting the ATPase activity of NSF results in the accumulation of SNARE complex. Thus, whether high concentrations of complexin could result in a reverse result is unclear. In this paper, we demonstrate that when stably overexpressed in PC12 cells, high levels of complexin result in the accumulation of SNARE complex. This in turn leads to a reduction in the size of the readily releasable pool of large dense core vesicles. These results suggest that high levels of complexin seem to prevent SNARE complex recycling, presumably by displacing NSF and alpha-SNAP from SNARE complex.  相似文献   

10.
Syntaxin/SNAP-25 interactions precede assembly of the ternary SNARE complex that is essential for neurotransmitter release. This binary complex has been difficult to characterize by bulk methods because of the prevalence of a 2:1 dead-end species. Here, using single-molecule fluorescence, we find the structure of the 1:1 syntaxin/SNAP-25 binary complex is variable, with states changing on the second timescale. One state corresponds to a parallel three-helix bundle, whereas other states show one of the SNAP-25 SNARE domains dissociated. Adding synaptobrevin suppresses the dissociated helix states. Remarkably, upon addition of complexin, Munc13, Munc18, or synaptotagmin, a similar effect is observed. Thus, the 1:1 binary complex is a dynamic acceptor for synaptobrevin binding, and accessory proteins stabilize this acceptor. In the cellular environment the binary complex is actively maintained in a configuration where it can rapidly interact with synaptobrevin, so formation is not likely a limiting step for neurotransmitter release.  相似文献   

11.
Tag team action at the synapse   总被引:1,自引:0,他引:1  
Carr CM  Munson M 《EMBO reports》2007,8(9):834-838
Communication between neurons relies on chemical synapses and the release of neurotransmitters into the synaptic cleft. Neurotransmitter release is an exquisitely regulated membrane fusion event that requires the linking of an electrical nerve stimulus to Ca(2+) influx, which leads to the fusion of neurotransmitter-filled vesicles with the cell membrane. The timing of neurotransmitter release is controlled through the regulation of the soluble N-ethylmaleimide sensitive factor attachment receptor (SNARE) proteins-the core of the membrane fusion machinery. Assembly of the fusion-competent SNARE complex is regulated by several neuronal proteins, including complexin and the Ca(2+)-sensor synaptotagmin. Both complexin and synaptotagmin bind directly to SNAREs, but their mechanism of action has so far remained unclear. Recent studies revealed that synaptotagmin-Ca(2+) and complexin collaborate to regulate membrane fusion. These compelling new results provide a molecular mechanistic insight into the functions of both proteins: complexin 'clamps' the SNARE complex in a pre-fusion intermediate, which is then released by the action of Ca(2+)-bound synaptotagmin to trigger rapid fusion.  相似文献   

12.
Acrosomal exocytosis (AE) is an intracellular multipoint fusion reaction of the sperm plasma membrane (PM) with the outer acrosomal membrane (OAM). This unique exocytotic event enables the penetration of the sperm through the zona pellucida of the oocyte. We previously observed a stable docking of OAM to the PM brought about by the formation of the trans-SNARE complex (syntaxin 1B, SNAP 23 and VAMP 3). By using electron microscopy, immunochemistry and immunofluorescence techniques in combination with functional studies and proteomic approaches, we here demonstrate that calcium ionophore-induced AE results in the formation of unilamellar hybrid membrane vesicles containing a mixture of components originating from the two fused membranes. These mixed vesicles (MV) do not contain the earlier reported trimeric SNARE complex but instead possess a novel trimeric SNARE complex that contained syntaxin 3, SNAP 23 and VAMP 2, with an additional SNARE interacting protein, complexin 2. Our data indicate that the earlier reported raft and capacitation-dependent docking phenomenon between the PM and OAM allows a specific rearrangement of molecules between the two docked membranes and is involved in (1) recruiting SNAREs and complexin 2 in the newly formed lipid-ordered microdomains, (2) the assembly of a fusion-driving SNARE complex which executes Ca(2+)-dependent AE, (3) the disassembly of the earlier reported docking SNARE complex, (4) the recruitment of secondary zona binding proteins at the zona interacting sperm surface. The possibility to study separate and dynamic interactions between SNARE proteins, complexin and Ca(2+) which are all involved in AE make sperm an ideal model for studying exocytosis.  相似文献   

13.
Tang J  Maximov A  Shin OH  Dai H  Rizo J  Südhof TC 《Cell》2006,126(6):1175-1187
Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis of synaptic vesicles that have been primed for release by SNARE-complex assembly. Besides synaptotagmin 1, fast Ca(2+)-triggered exocytosis requires complexins. Synaptotagmin 1 and complexins both bind to assembled SNARE complexes, but it is unclear how their functions are coupled. Here we propose that complexin binding activates SNARE complexes into a metastable state and that Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis by displacing complexin from metastable SNARE complexes. Specifically, we demonstrate that, biochemically, synaptotagmin 1 competes with complexin for SNARE-complex binding, thereby dislodging complexin from SNARE complexes in a Ca(2+)-dependent manner. Physiologically, increasing the local concentration of complexin selectively impairs fast Ca(2+)-triggered exocytosis but retains other forms of SNARE-dependent fusion. The hypothesis that Ca(2+)-induced displacement of complexins from SNARE complexes triggers fast exocytosis accounts for the loss-of-function and gain-of-function phenotypes of complexins and provides a molecular explanation for the high speed and synchronicity of fast Ca(2+)-triggered neurotransmitter release.  相似文献   

14.
Release of neurotransmitter from presynaptic nerve terminals is mediated by SNARE proteins, which are located on the vesicle and plasma membranes. These proteins form a SNARE complex thought to mediate membrane fusion. Complexin is a soluble protein essential for transmitter release, which has been postulated to bind to and stabilise the SNARE complex. We have cloned a complexin homologue, Hm-cpx1, from the leech, Hirudo medicinalis. This protein is expressed in only a subset of neurons in the leech CNS, including the Retzius and P neurons. It is 33% identical to rat complexin I, and 44% identical to squid complexin. Sequence conservation is particularly high in the predicted SNARE binding domain.  相似文献   

15.
Liu J  Wei Y  Guo T  Xie X  Jiang J  Sui SF 《IUBMB life》2007,59(2):84-89
Complexin is a cytoplasmic protein that plays an important role in the neurotransmitters release triggered by action potential. Previous studies suggested that complexin performs its functions through interaction with the SNARE complex. The crystal structure of complexin/SNARE complex revealed that complexin binds to SNARE core complex in an anti-parallel conformation with its residues 48 - 70. However, the functions of the flanking sequences are unclear. In this paper, we demonstrate that the fragment 71 - 77 of complexin is indispensable for its binding to the SNARE complex. Moreover, this interaction can be impaired by abolishing the positive charges in the fragment 71 - 77, which suggests that the positive charges in the fragment 71 - 77 are important for the interaction between complexin II and the SNARE complex.  相似文献   

16.
Recent studies have revealed that SNARE proteins are involved in the exocytotic release (degranulation) in mast cells. However, the roles of SNARE regulatory proteins are poorly understood. Complexin is one such regulatory protein and it plays a crucial role in exocytotic release. In this study, we characterized the interaction between SNARE complex and complexin II in mast cells by GST pull-down assay and in vitro binding assay. We found that the SNARE complex that interacted with complexin II consisted of syntaxin-3, SNAP-23, and VAMP-2 or -8, whereas syntaxin-4 was not detected. Recombinant syntaxin-3 binds to complexin II by itself, but its affinity to complexin II was enhanced upon addition of VAMP-8 and SNAP-23. Furthermore, the region of complexin II responsible for binding to the SNARE complex, was near the central α-helix region. These results suggest that complexin II regulates degranulation by interacting with the SNARE complex containing syntaxin-3.  相似文献   

17.
Synaphin/complexin is a cytosolic protein that preferentially binds to syntaxin within the SNARE complex. We find that synaphin promotes SNAREs to form precomplexes that oligomerize into higher order structures. A peptide from the central, syntaxin binding domain of synaphin competitively inhibits these two proteins from interacting and prevents SNARE complexes from oligomerizing. Injection of this peptide into squid giant presynaptic terminals inhibited neurotransmitter release at a late prefusion step of synaptic vesicle exocytosis. We propose that oligomerization of SNARE complexes into a higher order structure creates a SNARE scaffold for efficient, regulated fusion of synaptic vesicles.  相似文献   

18.
The neuronal SNARE complex formed by synaptobrevin, syntaxin and SNAP-25 plays a central role in Ca2+-triggered neurotransmitter release. The SNARE complex contains several potential Ca2+-binding sites on the surface, suggesting that the SNAREs may be involved directly in Ca2+-binding during release. Indeed, overexpression of SNAP-25 bearing mutations in two putative Ca2+ ligands (E170A/Q177A) causes a decrease in the Ca2+-cooperativity of exocytosis in chromaffin cells. To test whether the SNARE complex might function in Ca2+-sensing, we analyzed its Ca2+-binding properties using transverse relaxation optimized spectroscopy (TROSY)-based NMR methods. Several Ca2+-binding sites are found on the surface of the SNARE complex, but most of them are not specific for Ca2+ and all have very low affinity. Moreover, we find that the E170A/Q177A SNAP-25 mutation does not alter interactions between the SNAREs and the Ca2+ sensor synaptotagmin 1, but severely impairs SNARE complex assembly. These results suggest that the SNAREs do not act directly as Ca2+ receptors but SNARE complex assembly is coupled tightly to Ca2+-sensing during neurotransmitter release.  相似文献   

19.
Munc13‐1 is crucial for neurotransmitter release and, together with Munc18‐1, orchestrates assembly of the neuronal SNARE complex formed by syntaxin‐1, SNAP‐25, and synaptobrevin. Assembly starts with syntaxin‐1 folded into a self‐inhibited closed conformation that binds to Munc18‐1. Munc13‐1 is believed to catalyze the opening of syntaxin‐1 to facilitate SNARE complex formation. However, different types of Munc13‐1‐syntaxin‐1 interactions have been reported to underlie this activity, and the critical nature of Munc13‐1 for release may arise because of its key role in bridging the vesicle and plasma membranes. To shed light into the mechanism of action of Munc13‐1, we have used NMR spectroscopy, SNARE complex assembly experiments, and liposome fusion assays. We show that point mutations in a linker region of syntaxin‐1 that forms intrinsic part of the closed conformation strongly impair stimulation of SNARE complex assembly and liposome fusion mediated by Munc13‐1 fragments, even though binding of this linker region to Munc13‐1 is barely detectable. Conversely, the syntaxin‐1 SNARE motif clearly binds to Munc13‐1, but a mutation that disrupts this interaction does not affect SNARE complex assembly or liposome fusion. We also show that Munc13‐1 cannot be replaced by an artificial tethering factor to mediate liposome fusion. Overall, these results emphasize how very weak interactions can play fundamental roles in promoting conformational transitions and strongly support a model whereby the critical nature of Munc13‐1 for neurotransmitter release arises not only from its ability to bridge two membranes but also from an active role in opening syntaxin‐1 via interactions with the linker.  相似文献   

20.
Syntaxin-1 is a key component of the synaptic vesicle docking/fusion machinery that binds with VAMP/synaptobrevin and SNAP-25 to form the SNARE complex. Modulation of syntaxin binding properties by protein kinases could be critical to control of neurotransmitter release. Using yeast two-hybrid selection with syntaxin-1A as bait, we have isolated a cDNA encoding the C-terminal domain of death-associated protein (DAP) kinase, a calcium/calmodulin-dependent serine/threonine protein kinase. Expression of DAP kinase in adult rat brain is restricted to particular neuronal subpopulations, including the hippocampus and cerebral cortex. Biochemical studies demonstrate that DAP kinase binds to and phosphorylates syntaxin-1 at serine 188. This phosphorylation event occurs both in vitro and in vivo in a Ca2+-dependent manner. Syntaxin-1A phosphorylation by DAP kinase or its S188D mutant, which mimics a state of complete phosphorylation, significantly decreases syntaxin binding to Munc18-1, a syntaxin-binding protein that regulates SNARE complex formation and is required for synaptic vesicle docking. Our results suggest that syntaxin is a DAP kinase substrate and provide a novel signal transduction pathway by which syntaxin function could be regulated in response to intracellular [Ca2+] and synaptic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号