首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human settlement of the Pacific Islands represents one of the most recent major migration events of mankind. Polynesians originated in Asia according to linguistic evidence or in Melanesia according to archaeological evidence. To shed light on the genetic origins of Polynesians, we investigated over 400 Polynesians from 8 island groups, in comparison with over 900 individuals from potential parental populations of Melanesia, Southeast and East Asia, and Australia, by means of Y chromosome (NRY) and mitochondrial DNA (mtDNA) markers. Overall, we classified 94.1% of Polynesian Y chromosomes and 99.8% of Polynesian mtDNAs as of either Melanesian (NRY-DNA: 65.8%, mtDNA: 6%) or Asian (NRY-DNA: 28.3%, mtDNA: 93.8%) origin, suggesting a dual genetic origin of Polynesians in agreement with the "Slow Boat" hypothesis. Our data suggest a pronounced admixture bias in Polynesians toward more Melanesian men than women, perhaps as a result of matrilocal residence in the ancestral Polynesian society. Although dating methods are consistent with somewhat similar entries of NRY/mtDNA haplogroups into Polynesia, haplotype sharing suggests an earlier appearance of Melanesian haplogroups than those from Asia. Surprisingly, we identified gradients in the frequency distribution of some NRY/mtDNA haplogroups across Polynesia and a gradual west-to-east decrease of overall NRY/mtDNA diversity, not only providing evidence for a west-to-east direction of Polynesian settlements but also suggesting that Pacific voyaging was regular rather than haphazard. We also demonstrate that Fiji played a pivotal role in the history of Polynesia: humans probably first migrated to Fiji, and subsequent settlement of Polynesia probably came from Fiji.  相似文献   

2.
Melanesian origin of Polynesian Y chromosomes   总被引:16,自引:0,他引:16  
BACKGROUND: Two competing hypotheses for the origins of Polynesians are the 'express-train' model, which supposes a recent and rapid expansion of Polynesian ancestors from Asia/Taiwan via coastal and island Melanesia, and the 'entangled-bank' model, which supposes a long history of cultural and genetic interactions among Southeast Asians, Melanesians and Polynesians. Most genetic data, especially analyses of mitochondrial DNA (mtDNA) variation, support the express-train model, as does linguistic and archaeological evidence. Here, we used Y-chromosome polymorphisms to investigate the origins of Polynesians. RESULTS: We analysed eight single nucleotide polymorphisms (SNPs) and seven short tandem repeat (STR) loci on the Y chromosome in 28 Cook Islanders from Polynesia and 583 males from 17 Melanesian, Asian and Australian populations. We found that all Polynesians belong to just three Y-chromosome haplotypes, as defined by unique event polymorphisms. The major Y haplotype in Polynesians (82% frequency) was restricted to Melanesia and eastern Indonesia and most probably arose in Melanesia. Coalescence analysis of associated Y-STR haplotypes showed evidence of a population expansion in Polynesians, beginning about 2,200 years ago. The other two Polynesian Y haplotypes were widespread in Asia but were also found in Melanesia. CONCLUSIONS: All Polynesian Y chromosomes can be traced back to Melanesia, although some of these Y-chromosome types originated in Asia. Together with other genetic and cultural evidence, we propose a new model of Polynesian origins that we call the 'slow-boat' model: Polynesian ancestors did originate from Asia/Taiwan but did not move rapidly through Melanesia; rather, they interacted with and mixed extensively with Melanesians, leaving behind their genes and incorporating many Melanesian genes before colonising the Pacific.  相似文献   

3.
The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the “slow boat” model being the most widely accepted, though other conjectures (i.e., the “express train” and “entangled bank” hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). We find that, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the majority of the paternal Polynesian gene pool exhibits ties to East Asia. In particular, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian populations and the Ami.  相似文献   

4.
Analyses of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in the same populations are sometimes concordant but sometimes discordant. Perhaps the most dramatic example known of the latter concerns Polynesians, in which about 94% of Polynesian mtDNAs are of East Asian origin, while about 66% of Polynesian Y chromosomes are of Melanesian origin. Here we analyze on a genome-wide scale, to our knowledge for the first time, the origins of the autosomal gene pool of Polynesians by screening 377 autosomal short tandem repeat (STR) loci in 47 Pacific Islanders and compare the results with those obtained from 44 Chinese and 24 individuals from Papua New Guinea. Our data indicate that on average about 79% of the Polynesian autosomal gene pool is of East Asian origin and 21% is of Melanesian origin. The genetic data thus suggest a dual origin of Polynesians with a high East Asian but also considerable Melanesian component, reflecting sex-biased admixture in Polynesian history in agreement with the Slow Boat model. More generally, these results also demonstrate that conclusions based solely on uniparental markers, which are frequently used in population history studies, may not accurately reflect the history of the autosomal gene pool of a population.  相似文献   

5.
The island of New Guinea received part of the first human expansion out of Africa (>40,000 years ago), but its human genetic history remains poorly understood. In this study, we examined Y-chromosome diversity in 162 samples from the Bird's Head region of northwest New Guinea (NWNG) and compared the results with previously obtained data from other parts of the island. NWNG harbors a high level of cultural and linguistic diversity and is inhabited by non-Austronesian (i.e., Papuan)-speaking groups as well as harboring most of West New Guinea's (WNG) Austronesian-speaking groups. However, 97.5% of its Y-chromosomes belong to 5 haplogroups that originated in Melanesia; hence, the Y-chromosome diversity of NWNG (and, according to available data, of New Guinea as a whole) essentially reflects a local history. The remaining 2.5% belong to 2 haplogroups (O-M119 and O-M122) of East Asian origin, which were brought to New Guinea by Austronesian-speaking migrants around 3,500 years ago. Thus, the Austronesian expansion had only a small impact on shaping Y-chromosome diversity in NWNG, although the linguistic impact of this expansion to this region was much higher. In contrast, the expansion of Trans-New Guinea (TNG) speakers (non-Austronesian) starting about 6,000-10,000 years ago from the central highlands of what is now Papua New Guinea, presumably in combination with the expansion of agriculture, played a more important role in determining the Y-chromosome diversity of New Guinea. In particular, we identified 2 haplogroups (M-P34 and K-M254) as suggestive markers for the TNG expansion, whereas 2 other haplogroups (C-M38 and K-M9) most likely reflect the earlier local Y-chromosome diversity. We propose that sex-biased differences in the social structure and cultural heritage of the people involved in the Austronesian and the TNG expansions played an important role (among other factors) in shaping the New Guinean Y-chromosome landscape.  相似文献   

6.
The "Polynesian motif" defines a lineage of human mtDNA that is restricted to Austronesian-speaking populations and is almost fixed in Polynesians. It is widely thought to support a rapid dispersal of maternal lineages from Taiwan ~4000 years ago (4 ka), but the chronological resolution of existing control-region data is poor, and an East Indonesian origin has also been proposed. By analyzing 157 complete mtDNA genomes, we show that the motif itself most likely originated >6 ka in the vicinity of the Bismarck Archipelago, and its immediate ancestor is >8 ka old and virtually restricted to Near Oceania. This indicates that Polynesian maternal lineages from Island Southeast Asia gained a foothold in Near Oceania much earlier than dispersal from either Taiwan or Indonesia 3-4 ka would predict. However, we find evidence in minor lineages for more recent two-way maternal gene flow between Island Southeast Asia and Near Oceania, likely reflecting movements along a "voyaging corridor" between them, as previously proposed on archaeological grounds. Small-scale mid-Holocene movements from Island Southeast Asia likely transmitted Austronesian languages to the long-established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif, perhaps also providing the impetus for the expansion into Polynesia.  相似文献   

7.
To investigate the paternal population history of New Guinea, 183 individuals from 11 regional populations of West New Guinea (WNG) and 131 individuals from Papua New Guinea (PNG) were analyzed at 26 binary markers and seven short-tandem-repeat loci from the nonrecombining part of the human Y chromosome and were compared with 14 populations of eastern and southeastern Asia, Polynesia, and Australia. Y-chromosomal diversity was low in WNG compared with PNG and with most other populations from Asia/Oceania; a single haplogroup (M-M4) accounts for 75% of WNG Y chromosomes, and many WNG populations have just one Y haplogroup. Four Y-chromosomal lineages (haplogroups M-M4, C-M208, C-M38, and K-M230) account for 94% of WNG Y chromosomes and 78% of all Melanesian Y chromosomes and were identified to have most likely arisen in Melanesia. Haplogroup C-M208, which in WNG is restricted to the Dani and Lani, two linguistically closely related populations from the central and western highlands of WNG, was identified as the major Polynesian Y-chromosome lineage. A network analysis of associated Y-chromosomal short-tandem-repeat haplotypes suggests two distinct population expansions involving C-M208--one in New Guinea and one in Polynesia. The observed low levels of Y-chromosome diversity in WNG contrast with high levels of mtDNA diversity reported for the same populations. This most likely reflects extreme patrilocality and/or biased male reproductive success (polygyny). Our data further provide evidence for primarily female-mediated gene flow within the highlands of New Guinea but primarily male-mediated gene flow between highland and lowland/coastal regions.  相似文献   

8.
Present-day Pacific islanders are thought to be the descendants of Neolithic agriculturalists who expanded from island South-east Asia several thousand years ago. They speak languages belonging to the Austronesian language family, spoken today in an area spanning half of the circumference of the world, from Madagascar to Easter Island, and from Taiwan to New Zealand. To investigate the genetic affinities of the Austronesian-speaking peoples, we analysed mitochondrial DNA, HLA and Y-chromosome polymorphisms in individuals from eight geographical locations in Asia and the Pacific (China, Taiwan, Java, New Guinea highlands, New Guinea coast, Trobriand Islands, New Britain and Western Samoa). Our results show that the demographic expansion of the Austronesians has left a genetic footprint. However, there is no simple correlation between languages and genes in the Pacific.  相似文献   

9.
Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ~9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (~3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.  相似文献   

10.
Archaeological, linguistic, and genetic studies show that Austronesian (AN)-speaking Polynesian ancestors came from Asia/Taiwan to the Bismarck Archipelago in Near Oceania more than 3,600 years ago, and then expanded into Remote Oceania. However, it remains unclear whether they extensively mixed with indigenous Melanesians who had populated the Bismarck Archipelago before their arrival. To examine the extent of admixture between Polynesian ancestors and indigenous Melanesians, mitochondrial DNA (mtDNA) variations in the D-loop region and the cytochrome oxidase and lysine transfer RNA (COII/tRNA(Lys)) intergenic 9-bp deletion were analyzed in the following three Oceanian populations: 1) Balopa Islanders as AN-speaking Melanesians living in the northwestern end of the Bismarck Archipelago, 2) Tongans as AN-speaking Polynesians, and 3) Gidra as non-Austronesian-speaking Melanesians in the southwestern lowlands of Papua New Guinea. Phylogenetic analysis of mtDNA sequences revealed that more than 60% of mtDNA sequences in the Balopa Islanders were very similar to those in Tongans, suggesting an extensive gene flow from Polynesian ancestors to indigenous Melanesians. Furthermore, analysis of pairwise difference distributions for the D-loop sequences with the 9-bp deletion and the Polynesian motif (i.e., T16217C, A16247G, and C16261T) suggested that the expansion of Polynesian ancestors possessing these variations occurred approximately 7,000 years ago.  相似文献   

11.
Past studies have shown a consistent association of a specific set of mitochondrial DNA 9 base pair (bp) deletion haplotypes with Polynesians and their Austronesian-speaking relatives, and the total lack of the deletion in a short series of New Guinea Highlanders. Utilizing plasma and DNA samples from various old laboratory collections, we have extended population screening for the 9-bp deletion into "Island Melanesia," an area notorious for its extreme population variation. While the 9-bp deletion is present in all Austronesian, and many non-Austronesian-speaking groups, it is absent in the more remote non-Austronesian populations in Bougainville and New Britain. These results are consistent with the hypothesis that this deletion was first introduced to this region about 3,500 years ago with the arrival of Austronesian-speaking peoples from the west, but has not yet diffused through all populations there. The pattern cannot be reconciled with the competing hypothesis of a primarily indigenous Melanesian origin for the ancestors of the Polynesians. Although selection clearly has operated on some other genetic systems in this region, both migration and random genetic drift primarily account for the remarkable degree of biological diversity in these small Southwest Pacific populations.  相似文献   

12.
Modern humans have occupied New Guinea and the nearby Bismarck and Solomon archipelagos of Island Melanesia for at least 40,000 years. Previous mitochondrial DNA (mtDNA) studies indicated that two common lineages in this region, haplogroups P and Q, were particularly diverse, with the coalescence for P considered significantly older than that for Q. In this study, we expand the definition of haplogroup Q so that it includes three major branches, each separated by multiple mutational distinctions (Q1, equivalent to the earlier definition of Q, plus Q2 and Q3). We report three whole-mtDNA genomes that establish Q2 as a major Q branch. In addition, we describe 314 control region sequences that belong to the expanded haplogroups P and Q from our Southwest Pacific collection. The coalescence dates for the largest P and Q branches (P1 and Q1) are similar to each other (approximately 50,000 years old) and considerably older than prior estimates. Newly identified Q2, which was found in Island Melanesian samples just to the east, is somewhat younger by more than 10,000 years. Our coalescence estimates should be more reliable than prior ones because they were based on significantly larger samples as well as complete mtDNA-coding region sequencing. Our estimates are roughly in accord with the current suggested dates for the first settlement of New Guinea-Sahul. The phylogeography of P and Q indicates almost total (female) isolation of ancient New Guinea-Island Melanesia from Australia that may have existed from the time of the first settlement. While Q subsequently diversified extensively in New Guinea-Island Melanesia, it has not been found in Australia. The only shared mtDNA haplogroup between Australia and New Guinea identified to date remains one minor branch of P.  相似文献   

13.
The genetic structure of the Gidra-speaking population inhabiting 13 villages in Papua New Guinea was investigated, based on the analysis of HLA-DRB1 polymorphism. Nei's fixation indices (F(IS), F(IT), and F(ST)) showed that the Gidra villages were genetically differentiated. The genetic distances significantly correlated with the geographic distances among the 13 villages. Thus, it is likely that a low intervillage migration rate has been maintained since the Gidra community was established. Correspondence analysis revealed that the Gidra, who belong to non-Austronesian-speaking groups, are genetically located at the intermediate point between the Aboriginal Australian groups and the Austronesian-speaking groups. Moreover, the HLA-DRB1*0802 allele, which has been observed in only two Polynesian groups (Austronesian-speaking groups) of Oceanian populations, was also found in the Gidra. These results suggest that the admixture of Austronesian and indigenous non-Austronesian groups beyond the linguistic boundary occurred partly in Papua New Guinea before Austronesian groups spread to the Pacific.  相似文献   

14.
The islands of Micronesia and Polynesia collectively comprise the last major region of the globe to be settled by humans. Both of these groups of islands were colonized within the last 4,000 years by Austronesian-speaking agriculturists. Based on biogeographic and linguistic patterns, central-eastern Micronesia and Polynesia are included by many in a single category called Remote Oceania. Similarities of biologic, linguistic, and cultural traits within Remote Oceania highlight a question central to Oceanic studies: Are similarities among islands due to a common origin of isolated communities, to ongoing interactions among islands, or both? Analyses of mitochondrial DNA (mtDNA) sequences reveal that most remote Oceanic populations are polyphyletic. These polyphyletic populations violate the assumptions of many genetic distance and population demography models and so are problematic to interpret. The majority of mtDNA sequences from Micronesian and Polynesian populations are derived from Asia, whereas others are inferred to have originated in New Guinea. These data support an Island Southeast Asian origin and a colonization route along the north coast of New Guinea. The Marianas and Yap proper (main island) appear to have been independently settled directly from Island Southeast Asia, and both have received migrants from Central-Eastern Micronesia since then. Palau clearly demonstrates a complex prehistory including a significant influx of lineages from New Guinea. Thus genetic similarities among Micronesian and Polynesian populations result, in some cases, from a common origin, and in others, from extensive gene flow.  相似文献   

15.
Using mitochondrial lineage analysis of 1,178 individuals from Polynesia, the western Pacific, and Taiwan, we show that the major prehistoric settlement of Polynesia was from the west and involved two or possibly three genetically distinct populations. The predominant lineage group, accounting for 94% of Polynesian mtDNA, shares a 9-bp COII/tRNA(Lys) intergenic deletion and characteristic control region transition variants, compared to the Cambridge reference sequence. In Polynesia, the diversity of this group is extremely restricted, while related lineages in Indonesia, the Philippines, and Taiwan are increasingly diverse. This suggests a relatively recent major eastward expansion into Polynesia, perhaps originating from Taiwan, in agreement with archeological and linguistic evidence, but which experienced one or more severe population bottlenecks. The second mitochondrial lineage group, accounting for 3.5% of Polynesian mtDNA haplotypes, does not have the 9-bp deletion and its characterized by an A-C transversional variant at nt position 16265. Specific oligonucleotides for this variant were used to select individuals from the population sample who, with other sequences, show that the Polynesian lineages were part of a diverse group in Vanuatu and Papua New Guinea. The very low overall diversity of both lineage groups in Polynesia suggests there was severe population restriction during the colonization of remote Oceania. A third group, represented by only four individuals (0.6%) in Polynesia but also present in the Philippines, shares variants at nt positions 16172 and 16304. Two Polynesians had unrelated haplotypes matching published sequences from native South Americans, which may be the first genetic evidence of prehistoric human contact between Polynesia and South America.  相似文献   

16.
In the late stages of the global dispersal of dogs, dingoes appear in the Australian archaeological record 3500 years BP, and dogs were one of three domesticates brought with the colonization of Polynesia, but the introduction routes to this region remain unknown. This also relates to questions about human history, such as to what extent the Polynesian culture was introduced with the Austronesian expansion from Taiwan or adopted en route, and whether pre-Neolithic Australia was culturally influenced by the surrounding Neolithic world. We investigate these questions by mapping the distribution of the mtDNA founder haplotypes for dingoes (A29) and ancient Polynesian dogs (Arc1 and Arc2) in samples across Southern East Asia (n = 424) and Island Southeast Asia (n = 219). All three haplotypes were found in South China, Mainland Southeast Asia and Indonesia but absent in Taiwan and the Philippines, and the mtDNA diversity among dingoes indicates an introduction to Australia 4600-18 300 years BP. These results suggest that Australian dingoes and Polynesian dogs originate from dogs introduced to Indonesia via Mainland Southeast Asia before the Neolithic, and not from Taiwan together with the Austronesian expansion. This underscores the complex origins of Polynesian culture and the isolation from Neolithic influence of the pre-Neolithic Australian culture.  相似文献   

17.
Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved.  相似文献   

18.
Genetic affinities between aboriginal Taiwanese and populations from Oceania and Southeast Asia have previously been explored through analyses of mitochondrial DNA (mtDNA), Y chromosomal DNA, and human leukocyte antigen loci. Recent genetic studies have supported the “slow boat” and “entangled bank” models according to which the Polynesian migration can be seen as an expansion from Melanesia without any major direct genetic thread leading back to its initiation from Taiwan. We assessed mtDNA variation in 640 individuals from nine tribes of the central mountain ranges and east coast regions of Taiwan. In contrast to the Han populations, the tribes showed a low frequency of haplogroups D4 and G, and an absence of haplogroups A, C, Z, M9, and M10. Also, more than 85% of the maternal lineages were nested within haplogroups B4, B5a, F1a, F3b, E, and M7. Although indicating a common origin of the populations of insular Southeast Asia and Oceania, most mtDNA lineages in Taiwanese aboriginal populations are grouped separately from those found in China and the Taiwan general (Han) population, suggesting a prevalence in the Taiwanese aboriginal gene pool of its initial late Pleistocene settlers. Interestingly, from complete mtDNA sequencing information, most B4a lineages were associated with three coding region substitutions, defining a new subclade, B4a1a, that endorses the origin of Polynesian migration from Taiwan. Coalescence times of B4a1a were 13.2 ± 3.8 thousand years (or 9.3 ± 2.5 thousand years in Papuans and Polynesians). Considering the lack of a common specific Y chromosomal element shared by the Taiwanese aboriginals and Polynesians, the mtDNA evidence provided here is also consistent with the suggestion that the proto-Oceanic societies would have been mainly matrilocal.  相似文献   

19.
We have used Y-chromosomal polymorphisms to trace paternal lineages in Polynesians by use of samples previously typed for mtDNA variants. A genealogical approach utilizing hierarchical analysis of eight rare-event biallelic polymorphisms, seven microsatellite loci, and internal structural analysis of the hypervariable minisatellite, MSY1, has been used to define three major paternal-lineage clusters in Polynesians. Two of these clusters, both defined by novel MSY1 modular structures and representing 55% of the Polynesians studied, are also found in coastal Papua New Guinea. Reduced Polynesian diversity, relative to that in Melanesians, is illustrated by the presence of several examples of identical MSY1 codes and microsatellite haplotypes within these lineage clusters in Polynesians. The complete lack of Y chromosomes having the M4 base substitution in Polynesians, despite their prevalence (64%) in Melanesians, may also be a result of the multiple bottleneck events during the colonization of this region of the world. The origin of the M4 mutation has been dated by use of two independent methods based on microsatellite-haplotype and minisatellite-code diversity. Because of the wide confidence limits on the mutation rates of these loci, the M4 mutation cannot be conclusively dated relative to the colonization of Polynesia, 3,000 years ago. The other major lineage cluster found in Polynesians, defined by a base substitution at the 92R7 locus, represents 27% of the Polynesians studied and, most probably, originates in Europe. This is the first Y-chromosomal evidence of major European admixture with indigenous Polynesian populations and contrasts sharply with the picture given by mtDNA evidence.  相似文献   

20.
The human leukocyte antigen (HLA) distributions in 16 Pacific populations have been collated from published and unpublished reports. Gene frequency and linkage disequilibrium relationships among groups show that Australians and Papuans share a common ancestry, that coastal Melanesia has about 16% Austronesian admixture, and that Fiji is truly intermediate between Melanesia and Polynesia. In Polynesia, Cook Islanders show closer affinity with populations of Western Polynesia than with Maoris and Easter Islanders, in contrast to their linguistic affiliations, but otherwise HLA distributions show a clear division between the populations of Eastern and Western Polynesia. This study emphasizes the contribution the HLA system can make to anthropological studies and has provided a version of colonization of the Pacific compatible with theories based on prodigious efforts in many disciplines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号