首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 392 毫秒
1.
生长抑素对胃粘膜的保护作用可能与清除自由基有关   总被引:13,自引:1,他引:12  
李铁  张席锦 《生理学报》1994,46(4):369-374
本文观察到生长抑素对大鼠冷冻-束缚应激性胃粘膜损伤具有明显的保护作用,同时显著地抑制应激引起的胃粘膜丙二醛含量的升高。应激时大鼠胃粘膜内黄嘌呤氧化酶的生增高,同时谷胱甙肽过氧化物酶的活性降低,但超氧化物歧化酶的活性未见明显变化,生长抑素预处理可使应激时GSH-PX活性的降低恢复到正常水平,但对XO和SOD未见明显影响。上述结果提示,生长抑素对应激性胃粘膜损伤的保护作用似与增强胃粘膜对自由基的清除有  相似文献   

2.
采用水浸束缚应激(WRS)诱导大鼠急性胃粘膜损伤模型,观察胃粘膜氧化应激指标和胃液pH值的变化,探讨白藜芦醇对大鼠应激性胃溃疡的保护作用及机制。将30只wistar大鼠随机分为对照组,应激组,白藜芦醇低、中、高剂量组(30、60、120 mg/kg)。通过观察胃黏膜形态学改变,测定胃液pH值、胃溃疡指数(UI)、胃黏膜组织SOD活性及MDA含量的改变,研究不同剂量白藜芦醇对大鼠应激性胃溃疡的抑制作用及机制。结果显示白藜芦醇能明显减轻WRS大鼠胃黏膜的水肿、出血和溃疡面积,明显降低UI(P0.01);同时显著提高胃粘膜组织SOD的活性、胃液pH(P0.01)和降低MDA水平(P0.01),各指标均以白藜芦醇中剂量组作用显著。本实验结果表明白藜芦醇具有较强的抗溃疡作用,对束缚应激大鼠胃溃疡有明显保护作用,其机制主要与减少自由基产生和提高抗氧活酶活性有关。  相似文献   

3.
采用pronase—EDTA法分离大鼠胃粘膜细胞,将黄嘌呤氧化酶(xanthineoxidase,XO)—黄嘌呤(xanthine,X)氧自由基生成系统加入培养液诱发细胞的损伤。观察到预先加入生长抑素可以剂量依赖性地减轻XO—X引起的细胞死亡和乳酸脱氢酶的漏出;同时抑制XO—X引起的细胞脂质过氧化水平的升高,并翻转细胞膜流动性及溶血性卵磷脂与卵磷脂比值的变化。上述结果提示,生长抑素对氧自由基引起的胃粘膜细胞损伤可能具有直接的保护作用,其机制似与防止质膜的脂质过氧化并从而保护细胞膜免受损伤有关。  相似文献   

4.
巯基物质在氧自由基损伤离体胃粘膜细胞中的作用   总被引:7,自引:0,他引:7  
李铁  张席锦 《生理学报》1992,44(4):386-393
本文用离体胃粘膜细胞研究了细胞内流基物质在活性氧诱发细胞损伤中的作用。实验采用pronase-EDTA法分离大鼠胃粘膜细胞并进行短期孵育,以黄嘌呤氧化酶(XO)-黄嘌呤(X)系统产生氧自由基损伤细胞。实验结果表明,用XO-X损伤胃粘膜细胞时,细胞存活率显著降低,乳酸脱氨酶(LDH)漏出量增多,同时细胞内非蛋白质巯基(NPSH)和蛋白质巯基(PSH)含量均不同程度地下降;N-乙基顺丁烯二酰亚胺(NEM)在耗竭细胞内NPSH和PSH的同时,引起细胞死亡和LDH漏出增加,这一作用与NEM的作用时间和浓度是显著依从关系;在细胞孵育液中预先加入含-SH的化合物还原型谷胱甘肽(GSH)或半胱胺,可剂量依赖性地减轻XO-X引起的细胞损伤。上述结果提示,胃粘膜细胞内的巯基物质在自身防御机制中具有重要作用,氧自由基损伤胃粘膜细胞的机制之一可能与破坏细胞内巯基的稳态有夫。  相似文献   

5.
本研究为了探讨智托洁白丸(ZJP)对模拟海拔5 000 m的高原环境所诱发的大鼠低氧应激性胃溃疡的影响,以ZJP的药效与机制作为研究对象,通过组织病理形态学和透射电镜观察、腺苷酸含量和能荷测定、SOD活性和MDA含量测定的方法,发现ZJP由于增加大鼠胃粘膜的ATP、ADP、AMP含量及能荷、增加SOD活性,降低MDA含量而减轻了低氧应激所导致的胃粘膜的溃疡损伤,表明ZJP具有保护低氧应激性胃溃疡的药理作用。我们的研究有助于为高原病的防治提供药学理论依据。  相似文献   

6.
电刺激室旁核对大鼠应激性胃粘膜损伤的影响   总被引:3,自引:0,他引:3  
张建福  郑芳 《生理学报》1992,44(6):583-590
电刺激室旁核(PVN)有加重大鼠应激性胃粘膜损伤的作用;PVN内微量注射神经元胞体兴奋剂L-谷氨酸钠和电刺激PVN的效应相同;电解损毁双侧PVN或对其电刺激后,使应激性胃粘膜损伤明显减轻,切断膈下迷走神经或皮下注射阿托品后,可显著减轻电刺激PVN加重大鼠应激性胃粘膜损伤的效应;电刺激PVN使胃粘膜血流量减少,但对胃液量、胃酸排出量、胃蛋白酶活性及胃壁结合粘液量均无显著影响。从而表明,PVN是影响应激性胃粘膜损伤的特异性中枢部位之一,当其兴奋时,可加重应激性胃粘膜损伤,并可能是通过迷走神经胆碱能纤维起作用的,且与胃粘膜血流量的减少有关;电刺激PVN加重胃粘膜损伤似不是由胃液量、胃酸、胃蛋白酶活性及胃壁结合粘液量等因素的改变引起的。  相似文献   

7.
大鼠浸水应激性胃粘膜损伤机制的研究   总被引:28,自引:0,他引:28  
艾洪滨  张震东 《生理学报》1990,42(5):496-502
本工作观察了室温下单纯束缚加生理盐水,浸水应激加生理盐水,浸水应激加阿托品(0.5mg/kg),浸水应激加酚苄明(10mg/kg),浸水应激加戊巴比妥钠(30mg/kg)5组大鼠的胃粘膜损伤程度,胃酸分泌,胃壁结合粘液分泌和胃运动的变化。结果表明:大鼠浸水应激后胃粘膜损伤严重,胃酸分泌增加,胃壁结合粘液分泌减少,胃运动亢进;预先应用阿托品再浸水应激可显著减轻胃粘膜损伤程度,抑制胃酸分泌和胃运动,但增加胃壁结合粘液的分泌;预先应用应巴比妥钠亦显著减轻胃粘膜损伤程度,抑制胃运动和增加胃壁结合粘液的分泌,但对胃酸分泌无影响;预先应用酚苄明对胃粘膜损伤程度、胃酸分泌、胃壁结合粘液分泌和胃运动均无明显影响。上述结果提示,胃运动亢进、胃壁结合粘液分泌减少及胃酸分泌增加均不同程度地参与了浸水应激性胃粘膜损伤的形成,但在胃运动受到抑制及胃壁结合粘液分泌增加的情况下,仅胃酸的存在不致引起胃粘膜严重损伤。  相似文献   

8.
目的:观察组蛋白去乙酰化酶抑制剂在应激性心肌损伤发生过程中的作用。方法:健康雄性Wistar大鼠随机分为3组(n=6),用束缚应激方法建立慢性应激性心肌损伤模型,采用组蛋白去乙酰化酶抑制剂曲古抑菌素A(TSA)干预,观察TSA对应激性心肌损伤的保护作用。Western blot检测实验各组大鼠心肌的组蛋白乙酰化水平,采用分光光度法动态监测大鼠血清乳酸脱氢酶(LDH)和肌酸激酶同工酶-MB(CK-MB)活性以及心肌组织Caspase 3活性,Nagar Olsen染色观察心肌的早期损伤。结果:束缚应激可以显著降低大鼠心肌的组蛋白乙酰化水平(P0.05),而TSA干预可以抑制应激所致的心肌组蛋白乙酰化水平降低(P0.05);束缚应激可以引起大鼠血清LDH和CK-MB活性、心肌组织Caspase 3活性显著升高(P0.05),发生心肌早期损伤,而TSA干预可显著降低束缚应激引起的LDH(P0.05)、CK-MB活性(P0.05)、Caspase 3活性升高(P0.05)。结论:组蛋白去乙酰化酶抑制剂TSA对应激性心肌损伤具有一定的保护作用。  相似文献   

9.
植物油对大鼠应激性胃粘膜损伤的保护作用   总被引:3,自引:0,他引:3  
郭燕世  张建福 《生理学报》1985,37(2):204-208
将大鼠捆缚后置于4℃冰箱3h,造成应激性胃粘膜损伤,损伤程度用损伤指数表示:(1)在应激前3h 用0.5、1.0、2.Oml 的花生油灌胃,使损伤指数从对照的18.8—22.6降为6.8—7.0,P<0.01,但当花生油用量降至0.25ml 时,其保护作用不明显;(2)在应激前0.5、1.5、2.5和3.5h用1.0ml 花生油灌胃,也均有保护作用,(3)菜籽油或油酸有类似花生油的抗胃粘膜损伤作用,而且油酸的作用比花生油更显著,但30%甘油却无效;(4)将1.0ml 花生油注入空肠,具有与灌胃相似的保护作用;(5)在大鼠应激前1.5h 肌注消炎痛(10mg/kg),并不能阻断花生油的保护作用。以上结果表明,花生油等植物油能够通过其脂肪酸成分作用于小肠而产生对抗应激性胃粘膜损伤的作用。这种保护作用的机理不明,但似与前列腺素无关。  相似文献   

10.
据报道,心肌缺血——再灌损伤的机制与活性氧自由基的产生紧切相关,在大鼠心脏产生氧自由基是以黄嘌呤氧化酶(XO)途径为主.心肌中的黄嘌呤脱氢酶(XD)在Ca~(2+)激活水解酶的作用下向XD转化.而此我们设想,协同使用钙拮抗剂与超氧阴离子(O_2~1)清除剂(超氧化物歧化酶,SOD)可能加强对心肌的保护作用.本实验用电子自旋共振波谱仪(ESR)直接检测大鼠缺血——再灌心肌产生的活性氧自由基,从心脏收缩幅度,静息张力,肌酸激酶(CK)释放和心肌组织丙二醛(MDA)为指标,观察钙拮抗剂硫氮(艹卓)酮(DTZ)和SOD的分别作用和联合作用,发现两药合用可明显减少心肌活性氧自由基的产生.  相似文献   

11.
The aim of this study was to compare the effects of two nonsteroidal anti-inflammatory drugs (NSAID), members of the same family with a different cyclooxygenase (COX) inhibition selectivity, meloxicam, preferent COX-2 inhibitor, and piroxicam, preferent COX-1 inhibitor, on oxygen radical generation in rat gastric mucosa. Therefore, the activity of oxidative stress-related enzymes such as xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione (GSH) homeostasis were studied in rats. Gastric prostaglandins (PG) were also assessed as a measure of COX-1 inhibition. Both oxicams produced a similar extent of the gastric mucosal damage and a significant decrease in PGE 2 synthesis, however only piroxicam induced an increase of both myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)- &#102 content in the gastric mucosa, indicating that neutrophil-derived free radicals were involved in gastric injury. Furthermore, both compounds reduced SOD activity and increased XO activity in gastric mucosa. Our results also revealed modifications in GSH metabolism: although glutathione peroxidase (GSH-px) activity was unaffected by meloxicam or piroxicam administration, both glutathione reductase (GSSG-rd) activity and total GSH content were significantly decreased after dosing. These results suggest that under our experimental conditions, meloxicam, preferential COX-2 inhibitor causes rates of gastric lesion in rats comparable to those seen with the traditional NSAID piroxicam, preferential COX-1 inhibitor. In addition to suppression of systemic COX activity, oxygen radicals, probably derived via the XO, and neutrophils play an important role in the production of damage induced by both oxicams. Moreover, the decrease in SOD activity and changes in glutathione homeostasis in gastric mucosa may also contribute to pathogenesis of meloxicam- or piroxicam-induced gastropathy.  相似文献   

12.
The aim of this study was to compare the effects of two nonsteroidal anti-inflammatory drugs (NSAID), members of the same family with a different cyclooxygenase (COX) inhibition selectivity, meloxicam, preferent COX-2 inhibitor, and piroxicam, preferent COX-1 inhibitor, on oxygen radical generation in rat gastric mucosa. Therefore, the activity of oxidative stress-related enzymes such as xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione (GSH) homeostasis were studied in rats. Gastric prostaglandins (PG) were also assessed as a measure of COX-1 inhibition. Both oxicams produced a similar extent of the gastric mucosal damage and a significant decrease in PGE2 synthesis, however only piroxicam induced an increase of both myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)-alpha content in the gastric mucosa, indicating that neutrophil-derived free radicals were involved in gastric injury. Furthermore, both compounds reduced SOD activity and increased XO activity in gastric mucosa. Our results also revealed modifications in GSH metabolism: although glutathione peroxidase (GSH-px) activity was unaffected by meloxicam or piroxicam administration, both glutathione reductase (GSSG-rd) activity and total GSH content were significantly decreased after dosing. These results suggest that under our experimental conditions, meloxicam, preferential COX-2 inhibitor causes rates of gastric lesion in rats comparable to those seen with the traditional NSAID piroxicam, preferential COX-1 inhibitor. In addition to suppression of systemic COX activity, oxygen radicals, probably derived via the XO, and neutrophils play an important role in the production of damage induced by both oxicams. Moreover, the decrease in SOD activity and changes in glutathione homeostasis in gastric mucosa may also contribute to pathogenesis of meloxicam- or piroxicam-induced gastropathy.  相似文献   

13.
To determine whether oxygen-derived free radicals play an important role in the pathogenesis of stress-induced tissue injury, the effect of a superoxide dismutase derivative, which binds to albumin and circulates with a half-life of 6 h in intact rats, on acute gastric mucosal lesion was observed in rats which were given water-immersion-restraint. This enzyme derivative also circulated bound to albumin with a half-life of 8 h in rats which were challenged with water-immersion-restraint. This treatment significantly perturbed systemic circulation of animals by decreasing the effective volume of circulating blood, increased vascular permeability of the gastric mucosa, and induced acute gastric mucosal lesion. Intravenous administration of this enzyme derivative normalized both systemic circulation and vascular permeability of the gastric mucosa and prevented the occurrence of stress-induced gastric injury. These findings suggest that the superoxide radical and/or its metabolite(s) plays an important role in the pathogenesis of stress-induced acute gastric mucosal lesion.  相似文献   

14.
It has been proposed that neutrophil and oxygen dependent microvascular injuries may be important prime events in gastrointestinal (GI) toxicity of nonsteroidal antiinflammatory drugs (NSAIDs). l-arginine (l-ARG) is an essential amino acid which participates in many important biochemical reactions associated to the normal physiology of the organism. In these experimentations, we studied the role of l-ARG, aminoacid precursor of NO synthesis, on ibuprofen (IB) induced gastric lesions, and also on the inflammatory and oxidative mechanisms related to mucosal damage. Oral administration of IB (100 mg kg-1), produced severe damage on gastric mucosa, which was more important after 6 h test-period, and was accompanied by a significant increment in myeloperoxidase (MPO) activity, as index of neutrophil activation, as well as lipid peroxidation (LP) levels and xanthine oxidase (XO) activity. However, no changes were observed in total mucosal glutathione (tGSH), nor glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. Simultaneous treatment with equimolar doses of l-ARG (oral and i.p.), considerably reduced the number and intensity of lesions, and at the same time (6 h) the maximum protection was also observed. In addition, l-ARG inhibited the IB-induced LP and XO enhancement, but did not produce changes in leukocyte infiltration, tGSH, GSH-Px and SOD activity. These findings suggest that (1) l-ARG protective effect on gastric mucosa against IB-induced mucosal lesions could be explained by a local effect and also might be due to the systemic action of the aminoacid; (2) the active oxygen species, derived both from XO and activated neutrophils, could play a role in the pathogenesis of gastric injury induced by IB, (3) l-ARG exhibit a protective effect against IB-induced mucosal damage, probably through the inhibition of oxidative stress derived via xanthine-XO, but it does not block the oxygen free radical production through polymorphe nuclear leukocytes.  相似文献   

15.
Lou LX  Geng B  Yu F  Zhang J  Pan CS  Chen L  Qi YF  Ke Y  Wang X  Tang CS 《Life sciences》2006,79(19):1856-1864
Stress gastric ulcer is a serious complication, but the mechanism involved is not fully clarified. It is well known that mucosal cell apoptosis plays a crucial role in the pathogenesis of gastric ulceration. Recent studies have shown that endoplasmic reticulum (ER) stress is an important pathway leading to cellular apoptosis. To investigate the role of ER stress in the pathogenesis of stress gastric ulcer, we studied the alteration in the expression of ER stress markers GRP78 (glucose-regulated protein 78) and caspase-12 (an ER stress-specific proapoptotic molecule) and their relations with gastric mucosal apoptosis during development of stress gastric lesions in the water-immersion and restraint stress (WRS) model in rats. Rats developed severe gastric lesions after 6 h of WRS. Typical apoptosis was observed at the edge cells of WRS induced gastric lesions. Western blot analysis showed that GRP78 and activated caspase-12 were over-expressed in the gastric tissues of WRS rats. Immunohistochemical analysis demonstrated that increased GRP78 and caspase-12 were distributed only under the lesions. In addition, dithiothreitol and tunicamycin (ER stress inducers), which increased the expression of GRP78 and activated caspase-12, caused gastric mucosal injury and mucosal cell apoptosis in vitro. These findings suggest that ER stress might be involved in the development of stress gastric ulcer through an apoptotic mechanism.  相似文献   

16.
It has been proposed that neutrophil and oxygen dependent microvascular injuries may be important prime events in gastrointestinal (GI) toxicity of nonsteroidal antiinflammatory drugs (NSAIDs). l-arginine (l-ARG) is an essential amino acid which participates in many important biochemical reactions associated to the normal physiology of the organism. In these experimentations, we studied the role of l-ARG, aminoacid precursor of NO synthesis, on ibuprofen (IB) induced gastric lesions, and also on the inflammatory and oxidative mechanisms related to mucosal damage. Oral administration of IB (100 mg kg-1), produced severe damage on gastric mucosa, which was more important after 6 h test-period, and was accompanied by a significant increment in myeloperoxidase (MPO) activity, as index of neutrophil activation, as well as lipid peroxidation (LP) levels and xanthine oxidase (XO) activity. However, no changes were observed in total mucosal glutathione (tGSH), nor glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. Simultaneous treatment with equimolar doses of l-ARG (oral and i.p.), considerably reduced the number and intensity of lesions, and at the same time (6 h) the maximum protection was also observed. In addition, l-ARG inhibited the IB-induced LP and XO enhancement, but did not produce changes in leukocyte infiltration, tGSH, GSH-Px and SOD activity. These findings suggest that (1) l-ARG protective effect on gastric mucosa against IB-induced mucosal lesions could be explained by a local effect and also might be due to the systemic action of the aminoacid; (2) the active oxygen species, derived both from XO and activated neutrophils, could play a role in the pathogenesis of gastric injury induced by IB, (3) l-ARG exhibit a protective effect against IB-induced mucosal damage, probably through the inhibition of oxidative stress derived via xanthine-XO, but it does not block the oxygen free radical production through polymorphe nuclear leukocytes.  相似文献   

17.
This study looks at the role of xanthine oxidase (XO) in ischemia/reperfusion (I/R) induced intestinal mucosal damage using normal and xanthine oxidase deficient rats. Tungstate feeding for 3 days depleted the intestinal mucosal XO by 80%. A ligated loop of the rat small intestine (both normal and XO-deficient) was subjected to 1 h of total ischemia followed by 5 min revascularisation. The ensuing mucosal damage was assessed by biochemical and histological studies. Ischemia or I/R increased the XO levels in normal rats without any change in XO-deficient rats. Myeloperoxidase (a neutrophil marker) level was increased in both group of rats but it was comparatively higher in the XO-deficient rats. Accumulation of peroxidation products such as malondialdehyde, conjugated diene and increased production of hydroxyl radicals by microsomes were seen after ischemia and I/R and were similar in normal and XO-deficient rats. Studies on other parameters of peroxidation showed a decrease in polyunsaturated fatty acids and alpha-tocopherol, an increase in cysteine and cystine levels after I/R and were similar in both normal and XO-deficient rats. Histological results indicated gross morphological changes in the intestinal mucosa due to ischemia and I/R, and the damage was more severe in XO-deficient rats. These observations suggest that oxygen-derived free radicals are involved in the intestinal mucosal damage during I/R and infiltrated neutrophils rather than XO may be the primary source of free radicals under these conditions.  相似文献   

18.
Rebamipide, a novel antipeptic ulcer drug, 2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinone-4-yl]-propionic acid, was studied for its inhibitory effect on gastric xanthine oxidase activity and type conversion of the enzyme that has a profound role in free radical generation. Intraperitoneal administration of rebamipide at 60 mg/kg body weight reduced gastric mucosal hemorrhagic lesions and lipid peroxidation, which was proportional to the inhibitory effect of rebamipide on alcohol-induced xanthine oxidase-type conversion and enzyme activity. It was also observed that the activity of xanthine oxidase was significantly inhibited by administration of rebamipide at 60 mg/kg body weight, leading to a significant reduction of lipid peroxide content in alcohol-treated rats. The results suggest that alcohol-induced gastric mucosal lesions might be, in part, due to the increased activity of xanthine oxidase and type conversion rate of the enzyme and the protective effect of rebamipide on gastric mucosal lesions would result from its ability to protect against oxidative stress on gastric mucosal lesions of alcohol-treated rats.  相似文献   

19.
Gastric microcirculation plays an important role in the maintenance of the gastric mucosal barrier and mucosal integrity. Sensory nerves are involved in the regulation of mucosal blood circulation and mucosal defense. Therefore, the ablation of these nerves by neurotoxic doses of capsaicin provides the possibility of determination of their role in gastric mucosal integrity. Stress ulceration represents a serious gastric lesions. Results of our previous experiments have indicated that water immersion and restraint stress (WRS) led to increased oxidative metabolism. Ablation of sensory nerves by high doses of capsaicin retards healing of gastric ulcers, but the role of reactive oxygen species (ROS) in the healing process has been little studied. Therefore, the aim of our present investigations was to determine the participation of ROS in sensory nerve activity during WRS. Experiments were carried out on 90 male Wistar rats and the area of gastric lesions was measured by planimetry. Colorimetric assays were used to determine gastric mucosal levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), as well as superoxide dismutase (SOD) activity. We demonstrated that inactivation of sensory nerves resulted in magnification of gastric mucosal damage induced by the WRS. In this process, oxidative stress, as reflected by an increase of MDA and 4-HNE tissue concentrations (an index of lipid peroxidation), as well as decrease of SOD activity, could play an important role. Aspirin, applied in a low dose, exerts a protective activity, possibly due to its metabolites, which possess the anti-oxidant and ROS scavanging properties. Pentoxyfilline-induced gastroprotection and hyperemia depends upon attenuation of the oxidative stress. This protection and hyperemia were, at least in part, attenuated by ASA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号