首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Pappas A  Park TS  Carman GM 《Biochemistry》1999,38(50):16671-16677
CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] from the yeast Saccharomyces cerevisiae catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In this work, we demonstrated that CTP synthetase utilized dUTP as a substrate to synthesize dCTP. The dUTP-dependent activity was linear with time and with enzyme concentration. Maximum dUTP-dependent activity was dependent on MgCl(2) (4 mM) and GTP (K(a) = 14 microM) at a pH optimum of 8.0. The apparent K(m) values for dUTP, ATP, and glutamine were 0.18, 0.25, and 0.41 mM, respectively. dUTP promoted the tetramerization of CTP synthetase, and the extent of enzyme tetramerization correlated with dUTP-dependent activity. dCTP was a poor inhibitor of dUTP-dependent activity, whereas CTP was a potent inhibitor of this activity. The enzyme catalyzed the synthesis of dCTP and CTP when dUTP and UTP were used as substrates together. CTP was the major product synthesized when dUTP and UTP were present at saturating concentrations. When dUTP and UTP were present at concentrations near their K(m) values, the synthesis of dCTP increased relative to that of CTP. The synthesis of dCTP was favored over the synthesis of CTP when UTP was present at a concentration near its K(m) value and dUTP was varied from subsaturating to saturating concentrations. These data suggested that the dUTP-dependent synthesis of dCTP by CTP synthetase activity may be physiologically relevant.  相似文献   

2.
Deoxyribonucleotide pool imbalances are frequently mutagenic. We have studied two Chinese hamster ovary cell lines, Thy- 49 and Thy- 303, that were originally characterized by M. Meuth (Mol. Cell. Biol. 1:652-660, 1981). In comparison with wild-type CHO cells, both lines have elevated dCTP/dTTP ratios, resulting from loss of feedback control of CTP synthetase. While asynchronous cultures of both cell lines contain nearly identical deoxyribonucleoside triphosphate (dNTP) pools and both display elevated spontaneous mutation frequencies, the mutation frequencies between the two cell lines differ by as much as 10-fold. We asked whether differences in dNTP pools could be seen in extracts of rapidly isolated nuclei. Small differences, probably not large enough to account for the differences in mutation frequencies, were seen. However, when synchronized S-phase-enriched cell populations were examined, substantial differences were seen, both in whole-cell extracts and in nuclear extracts. Thy- 303 cells, which have higher mutation frequencies than do Thy- 49 cells, also showed the more aberrant dNTP pools. These data indicate that the Thy- 303 line contains a second mutation in addition to the mutation affecting CTP synthetase control. Evidence suggests that this putative second mutation affects an allosteric regulatory site of ribonucleotide reductase. The data on intranuclear dNTP pools in synchronized S-phase cells indicate that higher proportions of cellular dATP and dGTP are found in the nucleus than are corresponding amounts of dCTP and dGTP. Thus, despite the porous nature of the nuclear membrane, there are conditions under which the distributions of deoxyribonucleotides across this membrane are not random.  相似文献   

3.
Regulation of uridine kinase. Evidence for a regulatory site   总被引:2,自引:0,他引:2  
Uridine kinase from mouse Ehrlich ascites tumor cells may exist at 4 degrees C in multiple aggregation states that only slowly equilibrate with one another. Increasing the temperature leads to dissociation, and the appearance of a single predominant species: at 22 degrees C the enzyme exists as a tetramer. There is also a break in the dependence of enzyme activity on temperature as measured in an Arrhenius plot. The feedback inhibitors CTP and UTP cause the enzyme to dissociate to the monomer, whereas the substrate ATP reverses this process. Kinetic studies show that the monomer has little or no activity. Studies of the reaction mechanism show that binding of substrates is ordered, leading to a ternary complex, and release of products is ordered: uridine is the first substrate bound, ADP the first product released. Except for the inhibitors UTP and CTP, all other nucleoside triphosphates, whether purine or pyrimidine, or containing ribose or deoxyribose, act as phosphate donor. Especially interesting are the opposite effects of CTP and dCTP on uridine kinase: unlike CTP, dCTP does not dissociate the enzyme and is competent as a phosphate donor. We propose that the various effects of different ligands are best explained by the existence of a regulatory site (with more stringent specificity than the catalytic site) that controls dissociation of uridine kinase to the inactive monomer.  相似文献   

4.
The effects of various concentrations of thymidine on DNA synthesis and deoxyribonucleoside triphosphate contents of a highly thymidine-sensitive cultured mouse lymphoma cell line (WEHI-7) and a relatively resistant mouse myeloma cell line (HPC-108) have been studied by 32P-labelling techniques. DNA synthesis in the myeloma cells was inhibited by thymidine at concentrations of 10(-3) M or greater, while DNA synthesis in the lymphoma cells was inhibited by concentrations 30-fold lower, consistent with the 25-fold difference between the two cell lines in sensitivity to growth inhibition by thymidine. Thymidine caused marked elevation of the dTTP and dGTP pools, slight elevation or no change in the dATP pool and a marked decrease in the dCTP pool in cells of both lines. The greater resistance of HPC-108 cells to thymidine inhibition was related to the finding that they normally contained a much higher concentration of dCTP than did the WEHI-7 cells. Pool size measurements on thymidine-treated (10(-4) M) cells of an additional seven sensitive lymphoma and six relatively resistant myeloma cell lines indicated that in all 15 lines studied, with one exception, a critical concentration of dCTP of about 32 nmol per ml of cell volume was required for the maintenance of normal rates of DNA synthesis. The dCTP content found normally in the lymphoma cells was only a little above this concentration. Amongst the myeloma lines, three contained similarly low levels of dCTP, but were more resistant to thymidine inhibition probably because of their inefficient production of dTTP from thymidine. Cells of the other four myeloma lines (including HPC-108) normally contained much higher dCTP concentrations. The mechanism of thymidine action was explained by reference to the known allosteric properties of ribonucleotide reductase.  相似文献   

5.
J C Shen  M D Gray  J Oshima    L A Loeb 《Nucleic acids research》1998,26(12):2879-2885
Werner syndrome is an inherited disease characterized by premature aging, genetic instability and a high incidence of cancer. The wild type Werner syndrome protein (WRN) has been demonstrated to exhibit DNA helicase activity in vitro. Here we report further biochemical characterization of the WRN helicase. The enzyme unwinds double-stranded DNA, translocating 3'-->5' on the enzyme-bound strand. Hydrolysis of dATP or ATP, and to a lesser extent hydrolysis of dCTP or CTP, supports WRN-catalyzed strand-displacement. K m values for ATP and dATP are 51 and 119 microM, respectively, and 2.1 and 3.9 mM for CTP and dCTP, respectively. Strand-displacement activity of WRN is stimulated by single-stranded DNA-binding proteins (SSBs). Among the SSBs from Escherichia coli, bacteriophage T4 and human, stimulation by human SSB (human replication protein A, hRPA) is the most extensive and occurs with a stoichiometry which suggests direct interaction with WRN. A deficit in the interaction of WRN with hRPA may be associated with deletion mutations that occur at elevated frequency in Werner syndrome cells.  相似文献   

6.
The cytosine liponucleotides CDP-diglyceride and dCDP-diglyceride are key intermediates in phospholipid biosynthesis in Escherichia coli (C. R. H. Raetz and E. P. Kennedy, J. Biol. Chem. 248:1098--1105, 1973). The enzyme responsible for their synthesis, CTP:phosphatidic acid cytidylytransferase, was solubilized from the cell envelope by a differential extraction procedure involving the detergent digitonin and was purified about 70-fold (relative to cell-free extracts) in the presence of detergent. In studies of the heat stability of the enzyme, activity decayed slowly at 63 degrees C. Initial velocity kinetic experiments suggested a sequential, rather than ping-pong, reaction mechanism; isotopic exchange reaction studies supported this conclusion and indicated that inorganic pyrophosphate is released before CDP-diglyceride in the reaction sequence. The enzyme utilized both CTP and dCTP as nucleotide substrate for the synthesis of CDP-diglyceride and dCDP-diglyceride, respectively. No distinction was observed between CTP and dCTP utilization in any of the purification, heat stability, and reaction mechanism studies. In addition, CTP and dCTP were competitive substrates for the partially purified enzyme. It therefore appears that a single enzyme catalyzes synthesis of both CDP-diglyceride and dCDP-diglyceride in E. coli. The enzyme also catalyzes a pyrophosphorolysis of CDP-diglyceride, i.e., the reverse of its physiologically important catalysis.  相似文献   

7.
A method was developed for the quantification of araCTP, CTP and dCTP in a human follicular lymphoma cell line. This method involves solid phase extraction (SPE) using a weak anion-exchanger (WAX) cartridge, a porous graphitic carbon high-performance liquid chromatography (HPLC) column separation, and tandem mass spectrometry (MS/MS) detection. By using a triple quadrupole mass spectrometer operating in negative ion multiple reaction monitoring (MRM) mode, the method was able to achieve a lower limit of quantification (LLOQ) of 0.1 μg mL?1 for araCTP and of 0.01 μg mL?1 for both CTP and dCTP. The method was validated and used to determine the amount of araCTP, CTP and dCTP formed after incubation of araC and an araCMP prodrug in the human follicular lymphoma cell line RL.  相似文献   

8.
A reversed-phase ion-pair high-performance liquid chromatographic method for the direct and simultaneous determination of ribonucleoside triphosphates and their corresponding deoxyribonucleoside triphosphates in trichloroacetic acid cell extracts is presented. Using this system, high resolution of nine acid-soluble compounds, including ADP, CTP, dCTP, GTP, UTP, dGTP, dTTP, ATP and dATP in 16 normal or tumor cell lines, is obtained. The method is based on an extraction of nucleotides from cells with a solution of 6% trichloroacetic acid followed by neutralization with the addition of 5 M K(2)CO(3) just prior to HPLC analysis. Chromatographic separations were performed using a Symmetry C(18) 3.5 micrometer (150x4.6 mm) column (Waters) equipped with a NovaPak C(18) Sentry guard column with UV detection at 254 nm. The HPLC columns were kept at 27 degrees C. The mobile phase was delivered at a flow-rate of 1.0 ml/min, with the following stepwise gradient elution program: A-B (60:40) at 0 min-->(40:60) at 30 min-->(40:60) at 60 min. Solvent A contained 10 mM tetrabutylammonium hydroxide, 10 mM KH(2)PO(4) and 0.25% MeOH, and was adjusted to pH 6.9 with 1 M HCl. Solvent B consisted of 5.6 mM tetrabutylammonium hydroxide, 50 mM KH(2)PO(4) and 30% MeOH, and was neutralized to pH 7.0 with 1 M NaOH. The calibration curves (r>0.99) of the components in cell extracts were established with their aqueous standards. The average within-day precision for the nine compounds was 0.9%, and the average day-to-day precision was 5.0%. The detection limits (pmol) of the nine reagents were 1.39 (ADP), 4.32 (CTP), 15.5 (dCTP), 2.38 (GTP), 4.42 (UTP), 9.45 (dGTP), 14.6 (dTTP), 2.44 (ATP) and 11.8 (dATP). The recovery of this method for the standards ranged from 82.4 to 120.5%. The results for the detection of nucleotide pools in 16 normal and tumor cell lines were presented. In conclusion, this simplified analytical method enables the simultaneous quantitation of NTP and dNTP in cell or tissue extracts and may represent a valuable tool for the detection of minute alterations of intracellular NTP/dNTP pools induced by anticancer/antiviral drugs and diseases.  相似文献   

9.
Streptococcus pneumoniae is a member of a small group of bacteria that display phosphocholine on the cell surface, covalently attached to the sugar groups of teichoic acid and lipoteichoic acid. The putative pathway for this phosphocholine decoration is, in its first two enzymes, functionally similar to the CDP-choline pathway used for phosphatidylcholine biosynthesis in eukaryotes. We show that the licC gene encodes a functional CTP:phosphocholine cytidylyltransferase (CCT). The enzyme has been expressed and purified to homogeneity. Assay conditions were optimized, particularly with respect to linearity with time, pH, Mg(2+), and ammonium sulfate concentration. The pure enzyme has K(M) values of 890+/-240 microM for CTP, and 390+/-170 microM for phosphocholine. The k(cat) is 17.5+/-4.0 s(-1). S. pneumoniae CTP:phosphocholine cytidylyltransferase (SpCCT) is specific for CTP or dCTP as the nucleotide substrate. SpCCT is strongly inhibited by Ca(2+). The IC(50) values for recombinant and native SpCCT are 0.32+/-0.04 and 0.27+/-0.03 mM respectively. The enzyme is also inhibited by all other tested divalent cations, including Mg(2+) at high concentrations. The cloning and expression of this enzyme sets the stage for design of inhibitors as possible antipneumococcal drugs.  相似文献   

10.
Pyrimidine metabolism by intracellular Chlamydia psittaci.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pyrimidine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined mutations affecting pyrimidine metabolism. C. psittaci AA Mp cannot synthesize pyrimidines de novo, as assessed by its inability to incorporate aspartic acid into nucleic acid pyrimidines. In addition, the parasite cannot take UTP, CTP, or dCTP from the host cell, nor can it salvage exogenously supplied uridine, cytidine, or deoxycytidine. The primary source of pyrimidine nucleotides is via the salvage of uracil by a uracil phosphoribosyltransferase. Uracil phosphoribosyltransferase activity was detected in crude extracts prepared from highly purified C. psittaci AA Mp reticulate bodies. The presence of CTP synthetase and ribonucleotide reductase is implicated from the incorporation of uracil into nucleic acid cytosine and deoxycytidine. Deoxyuridine was used by the parasite only after cleavage to uracil. C. psittaci AA Mp grew poorly in mutant host cell lines auxotrophic for thymidine. Furthermore, the parasite could not synthesize thymidine nucleotides de novo. C. psittaci AA Mp could take TTP directly from the host cell. In addition, the parasite could incorporate exogenous thymidine and thymine into DNA. Thymidine kinase activity and thymidine-cleaving activity were detected in C. psittaci AA Mp reticulate body extract. Thus, thymidine salvage was totally independent of other pyrimidine salvage.  相似文献   

11.
Acyclovir triphosphate (ACVTP) was a substrate for herpes simplex virus type 1 (HSV-1) DNA polymerase and was rapidly incorporated into a synthetic template-primer designed to accept either dGTP or ACVTP followed by dCTP. HSV-1 DNA polymerase was not inactivated by ACVTP, nor was the template-primer with a 3'-terminal acyclovir monophosphate moiety a potent inhibitor. Potent inhibition of HSV-1 DNA polymerase was observed upon binding of the next deoxynucleoside 5'-triphosphate coded by the template subsequent to the incorporation of acyclovir monophosphate into the 3'-end of the primer. The Ki for the dissociation of dCTP (the "next nucleotide") from this dead-end complex was 76 nM. In contrast, the Km for dCTP as a substrate for incorporation into a template-primer containing dGMP in place of acyclovir monophosphate at the 3'-primer terminus was 2.6 microM. The structural requirements for effective binding of the next nucleotide revealed that the order of potency of inhibition of a series of analogs was: dCTP much greater than arabinosyl-CTP greater than 2'-3'-dideoxy-CTP much greater than CTP, dCMP, dCMP + PPi. In the presence of the next required deoxynucleotide (dCTP), high concentrations of dGTP compete with ACVTP for binding and thus retard the formation of the dead-end complex. This results in a first-order loss of enzyme activity indistinguishable from that expected for a mechanism-based inactivator. The reversibility of the dead-end complex was demonstrated by steady-state kinetic analysis, analytical gel filtration, and by rapid gel filtration through Sephadex G-25. Studies indicated that potent, reversible inhibition by ACVTP and the next required deoxynucleoside 5'-triphosphate also occurred when poly(dC)-oligo(dG) or activated calf thymus DNA were used as the template-primer.  相似文献   

12.
Orf135 from Escherichia coli is a new member of the Nudix (nucleoside diphosphate linked to some other moiety, x) hydrolase family of enzymes with substrate specificity for CTP, dCTP, and 5-methyl-dCTP. The gene has been cloned for overexpression, and the protein has been overproduced, purified, and characterized. Orf135 is most active on 5-methyl-dCTP (k(cat)/K(m) = 301,000 M(-1) s(-1)), followed by CTP (k(cat)/K(m) = 47,000 M(-1) s(-1)) and dCTP (k(cat)/K(m) = 18,000 M(-1) s(-1)). Unlike other nucleoside triphosphate pyrophophohydrolases of the Nudix hydrolase family discovered thus far, Orf135 is highly specific for pyrimidine (deoxy)nucleoside triphosphates. Like other Nudix hydrolases, the enzyme cleaves its substrates to produce a nucleoside monophosphate and inorganic pyrophosphate, has an alkaline pH optimum, and requires a divalent metal cation for catalysis, with magnesium yielding optimal activity. Because of the nature of its substrate specificity, Orf135 may play a role in pyrimidine biosynthesis, lipid biosynthesis, and in controlling levels of 5-methyl-dCTP in the cell.  相似文献   

13.
The thy- mutator phenotype of Chinese hamster ovary cells is distinguished by increased intracellular levels of dCTP, auxotrophy for thymidine, and elevated spontaneous mutational rates. To determine the biochemical lesion responsible for this complex phenotype, enzymes responsible for the synthesis of dCTP and dTTP were investigated. Levels of ribonucleotide reductase and dCMP deaminase were identical in mutant and wild type strains. In contrast, CTP synthetase activity in extracts from thy- strains was consistently altered in that 50% of enzyme activity was resistant to feedback inhibition by CTP. Additionally, thy- strains obtained by DNA transfection also had CTP-resistant CTP synthetase. Thy+ revertants lost the resistant enzyme, and total activity was reduced. CTP-resistant CTP synthetase was regained in thy- mutants reselected from thy+ revertants, but in these strains all activity was resistant. These experiments demonstrate that the thy- mutator phenotype is a consequence of a mutation of CTP synthetase and suggest that one pathway of reversion to the wild type state is by loss or inactivation of the mutant allele rendering the revertants hemizygous for the gene.  相似文献   

14.
The calculated rate of DNA synthesis using [5-3H]TdR was about 4 times higher than in the case of [5-3H]CdR labeling, even after correction for the specific radioactivities of the intracellular pools. These data show a compartmentation of dCTP pools in lymphocytes. Hydroxyurea increased the specific activities of both dTTP and dCTP pools so that the calculated rate of DNA synthesis became equal. The same effect was found for araC treatment, but not for fluorodeoxyuridine. dCTP was supplied from CTP which is the lowest ribonucleotide pool in lymphocytes. Different functions of the two dCTP pools are proposed: one serving DNA replication; the other one supplies phospholipid precursors and DNA repair.  相似文献   

15.
Isolated nuclei from HeLa cells synthesize dCDP-diglyceride from dCTP at the rapid rate of 5–10 nmol/20 min/108 nuclei. The incorporation of dCTP into this phospholipid precursor is thus 10 to 20 times faster than the incorporation of dCTP into DNA, in vitro, under the same conditions. ATP, phosphatidic acid, and MgCl2 are required for optimal synthesis of dCDP-diglyceride. The reaction is completely inhibited by the presence of 0.04% Triton N-101. Liponucleotide formation occurs equally well with dCTP or CTP in this system and competition studies suggest that a single enzyme catalyzes the formation of dCDP- and CDP-diglyceride.  相似文献   

16.
Dolichol kinase activity is effectively solubilized by extracting calf brain microsomes with 2% 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent. The solubilized kinase catalyzes the enzymatic phosphorylation of dolichols with either CTP or dCTP serving as phosphoryl donor in the presence of Ca2+. Similar Km values were calculated for CTP (7.7 microM) and dCTP (9.1 microM). Dolichol phosphorylation was inhibited by CDP and dCDP, but not CMP, ADP, GDP, or UDP. A kinetic analysis of the inhibitory effect of CDP revealed a pattern characteristic of competitive inhibition. Dolichol kinase activity was markedly stimulated by the addition of R-dolichol (C95) or S-dolichol(C95). The apparent Km value for R-dolichol(C95) and S-dolichol(C95) was 9 microM, but the Vmax for the phosphorylation reaction was 40% higher with S-dolichol(C95). Incubation of the CHAPS extract with [gamma-32P]CTP and exogenous undecaprenol(C55) resulted in the enzymatic synthesis of a radiolabeled product that was mild acid-labile and chromatographically identical to undecaprenyl monophosphate. An enzymatic comparison with a variety of polyprenol substrates indicates that the solubilized kinase prefers long-chain (C90-95) polyprenols with saturated alpha-isoprene units. The effect of exogenous phosphoglycerides on the kinase activity in the dialyzed CHAPS extracts has also been evaluated. These studies describe the properties and polyprenol specificity of stable, solubilized preparations of dolichol kinase that should be useful for further purification of the enzyme.  相似文献   

17.
Crude microsomal preparations from hen oviduct catalyze the transfer of [32P]phosphate from [gamma-32P]CTP or [gamma-32P]dCTP to endogenous dolichol, forming dolichyl [32P]monophosphate. The oviduct kinase activity assayed with [gamma-32P]CTP is stimulated by divalent cations and exogenous dolichol. The enzymatic formation of dolichyl [32P]monophosphate is inhibited by dCDP and CDP, but not CMP, ADP, GDP, or UDP. The hen oviduct kinase is inhibited 50% by the addition of 38 microM CDP, but 101 microM dCDP is required for 50% inhibition. The amount of dolichol kinase activity in chick oviduct microsomes increases 3.7-fold within 10 days of estrogen administration. The hormone-induced increase in kinase activity is also observed when membranes from untreated and estrogen-treated chicks are assayed in the presence of saturating levels of exogenous dolichol. The microsomal preparations from oviducts of untreated chicks and fully induced birds both exhibit an apparent Km value of 7.1 microM for CTP. An apparent Km of 14 microM has been determined for dCTP. Thus, the developmental change in dolichol kinase activity does not appear to be the result of a difference in the amount of available endogenous dolichol or an alteration in the reactive site for the nucleoside triphosphate substrate, but is probably due to an increased level of the enzyme.  相似文献   

18.
Compartmentation of dCTP pools. Evidence from deoxyliponucleotide synthesis   总被引:1,自引:0,他引:1  
The nucleotide fraction of cultured 3T6 and 3T3 mouse fibroblasts contains deoxy-CDP choline and deoxy-CDP ethanolamine as well as the corresponding riboliponucleotides. In permeabilized cells both deoxyliponucleotides were formed from dCTP. In intact cells they could be labeled from [5-3H] deoxycytidine or cytidine via transformation of the nucleosides to dCTP. Their turnover was slow compared to that of dCTP. When rapidly growing 3T3 cells were labeled during 90 min from deoxycytidine the specific activity of dCDP choline was 2.4 times higher than that of dCTP while after labeling from cytidine both nucleotides (and CTP) reached the same specific activity under steady state conditions. Also dCDP ethanolamine was labeled more rapidly from deoxycytidine than from cytidine. Our results suggest that the deoxyliponucleotides were synthesized from a dCTP pool that was labeled preferentially from deoxycytidine. Earlier work (Nicander, B., and Reichard, P. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 1347-1351) had demonstrated synthesis of DNA from a dCTP pool labeled preferentially from cytidine. Taken together our results suggest that deoxyliponucleotides and DNA are synthesized from separate dCTP pools.  相似文献   

19.
2'-Deoxy-2'-azidocytidine-5'-triphosphate was investigated as an inhibitor in two reconstructed enzyme systems which catalyze the replication of two viral DNAs. During replication of the duplex replicative form of phiX174 DNA, DNA polymerase III holoenzyme was weakly inhibited and inhibition was reversed by dCTP. A more pronounced inhibition, not reversed by either dCTP or CTP, was observed during replication of the single-stranded DNA of the bacteriophage G4, a close relative of phiX174. This effect depended on the incorporation of 2'-deoxy-2'-azidocytidine-5'-triphosphate by primase (dnaG protein) which synthesizes a 29-residue RNA primer at the unique origin of bacteriophage G4 DNA replication. Extension of the primer strand, terminated by 2'-deoxy-2'-azidocytidine-5'-triphosphate is then severely inhibited. Primase was also inhibited by the 2'-deoxy-2'-azido derivatives of ATP, GTP, and UTP.  相似文献   

20.
Several dCTP or dATP analogues, bearing an azido or amino group on 2'- or 3'-position of its sugar moiety, were examined for their inhibitory effects on DNA polymerase alpha 2-primase from developing cherry salmon (Oncorhynchus masou) testes, and the recognition of sugar moieties of the analogues by primase and related nucleic acid polymerases were compared. Among the dCTP analogues tested, 2'-azido-2',3'-dideoxy CTP inhibited primase strongly and RNA polymerases I and II to lesser extent. Although, the Ki value for primase was larger than those of RNA polymerases, the Ki/Km value for primase was smaller. In contrast, 3'-amino-2',3'-dideoxy CTP selectively inhibited DNA polymerase beta. In dATP analogue series, 3'-amino-3'-deoxy ATP inhibited RNA polymerases I and II very strongly to the same extent as 3'-deoxy ATP. This analogues was a more selective inhibitor for RNA polymerases I and II than 3'-dATP itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号