首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Higher plant thylakoid membranes contain a protein kinase that phosphorylates certain threonine residues of light-harvesting complex II (LHCII), the main light-harvesting antenna complexes of photosystem II (PSII) and some other phosphoproteins (Allen, Biochim Biophys Acta 1098:275, 1992). While it has been established that phosphorylation induces a conformational change of LHCII and also brings about changes in the lateral organization of the thylakoid membrane, it is not clear how phosphorylation affects the dynamic architecture of the thylakoid membranes. In order to contribute to the elucidation of this complex question, we have investigated the effect of duroquinol-induced phosphorylation on the membrane ultrastructure and the thermal and light stability of the chiral macrodomains and of the trimeric organization of LHCII. As shown by small angle neutron scattering on thylakoid membranes, duroquinol treatment induced a moderate (~10%) increase in the repeat distance of stroma membranes, and phosphorylation caused an additional loss of the scattering intensity, which is probably associated with the partial unstacking of the granum membranes. Circular dichroism (CD) measurements also revealed only minor changes in the chiral macro-organization of the complexes and in the oligomerization state of LHCII. However, temperature dependences of characteristic CD bands showed that phosphorylation significantly decreased the thermal stability of the chiral macrodomains in phosphorylated compared to the non-phosphorylated samples (in leaves and isolated thylakoid membranes, from 48.3°C to 42.6°C and from 47.5°C to 44.3°C, respectively). As shown by non-denaturing PAGE of thylakoid membranes and CD spectroscopy on EDTA washed membranes, phosphorylation decreased by about 5°C, the trimer-to-monomer transition temperature of LHCII. It also enhanced the light-induced disassembly of the chiral macrodomains and the monomerization of the LHCII trimers at 25°C. These data strongly suggest that phosphorylation of the membranes considerably facilitates the heat- and light-inducible reorganizations in the thylakoid membranes and thus enhances the structural flexibility of the membrane architecture.  相似文献   

2.
We investigated the effect of photoinhibitory illumination on the chiral macroorganization of the chromophores in spinach thylakoid membranes. By measuring circular dichroism (CD), we found that prolonged (15 min) illumination of membranes with intense white light led to irreversible diminishment of the main CD bands originating from the chiral macroorganization of the chromophores. The irreversible decrease of the main CD bands showed a nearly linear correlation with the extent of photoinhibition which was determined by chlorophyll fluorescence induction. CD measurements also revealed that the excitonic CD bands, which are given rise by short-range interactions between the chromophores inside the complexes or particles, were largely insensitive to the photoinhibitory illumination of the membranes. These data show that, whereas photoinhibitory treatment has no perceptible effect on the molecular architecture of the bulk of the pigment–protein complexes, it leads to a disorganization of their macroarray, and an irreversible disassembly of the chirally organized macrodomains.  相似文献   

3.
The thermo-optic mechanism in thylakoid membranes was earlier identified by measuring the thermal and light stabilities of pigment arrays with different levels of structural complexity [Cseh, Z., et al. (2000) Biochemistry 39, 15250-15257]. (According to the thermo-optic mechanism, fast local thermal transients, arising from the dissipation of excess, photosynthetically not used, excitation energy, induce elementary structural changes due to the "built-in" thermal instabilities of the given structural units.) The same mechanism was found to be responsible for the light-induced trimer-to-monomer transition in LHCII, the main chlorophyll a/b light-harvesting antenna of photosystem II (PSII) [Garab, G., et al. (2002) Biochemistry 41, 15121-15129]. In this paper, differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy on thylakoid membranes of barley and pea are used to correlate the thermo-optically inducible structural changes with well-discernible calorimetric transitions. The thylakoid membranes exhibited six major DSC bands, with maxima between about 43 and 87 degrees C. The heat sorption curves were analyzed both by mathematical deconvolution of the overall endotherm and by a successive annealing procedure; these yielded similar thermodynamic parameters, transition temperature and calorimetric enthalpy. A systematic comparison of the DSC and CD data on samples with different levels of complexity revealed that the heat-induced disassembly of chirally organized macrodomains contributes profoundly to the first endothermic event, a weak and broad DSC band between 43 and 48 degrees C. Similarly to the main macrodomain-associated CD signals, this low enthalpy band could be diminished by prolonged photoinhibitory preillumination, the extent of which depended on the temperature of preillumination. By means of nondenaturing, "green" gel electrophoresis and CD fingerprinting, it is shown that the second main endotherm, around 60 degrees C, originates to a large extent from the monomerization of LHCII trimers. The main DSC band, around 70 degrees C, which exhibits the highest enthalpy change, and another band around 75-77 degrees C relate to the dismantling of LHCII and other pigment-protein complexes, which under physiologically relevant conditions cannot be induced by light. The currently available data suggest the following sequence of events of thermo-optically inducible changes: (i) unstacking of membranes, followed by (ii) lateral disassembly of the chiral macrodomains and (iii) monomerization of LHCII trimers. We propose that thermo-optical structural reorganizations provide a structural flexibility, which is proportional to the intensity of the excess excitation, while for their localized nature, the structural stability of the system can be retained.  相似文献   

4.
Diatoms possess effective photoprotection mechanisms, which may involve reorganizations in the photosynthetic machinery. We have shown earlier, by using circular dichroism (CD) spectroscopy, that in Phaeodactylum tricornutum the pigment-protein complexes are arranged into chiral macrodomains, which have been proposed to be associated with the multilamellar organization of the thylakoid membranes and shown to be capable of undergoing light-induced reversible reorganizations (Szabó et al. Photosynth Res 95:237, 2008). Recently, by using small-angle neutron scattering (SANS) on the same algal cells we have determined the repeat distances and revealed reversible light-induced reorganizations in the lamellar order of thylakoids (Nagy et al. Biochem J 436:225, 2011). In this study, we show that in moderately heat-treated samples, the weakening of the lamellar order is accompanied by the diminishment of the psi-type CD signal associated with the long-range chiral order of the chromophores (psi, polymer or salt-induced). Further, we show that the light-induced reversible increase in the psi-type CD is associated with swelling in the membrane system, with magnitudes larger in high light than in low light. In contrast, shrinkage of the membrane system, induced by sorbitol, brings about a decrease in the psi-type CD signal; this shrinkage also diminishes the non-photochemical quenching capability of the cells. These data shed light on the origin of the psi-type CD signal, and confirm that both CD spectroscopy and SANS provide valuable information on the macro-organization of the thylakoid membranes and their dynamic properties; these parameters are evidently of interest with regard to the photoprotection in whole algal cells.  相似文献   

5.
Diurnal fluctuations were observed in the content and some structural and functional properties of the light-harvesting chlorophyll (Chl) a/b pigment-protein complex of photosystem II (LHCII) in young developing wheat (Triticum aestivum) leaves grown under 16 hours light/8 hours dark illumination regime. The fluctuations could be correlated with the diurnal oscillation in the level of mRNA for LHCII. The most pronounced changes occurred in the basal segments of the leaves. They were weaker or hardly discernible in the middle and tip segments. As judged from the diurnal variations of the Chl-a/Chl-b molar ratio, the LHCII content of the thylakoid membranes peaked around 2 pm. This can be accounted for by the cumulative effect of the elevated level of mRNA in the morning and early afternoon. In the basal segment, the extent of the fluctuation in the LHCII content was approximately 25%, as determined from gel electrophoresis (“green gels”). The amplitude of the principal bands of the circular dichroism (CD) spectra of isolated chloroplasts paralleled the changes in the LHCII content. Our circular dichroism data suggest that the newly synthesized LHCII complexes are incorporated into the existing helically organized macrodomains of the pigment-protein complexes or themselves form such macrodomains in the thylakoid membranes. Chl-a fluorescence induction kinetics also showed diurnal variations especially in the basal segments of the leaves. This most likely indicates fluctuations in the ability of membranes to undergo “state transitions.” These observations suggest a physiological role of diurnal rhythm of mRNA for LHCII in young developing leaves.  相似文献   

6.
G Garab  S Wells  L Finzi  C Bustamante 《Biochemistry》1988,27(16):5839-5843
Angle dependence of circular intensity differential scattering (CIDS) and of nonpolarized scattering was determined in isolated spinach chloroplasts at 514.5 nm. CIDS between 0 degrees and 170 degrees was independent of the nonpolarized scattering and showed intense lobes of alternating signs, exhibiting the negative and positive maxima around 15 degrees and 70 degrees, respectively. These results provide experimental evidence for the existence of large helically organized macroaggregates of pigment-protein complexes in thylakoid membranes. Modeling of the CIDS data by a simple helical array of uniaxial polarizable groups suggests that the chiral structure is left-handed with pitch and radius of the order of 385 nm.  相似文献   

7.
Thermo-optically induced structural reorganizations have earlier been identified in isolated LHCII, the main chlorophyll a/b light harvesting complexes of Photosystem II, and in granal thylakoid membranes [Cseh et al. (2000) Biochemistry 39: 15250–15257; Garab et al. (2002) Biochemistry 41: 15121–15129]. According to the thermo-optic mechanism, structural changes can be induced by fast, local thermal transients due to the dissipation of excess excitation energy. In this paper, we analyze the temperature and light-intensity dependencies of thermo-optically induced reversible and irreversible reorganizations in the chiral macrodomains of lamellar aggregates of isolated LHCII and of granal thylakoid membranes. We show that these structural changes exhibit non-Arrhenius type of temperature dependencies, which originate from the ‘combination’ of the ambient temperature and the local thermal transient. The experimental data can satisfactorily be simulated with the aid of a simple mathematical model based on the thermo-optic effect. The model also predicts, in good accordance with experimental data published earlier and presented in this paper, that the reorganizations depend linearly on the intensity of the excess light, a unique property that is probably important in light adaptation and photoprotection of plants.  相似文献   

8.
Bean leaves grown under periodic illumination (56 cycles of 2 min light and 98 min darkness) were subsequently exposed to continuous illumination, and in connection with granum formation and accumulation of the light-harvesting pigment-protein complex thermoluminescence and light-induced shrinkage of thylakoid membranes were studied. Juvenile chloroplasts with large double sheets of thylakoids obtained under periodic light exhibited low temperature spectra of polarized fluorescence yielding fluorescence polarization (FP) values < 1 at 695 nm, characteristic for pheophytin emission. In the course of maturation under continuous light when normal grana appeared and the chlorophyll a/b light-harvesting photosystem II complex was incorporated into the membrane, at 695 nm the relative intensity of fluorescence dropped and FP changed to a value of > 1, suggesting an overlap between the emission of pheophytin and that of the chlorophyll a/b light-harvesting photosystem II complex. Thermoluminescence glow curves recorded with juvenile thylakoids displayed a relatively high proportion of emission at low temperatures (around -10°C) while with mature chloroplasts, more thermoluminescence originated from energetically deeper traps (discharged around 28°C). This means that during thylakoid development the capacity of the membrane to stabilize the separated charges increases, which might be favourable for the ultimate conservation of energy. The more extensive energization of mature thylakoids was also indicated by a light-induced decrease in the thickness of the membranes upon illumination; a change which could not be detected in juvenile thylakoids.Abbreviations EDTA ethylenediamine tetraacetic acid - Hepes 4-(2-hydroxy ethyl)-1-piperazine ethane sulfonic acid Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

9.
The time dependence of photobleaching of photosynthetic pigments under high light illumination of isolated spinach thylakoid membranes at 22 and 4 degrees C was investigated. At 22 degrees C, the bleaching at 678, 472 and 436 nm was prominent but lowering the temperature up to 4 degrees C during illumination prevented the pigments from bleaching almost completely. The accelerating effect on pigment photobleaching by the presence of 3-(3,4 dichlorophenyl)-1,1-dimethyl-urea)-(DCMU), a well-known inhibitor of the electron transport and known to prevent photosystem I (PSI) and photosystem II (PSII) against photoinhibitory damage, was also suppressed at low temperature. At 22 degrees C in the presence and absence of DCMU, the decrease of the absorption at 678 and 472 nm was accompanied by a shift to the shorter wavelengths. To check the involvement of reactive oxygen species in the process, pigment photobleaching was followed in anaerobiosis. The effects of the three different environmental factors--light, temperature and DCMU--on the dynamics of photobleaching are discussed in terms of different susceptibility of the main pigment-protein complexes to photoinhibition.  相似文献   

10.
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the chirally organized macrodomains containing the main chlorophyll a/b light-harvesting complexes. The mutation also brings about changes in the overall chlorophyll fluorescence lifetimes, measured in whole leaves as well as in isolated thylakoids. As shown by time-resolved measurements, using the lipophylic fluorescence probe Merocyanine 540 (MC540), the altered lipid composition affects the packing of lipids in the thylakoid membranes but, as revealed by flash-induced electrochromic absorbance changes, the membranes retain their ability for energization. Thermal stability measurements revealed more significant differences. The disassembly of the chiral macrodomains around 55°C, the thermal destabilization of photosystem I complex at 61°C as detected by green gel electrophoresis, as well as the sharp drop in the overall chlorophyll fluorescence lifetime above 45°C (values for the wild type—WT) occur at 4–7°C lower temperatures in dgd1. Similar differences are revealed in the temperature dependence of the lipid packing and the membrane permeability: at elevated temperatures MC540 appears to be extruded from the dgd1 membrane bilayer around 35°C, whereas in WT, it remains lipid-bound up to 45°C and dgd1 and WT membranes become leaky around 35 and 45°C, respectively. It is concluded that DGDG plays important roles in the overall organization of thylakoid membranes especially at elevated temperatures.  相似文献   

11.
We have investigated the circular dichroism spectral transients associated with the light-induced reversible reorganizations in chirally organized macrodomains of pea thylakoid membranes and loosely stacked lamellar aggregates of the main chlorophyll a/b light harvesting complexes (LHCII) isolated from the same membranes. These reorganizations have earlier been assigned to originate from a thermo-optic effect. According to the thermo-optic mechanism, fast local thermal transients due to dissipation of the excess excitation energy induce elementary structural changes in the close vicinity of the dissipation [Cseh et al. (2000) Biochemistry 39: 15250–15257]. Here we show that despite the markedly different CD spectra in the dark, the transient (light-minus-dark) CD spectra associated with the structural changes induced by high light in thylakoids and LHCII are virtually indistinguishable. This, together with other close similarities between the two systems, strongly suggests that the gross short-term, thermo-optically induced structural reorganizations in the membranes occur mainly, albeit probably not exclusively, in the LHCII-only domains [Boekema et al. (2000) J Mol Biol 301: 1123–1133]. Hence, LHCII-only domains might play an important role in light adaptation and photoprotection of plants.  相似文献   

12.
Mock T  Kroon BM 《Phytochemistry》2002,61(1):53-60
Low photosynthetic active radiation is a strong determinant in the development and growth of sea ice algae. The algae appear to have universal mechanisms to overcome light limitation. One important process, which is induced under light limitation, is the desaturation of chloroplast membrane lipids. In order to discover whether this process is universally valid in sea ice diatoms, we investigated three species coexisting in chemostats illuminated with 15 and 2 micromol photons m(-2) s(-1) at -1 degrees C. Growth under 2 micromol photons m(-2) s(-1) caused a 50% increase in monogalactosyldiacylglycerols (MGDG) thylakoid membrane related 20:5 n-3 fatty acids. This fatty acid supports the fluidity of the thylakoid membrane and therefore the velocity of electron flow, which is indicated by increasing rate constants for the electron transport between Q(A) (first stable electron acceptor) and bound Q(B) (second stable electron acceptor) (11.16 +/- 1.34 to 23.24 +/- 1.35 relative units). Two micromol photons m(-2) s(-1) furthermore resulted in higher amounts of non-lipid bilayer forming MGDG in relation to other bilayer forming lipids, especially digalactosydiacylglycerol (DGDG). The ratio of MGDG:DGDG increased from 3.4 +/- 0.3 to 5.7 +/- 0.3. The existence of bilayer thylakoid membranes with high proportions of non. bilayer forming lipids is only possible when sufficient thylakoid pigment-protein complexes are present. If more thylakoid pigment-protein complexes are present in membranes, as found under extreme light limitation, less bilayer forming lipids such as DGDG are required to stabilize the bilayer structure. Differences in protein contents between both light intensities were not found. Consequently pigment contents which nearly doubled under 2 micromol photons m(-2) s(-1) must be responsible in balancing the potential stability loss resulting from an increase in MGDG:DGDG ratio.  相似文献   

13.
By means of circular dichroism (CD) spectroscopy, we have characterized the organization of the photosynthetic complexes of the diatom Phaeodactylum tricornutum at different levels of structural complexity: in intact cells, isolated thylakoid membranes and purified fucoxanthin chlorophyll protein (FCP) complexes. We found that the CD spectrum of whole cells was dominated by a large band at (+)698 nm, accompanied by a long tail from differential scattering, features typical for psi-type (polymerization or salt-induced) CD. The CD spectrum additionally contained intense (−)679 nm, (+)445 nm and (−)470 nm bands, which were also present in isolated thylakoid membranes and FCPs. While the latter two bands were evidently produced by excitonic interactions, the nature of the (−)679 nm band remained unclear. Electrochromic absorbance changes also revealed the existence of a CD-silent long-wavelength (∼545 nm) absorbing fucoxanthin molecule with very high sensitivity to the transmembrane electrical field. In intact cells the main CD band at (+)698 nm appeared to be associated with the multilamellar organization of the thylakoid membranes. It was sensitive to the osmotic pressure and was selectively diminished at elevated temperatures and was capable of undergoing light-induced reversible changes. In isolated thylakoid membranes, the psi-type CD band, which was lost during the isolation procedure, could be partially restored by addition of Mg-ions, along with the maximum quantum yield and the non-photochemical quenching of singlet excited chlorophyll a, measured by fluorescence transients.  相似文献   

14.
In order to obtain information on the organization of the pigment molecules in chlorophyll (Chl) a/b/c-containing organisms, we have carried out circular dichroism (CD), linear dichroism (LD) and absorption spectroscopic measurements on intact cells, isolated thylakoids and purified light-harvesting complexes (LHCs) of the prasinophycean alga Mantoniella squamata. The CD spectra of the intact cells and isolated thylakoids were predominated by the excitonic bands of the Chl a/b/c LHC. However, some anomalous bands indicated the existence of chiral macrodomains, which could be correlated with the multilayered membrane system in the intact cells. In the red, the thylakoid membranes and the LHC exhibited a well-discernible CD band originating from Chl c, but otherwise the CD spectra were similar to that of non-aggregated LHC II, the main Chl a/b LHC in higher plants. In the Soret region, however, an unusually intense (+) 441 nm band was observed, which was accompanied by negative bands between 465 and 510 nm. It is proposed that these bands originate from intense excitonic interactions between Chl a and carotenoid molecules. LD measurements revealed that the Q(Y) dipoles of Chl a in Mantoniella thylakoids are preferentially oriented in the plane of the membrane, with orientation angles tilting out more at shorter than at longer wavelengths (9 degrees at 677 nm, 20 degrees at 670 nm and 26 degrees at 662 nm); the Q(Y) dipole of Chl c was found to be oriented at 29 degrees with respect to the membrane plane. These data and the LD spectrum of the LHC, apart from the presence of Chl c, suggest an orientation pattern of dipoles similar to those of higher plant thylakoids and LHC II. However, the tendency of the Q(Y) dipoles of Chl b to lie preferentially in the plane of the membrane (23 degrees at 653 nm and 30 degrees at 646 nm) is markedly different from the orientation pattern in higher plant membranes and LHC II. Hence, our CD and LD data show that the molecular organization of the Chl a/b/c LHC, despite evident similarities, differs significantly from that of LHC II.  相似文献   

15.
Changes in the plastid ultrastructure as revealed by thin-section electron-microscopy, chlorophyll a/b ratio, and the polypeptides of the thylakoid chlorophyll-protein complexes have been examined during the degreening of bananas (Musa AAA Group, Cavendish Subgroup) and plantains (Musa AAB Group, Plantain Subgroup) ripened at 20°C and 35°C. In bananas, where degreening is inhibited at temperatures above 24°C, ripening at the higher temperature results in a retention of thylakoid membranes, a relatively delayed breakdown in chlorophyll b, and a reduced dismantling of pigment-protein complexes. By contrast, in plantains, where degreening is complete within 4 days at both 20°C and 35°C, thylakoid membranes and their associated pigment-protein complexes are lost, and there is a rapid increase in chlorophyll a/b ratios at both ripening temperatures. It is suggested that the retention of thylakoid membranes is an important factor in the failure of Cavendish bananas to degreen when ripened at tropical temperatures, and that the degreening problem may be related to the comparatively high chlorophyll b content of the preclimacteric fruit.  相似文献   

16.
The freshwater filamentous green oxyphotobacterium Prochlorothrix hollandica is an unusual oxygenic photoautotrophic cyanobacterium differing from most of the others by the presence of light-harvesting Pcb antenna binding both chlorophylls a and b and by the absence of phycobilins. The pigment-protein complexes of P. hollandica SAG 10.89 (CCAP 1490/1) were isolated from dodecylmaltoside solubilized thylakoid membranes on sucrose density gradient and characterized by biochemical, spectroscopic and immunoblotting methods. The Pcb antennae production is suppressed by high light conditions (> 200 μmol photons m−2 s−1) in P. hollandica. PcbC protein was found either in higher oligomeric states or coupled to PS I (forming antenna rings around PS I). PcbA and PcbB are most probably only very loosely bound to photosystems; we assume that these pigment-protein complexes function as low light-induced mobile antennae. Further, we have detected α-carotene in substantial quantities in P. hollandica thylakoid membranes, indicating the presence of chloroplast-like carotenoid synthetic pathway which is not present in common cyanobacteria.  相似文献   

17.
Photosynthetic membranes comprise a network of light harvesting and reaction center pigment-protein complexes responsible for the primary photoconversion reactions: light absorption, energy transfer and electron cycling. The structural organization of membranes of the purple bacterial species Rb. sphaeroides has been elucidated in most detail by means of polarized light spectroscopy and atomic force microscopy. Here we report a functional characterization of native and untreated membranes of the same species adsorbed onto a gold surface. Employing fluorescence confocal spectroscopy and light-induced electrochemistry we show that adsorbed membranes maintain their energy and electron transferring functionality. Gold-adsorbed membranes are shown to generate a steady high photocurrent of 10 μA/cm2 for several minutes and to maintain activity for up to three days while continuously illuminated. The surface-adsorbed membranes exhibit a remarkable functionality under aerobic conditions, even when exposed to light intensities well above that of direct solar irradiation. The component at the interface of light harvesting and electron cycling, the LH1 complex, displays exceptional stability, likely contributing to the robustness of the membranes. Peripheral light harvesting LH2 complexes show a light intensity dependent decoupling from photoconversion. LH2 can act as a reversible switch at low-light, an increased emitter at medium light and photobleaches at high light.  相似文献   

18.
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.  相似文献   

19.
In a study of the responses of photosystem II (PSII) to high temperature in suspension-cultured cells of soybean (Glycine max L. Merr.), we found that high temperatures inactivated PSII via two distinct pathways. Inactivation of PSII by moderately high temperatures, such as 41°C, was reversed upon transfer of cells to 25°C. The recovery of PSII required light, but not the synthesis of proteins de novo. By contrast, temperatures higher than 45°C inactivated PSII irreversibly. An increase in the growth temperature from 25 to 35°C resulted in an upward shift of 3°C in the profile of the heat-induced inactivation of PSII, which indicated that the thermal stability of PSII had been enhanced. This acclimative response was reflected by the properties of isolated thylakoid membranes: PSII in thylakoid membranes from cells that had been grown at 35°C exhibited greater thermal stability than that from cells grown at 25°C. Disruption of the vesicular structure of thylakoid membranes with 0.05% Triton X-100 decreased the thermal stability of PSII to a similar level in both types of thylakoid membrane. Proteins released by Triton X-100 from thylakoid membranes from cells grown at 35°C were able to increase the thermal stability of Triton-treated thylakoid membranes. These observations suggest that proteins that are associated with thylakoid membranes might be involved in the enhancement of the thermal stability of PSII.  相似文献   

20.
《BBA》1986,849(1):131-140
The membrane lipids of pea thylakoids were hydrogenated in situ using the homogeneous catalyst palladiumdi-(sodium alizazine monosulphonate). Following hydrogenation, particle-free patches corresponding to phase-separated gel-phase lipids were observed in the fracture-faces of thylakoid membranes. Freeze-fracture studies on samples of hydrogenated thylakoids incubated at elevated temperatures indicated that hydrogenation reduces the tendency of the heated membranes to destack and vesiculate at higher temperatures. Measurements of chlorophyll a fluorescence emission and the thermal properties of hydrogenated thylakoids suggest that the hydrogenation process also leads to an increase in the thermal stability of pigment-protein complexes of the Photosystem II light-harvesting apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号