首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproductive behavior of virtually all adult male rodents is dependent on concurrent availability of gonadal steroids. The ejaculatory reflex is incompatible with long-term absence of testicular steroids and typically disappears within 3 weeks after castration. Male Siberian hamsters are an exception to this rule; mating culminating in the ejaculatory reflex occurs as many as 6 months after castration (persistent copulation). The emergence of persistent copulation many weeks after gonadectomy is here shown not to require repeated post-castration sexual experience. Preoperative sexual experience, on the other hand, significantly increases the percent of males that copulate after gonadectomy, but is not required for the emergence of this trait in 25% of males. Castration prior to puberty prevents persistent copulation in all individuals in adulthood. Persistent copulators, unlike males that cease mating activity after castration, prefer the odors of estrous over non-estrous females when tested 4 months after castration and 7 weeks after the last mating test. Neural circuits of persistent copulators retain the ability to mediate male sex behavior and preferences for female odors in the complete absence of gonadal steroids; they are influenced by preoperative sexual experience and organizational effects of gonadal hormones at the time of puberty.  相似文献   

2.
Gonadal steroids are essential for the long-term maintenance of the full repertoire of sexual behavior in male rodents. Typically, all individuals of several species cease to display the ejaculatory reflex within a few weeks of castration. The present study documents the persistence of the ejaculatory reflex 19 weeks after orchidectomy in 40% of male Siberian hamsters maintained in long or short day lengths; testosterone was undetectable in the circulation of these animals. Intact hamsters transferred from a long to a short photoperiod underwent gonadal regression: 50% of these animals continued to display mating behavior culminating in ejaculation throughout 25 weeks of testing. The remaining animals failed to ejaculate after approximately 11 weeks of short day treatment but resumed mating coincident with spontaneous gonadal recrudescence. Activation of sex behavior in the latter cohort appears to depend on gonadal steroids and is in contrast to the copulatory behavior of the substantial proportion of the study population that sustains the full sexual repertoire in the long-term absence of gonadal steroids. Sex behavior of the latter animals may be dependent on nongonadal steroids or mediation by steroid-independent mechanisms.  相似文献   

3.
This work tested the hypothesis that gonadal steroid receptor activation was necessary for the restoration of several sociosexual behaviors (such as copulatory behavior, partner preference, 50-kHz vocalizations, and scent marking) in testosterone-treated gonadectomized male rats. Gonadal steroid receptors were blocked by systemic administration of the antiandrogen hydroxyflutamide, the antiestrogen RU 58668, or both antagonists simultaneously in a restoration paradigm. Inhibiting androgen receptors with hydroxyflutamide blocked the restoration of male copulatory behavior, partner preference (time spent with a sexually receptive female over a nonreceptive female), 50-kHz ultrasonic vocalizations, and scent marking. On the other hand, we did not find that blocking estrogen receptors with RU 58668 inhibited the restoration of copulatory behavior or partner preference in testosterone-treated gonadectomized male rats, even though the level of brain nuclear estrogen receptor occupation was significantly reduced to the level found in gonadectomized males. However, the restoration of scent marking and 50-kHz vocalizations were impaired by RU 58668. Blocking both nuclear androgen and estrogen receptors with the two antagonists simultaneously did not have a greater inhibitory effect than treatment with each antagonist alone. Therefore, the activation of nuclear estrogen receptors is necessary for the restoration of some, but not all, sociosexual behaviors, which are also androgen receptor-dependent. Besides nuclear estrogen receptors, there are additional, but unknown, targets of estradiol that play a role in mediating copulatory behavior in adult male rats. Moreover, the signals from multiple gonadal steroid signaling pathways converge in the regulation of some sociosexual behaviors in adult male rats.  相似文献   

4.
Changes in androgen levels can alter the structure of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), a motor nucleus that innervates perineal muscles involved in copulatory behavior. While sexual activity can alter androgen levels in normal males, it has no effect on SNB motoneuron soma size or dendritic morphology (Beversdorf, Kurz, and Sengelaub, 1990). However, Breedlove (1997) reported reductions in the size of SNB somata, nuclei, and target muscles of copulating versus noncopulating castrated rats maintained on subphysiological testosterone. To reconcile the results obtained using intact versus implant paradigms, we tested the hypothesis that the implant/behavior paradigm could produce differences in hormone levels, potentially confounding sexual behavior effects on the morphology of this androgen-sensitive neuromuscular system. Young adult male rats were castrated and immediately given 5-mm Silastic implants containing crystalline testosterone. One week later, blood samples were drawn and the males were housed with receptive females (copulators) or nonreceptive females (noncopulators) or housed alone (singles). After 27 days, blood samples were drawn again, and SNB target muscles and spinal cords removed. No differences in target muscle weight or SNB somata and nuclei size were observed between copulators, noncopulators, or singles; as expected, all measures were significantly reduced relative to intact males. Radioimmunoassay showed that testosterone declined differentially over the course of the behavioral manipulation across groups, being greatest in copulators and least pronounced in single males. These data indicate that differences in sexual or housing experience can alter testosterone titers under these implant conditions, potentially confounding hormone-sensitive measures of morphology.  相似文献   

5.
In the brain, the conversion from androgen into estrogen is an important process for the differentiation of the brain function in male rodents. The aromatase is expressed in some nucleus of the brain. To assess the functional significance of the aromatase gene in development and activation of sex-specific behavior, we analyzed behavioral phenotypes of the aromatase knockout (ArKO) male mice. ArKO males obviously decreased their fertility and showed deficits in male sexual behavior including mount, intromission and ejaculation. Noncontact penile erection was not significantly affected by defect of the aromatase gene. A reduction of aggressive behavior against male intruders was also observed in ArKO males, while they tend to exhibit aggression toward estrous females during male copulatory tests. Moreover, the infanticide toward the pups was observed in the ArKO males, whereas characteristic parental behavior, but not infanticide was observed in wild-type males. These results indicate that aromatase gene expression is a critical step not only for motivational and consummatory aspects of male sexual behavior, but also for aggressive and parental behaviors in male mice.  相似文献   

6.
In Experiment 1 castrated male rats were implanted with a Silastic capsule containing either E or cholesterol (CHOL) 35 days after castration. They were then tested for sexual incentive motivation and copulatory behaviors every 5th day for 3 weeks. None of the treatments affected sexual incentive motivation. After the last test, all subjects were implanted with DHT-containing Silastic capsules, and tests continued for another 3 weeks. While E + DHT enhanced sexual incentive motivation and copulatory behavior, DHT alone failed to do so. In Experiment 2 the aromatase inhibitor fadrozole (F) was combined with testosterone (T). T restored all behaviors to the level seen in intact rats, and F significantly reduced these effects. In fact, T + F was not different from DHT. T and DHT restored the weight of the prostate and seminal vesicles to levels close to those of intact rats. In Experiment 3 a lower dose of E was employed. Also this dose of E failed to affect sexual incentive motivation while E + DHT restored it to the level of intact animals. Castration enhanced the serum concentrations of LH and FSH. E alone caused a marked reduction, and E + DHT brought both gonadotropins back to the level of intact animals. It was concluded that the doses of E and DHT employed in these experiments were within or close to the physiological range, and that such doses of E completely fail to enhance sexual incentive motivation in castrated animals. DHT has small or no effects. It appears that sexual incentive motivation and copulation require simultaneous stimulation of androgen and estrogen receptors.  相似文献   

7.
Testosterone has been shown to increase the volume of steroid-sensitive brain nuclei in adulthood in several vertebrate species. In male Japanese quail the volume of the male-biased sexually dimorphic medial preoptic nucleus (POM), a key brain area for the control of male sexual behavior, is markedly increased by testosterone. Previous studies assessed this effect after a period of 8–14 days but the exact time course of these effects is unknown. We asked here whether testosterone-dependent POM plasticity could be observed at shorter latencies. Brains from castrated male quail were collected after 1, 2, 7 and 14 days of T treatment (CX+T) and compared to brains of untreated castrates (CX) collected after 1 or 14 days. POM volumes defined either by Nissl staining or by aromatase immunohistochemistry increased in a time-dependent fashion in CX+T subjects and almost doubled after 14 days of treatment with testosterone while no change was observed in CX birds. A significant increase in the average POM volume was detected after only one day of testosterone treatment. The optical density of Nissl and aromatase staining was also increased after one or two days of testosterone treatment. Activation of male copulatory behavior followed these morphological changes with a latency of approximately one day. This rapid neurochemical and neuroanatomical plasticity observed in the quail POM thus seems to limit the activation of male sexual behavior and offers an excellent model to analyze features of steroid-regulated brain structure and function that determine behavior expression.  相似文献   

8.
To better define the involvement of gonadal hormones in the sex differences observed in experimental visceral pain, we administered antagonists of estrogen receptors (ICI 182,780 [ICI]) or androgen receptors (Flutamide [FLU]) to adult male and female rats suffering from artificial ureteral calculosis. Subjects were divided into groups and treated with one of the substances (ICI, FLU) or sweet almond oil (OIL, vehicle) for 5 days, starting 2 days before surgery. On day 3, animals underwent surgery, with half receiving an artificial calculosis (Stone) and half only a sham procedure. The animals' behavior (number and duration of ureteral crises) and blood hormone levels (estradiol and testosterone) were determined in all groups. In OIL-treated rats the number and duration of crises were higher in females than in males. The administration of ICI or FLU resulted in hormonal effects in males and behavioral effects in females. In males ICI treatment increased estradiol plasma levels and FLU increased testosterone plasma levels; in females ICI and FLU treatments both decreased the number and duration of the ureteral crises. These results, confirming previous findings of higher sensitivity of females than males to urinary tract pain, showed the modulatory effects of estrogen and androgen antagonists on the behavioral responses induced by pain but only in females.  相似文献   

9.

Background  

The antiestrogen ICI 182,780 has been used successfully as an alternative experimental model for the study of estrogen action in the rodent adult male reproductive tract. Although ICI 182,780 causes severe alterations in testicular and efferent ductule morphology and function, the effects on the expression of estrogen and androgen receptors in the male have not been shown.  相似文献   

10.
Brain aromatase cytochrome P450 converts androgens to estrogens that play a critical role in the development of sexually dimorphic neural structures, the modulation of neuroendocrine function(s), and the regulation of sexual behavior. We characterized the influence of surgical castration on brain aromatase in Norway Brown and Wistar adult rats and compared their responses to Sprague-Dawley rats that were surgically or biochemically castrated (with flutamide, a known androgen receptor blocker). Aromata enzyme activity was measured by the tritiated water release assay in the medial basal hypothalmus/preoptic area (MBH/POA) and amygdala brain regions. The present results demonstrate that independent of the rat strain examined, MBH/POA aromatase is regulated by androgens (in Sprague-Dawley, Norway Brown and Wistar males). However, intact Wistar animals displayed significantly higher MBH/POA aromatase levels compared to Sprague-Dawley control values. Conversely, in the amygdala region, there was an apparent lack of androgen hormone action upon aromatase enzyme activity in some of the rat strains tested. The importance of brain aromatase regulating estrogen biosynthesis and influencing brain development and function is covered.  相似文献   

11.
The intracellular conversion of testosterone to estradiol by the aromatase enzyme complex is an important step in many of the central actions of testosterone. In rats, estrogen given alone, or in combination with dihydrotestosterone, mimics most of the behavioral effects of testosterone, whereas treatment with antiestrogens or aromatase inhibitors block facilitation of copulatory behavior by testosterone. We used a highly sensitive in vitro radiometric assay to analyze the distribution and regulation of brain aromatase activity. Studies using micropunch dissections revealed that the highest levels of aromatase activity are found in an interconnected group of sexually dimorphic nuclei which constitutes a neural circuit important in the control of male sexual behavior. Androgen regulated aromatase activity in many diencephalic nucleic, including the medial preoptic nucleus, but not in the medial and cortical nuclei of the amygdala. Additional genetic evidence for both androgen-dependent and -independent control of brain AA was obtained by studies of androgen-insensitive testicular-feminized rats. These observations suggest that critical differences in enzyme responsiveness are present in different brain areas. Within several nuclei, sex differences in aromatase induction correlated with differences in nuclear androgen receptor concentrations suggesting that neural responsiveness to testosterone is sexually differentiated. Estradiol and dihydrotestosterone acted synergistically to regulate aromatase activity in the preoptic area. In addition, time-course studies showed that estrogen treatment increased the duration of nuclear androgen receptor occupation in the preoptic area of male rats treated with dihydrotestosterone. These results suggest possible ways that estrogens and androgens may interact at the cellular level to regulate neural function and behavior.  相似文献   

12.
The aromatization hypothesis asserts that testosterone (T) must be aromatized to estradiol (E2) to activate copulatory behavior in the male rat. In support of this hypothesis, the aromatization inhibitor, ATD, has been found to suppress male sexual behavior in T-treated rats. In our experiment, we first replicated this finding by peripherally injecting ATD (15 mg/day) or propylene glycol into T-treated (two 10-mm Silastic capsules) or control castrated male rats. In a second experiment, we bilaterally implanted either ATD-filled or blank cannulae into the medial preoptic area (MPOA) of either T-treated or control castrated male rats. With this more local distribution of ATD, a lesser decline in sexual behavior was found, suggesting that other brain areas are involved in the neurohormonal activation of copulatory behavior in the male rat. To determine whether in vivo ATD interacts with androgen or estrogen receptors, we conducted cell nuclear androgen and estrogen receptor binding assays of hypothalamus, preoptic area, amygdala, and septum following treatment with the combinations of systemic T alone. ATD plus T, ATD alone, and blank control. In all four brain areas binding of T to androgen receptors was significantly decreased in the presence of ATD, suggesting that ATD may act both as an androgen receptor blocker and as an aromatization inhibitor. Competitive binding studies indicated that ATD competes in vitro for cytosol androgen receptors, thus substantiating the in vivo antiandrogenic effects of ATD. Cell nuclear estrogen receptor binding was not significantly increased by exposure to T in the physiological range. No agonistic properties of ATD were observed either behaviorally or biochemically. Thus, an alternative explanation for the inhibitory effects of ATD on male sexual behavior is that ATD prevents T from binding to androgen receptors.  相似文献   

13.
The importance of gonadal steroids in modulating male sexual behavior is well established. Individual differences in male sexual behavior, independent of gonadal steroids, are prevalent across a wide range of species, including man. However, the genetic mechanisms underlying steroid-independent male sexual behavior are poorly understood. A high proportion of B6D2F1 hybrid male mice demonstrates steroid-independent male sexual behavior (identified as “maters”), providing a mouse model that opens up avenues of investigation into the mechanisms regulating male sexual behavior in the absence of gonadal hormones. Recent studies have revealed several proteins that play a significant factor in regulating steroid-independent male sexual behavior in B6D2F1 male mice, including amyloid precursor protein (APP), tau, and synaptophysin. The specific goals of our study were to determine whether steroid-independent male sexual behavior was a heritable trait by determining if it was dependent upon the behavioral phenotype of the B6D2F1 sire, and whether the differential expression of APP, tau, and synaptophysin in the medial preoptic area found in the B6D2F1 sires that did and did not mate after gonadectomy was similar to those found in their male offspring. After adult B6D2F1 male mice were bred with C57BL/6J female mice, they and their male offspring (BXB1) were orchidectomized and identified as either maters or “non-maters”. A significant proportion of the BXB1 maters was sired only from B6D2F1 maters, indicating that the steroid-independent male sexual behavior behavioral phenotype of the B6D2F1 hybrid males, when crossed with C57BL/6J female mice, is inherited by their male offspring. Additionally, APP, tau, and synaptophysin were elevated in in the medial preoptic area in both the B6D2F1 and BXB1 maters relative to the B6D2F1 and BXB1 non-maters, respectively, suggesting a potential genetic mechanism for the inheritance of steroid-independent male sexual behavior.  相似文献   

14.
Courtship behavior in frogs is an ideal model for investigating the relationships among social experience, gonadal steroids, and behavior. Reception of mating calls causes an increase in androgen levels in listening males, and calling, in turn, depends on the presence of androgens. However, previous studies found that androgen replacement does not always restore calling to intact levels, and the relationship between androgens and calling may be context dependent. We examined the influence of androgens on calling behavior in the presence and the absence of social signals in male green treefrogs (Hyla cinerea). We categorized calling during an acoustic stimulus (mating chorus or tones) as evoked and calling in the absence of a stimulus as spontaneous. Intact males received a cholesterol implant, castrated males were castrated and received a cholesterol implant, and T-implanted males were castrated and received a testosterone implant. The androgen levels (mean +/- SE ng/ml of plasma) achieved by the implants were as follows: castrated males, 1.2 +/- 0.2; intact males 21.9 +/- 7.0; T-implanted males, 254.6 +/- 39.5. As in other frogs, calling depends on the presence of androgens, as castration abolished and T replacement maintained calling. However, among intact and T-implanted males, the influence of androgens on calling differed between spontaneous and evoked calling. There was a positive effect of androgen treatment on spontaneous call rate and a positive correlation between spontaneous call rate and androgen levels. The influence of androgen levels on evoked call rate was more complex and interacted with acoustic treatment. Surprisingly, T implants suppressed the chorus-specific increase in calling that is evident in intact males. In addition, in response to the chorus, T-implanted males called less than did intact males, in spite of higher androgen levels. Furthermore, variation in androgens did not explain variation in evoked call rate. These data indicate that androgens influence the motivation to call, but that, when socially stimulated, androgens are necessary but insufficient for calling.  相似文献   

15.
To investigate whether a female sex steroid, estrogen, acts as a natural inducer of female gonadal sex determination (or ovary formation) in the medaka fish, Oryzias latipes, the effects of an aromatase inhibitor and anti-estrogens on sexual differentiation of gonads were examined. We found that both drugs did not show any discernible effects on the genetically determined sex differentiation in both sexes. However, the aromatase inhibitor impaired the paradoxical effects of androgen (a male sex steroid), and the anti-estrogens inhibited the male-to-female sex reversal caused by estrogen. Treatments of the fertilized eggs with androgen disturbed the gonadal sex developments in both sexes, suggesting that sex steroid synthesis is detrimental to the gonadal sex developments in the medaka embryos. These results are consistent with the previous observation that sex steroids are not synthesized before the onset of gonadal sex differentiation, and suggest that ovary formation in the genetic females of the medaka fish is not dependent on estrogen.  相似文献   

16.
Naked mole-rats (Heterocephalus glaber) are fossorial, eusocial rodents that live in colonies which typically include 60-80 individuals. Generally, only one of the females and 1-3 of the males in a colony are reproductives. The reproductives engage in mutual genital nuzzling behavior that is rarely exhibited by subordinates (non-reproductives). Thus, genital nuzzling may represent a mechanism of bonding and/or specific recognition between reproductive individuals. We investigated whether gonadal hormones are involved in the maintenance of genital nuzzling behavior and mating behaviors in isolated pairs of mole-rats and also in established breeding pairs of mole-rats within colonies. We also explored whether sex hormone deprivation would alter the strict partner preference for performance of nuzzling within colonies. Our results indicate (a) considerable variation between pairs in the frequency of nuzzling, (b) a reduction in the frequency of nuzzling following castration of the male and restoration of the 'baseline' frequency after replacement of testosterone in castrated males, (c) the failure of either castration or combined castration and ovariectomy to eliminate genital nuzzling in established pairs, and (d) the exhibition of nuzzling behavior by some of the subordinates in all three experimental colonies beginning several weeks after gonadectomy of both of the reproductives. No cases of lordosis behavior were seen during the approximately 109 h of behavioral observations. This is not surprising, since female mole-rats have an approximately 30-day ovulatory cycle, and lordosis only occurs during a peri-ovulatory period of a few hours. A total of 44 cases of mounting behavior were recorded; all these involved breeding males in colonies or males from isolated pairs, and all occurred when males were either gonad-intact or castrated with testosterone replacement. Thus, in contrast to nuzzling behavior, male sex behavior appeared to be eliminated during androgen deprivation.  相似文献   

17.
The estrogen receptor-alpha (ERalpha) knockout mouse (alphaERKO) lacks ERalpha throughout development; therefore, an adult model for the study of estrogen effects in male mice was recently developed using the antiestrogen ICI 182,780. However, differences between species have been noted during immunostaining for ERalpha in the male tract as well as in response to treatments with antiestrogens. Therefore, we developed the antiestrogen model in the adult male rat to test, in another species, the hypothesis that estrogen regulates fluid reabsorption in efferent ductules. Estrogen receptor in the rat was blocked using ICI 182,780 for 100-150 days. Male Sprague-Dawley rats were treated weekly with s.c. injections of ICI 182,780 (10 mg) or castor oil (as control). The effects of ICI included testicular atrophy and infertility, similar to terminal effects in the alphaERKO male. Additionally, ICI induced dilations of the rete testis and efferent ductules and a reduction in the height of the ductule epithelium, which are changes similar to those in both alphaERKO and ICI-treated mice. One difference between species was a large variation in effects on the rat efferent ductule epithelium, including a transient increase in the number of periodic acid-Schiff-positive, lysosomal-like granules. These data confirm that estrogen is required for normal function of the efferent ductules and is essential for long-term fertility in the male rodent.  相似文献   

18.
In rodents, male‐typical copulatory behavior is generally dependent on gonadal sex steroids such as testosterone, and it is thought that the mechanism by which the hormone gates the behavior involves the gaseous neurotransmitter nitric oxide. According to one model, testosterone induces an up‐regulation of nitric oxide synthase (NOS) in the preoptic area, increasing nitric oxide synthesis following exposure to a sexual stimulus. Nitric oxide in turn, possibly through its effect on catecholamine turnover, influences the way the stimulus is processed and enables the appropriate copulatory behavioral response. In whiptail lizards (genus Cnemidophorus), administration of male‐typical levels of testosterone to females induces the display of male‐like copulatory responses to receptive females, and we hypothesized that this radical change in behavioral phenotype would be accompanied by a large change in the expression of NOS in the preoptic area. As well as comparing NOS expression using NADPH diaphorase histochemistry between testosterone‐treated females and controls, we examined citrulline immunoreactivity (a marker of recent nitric oxide production) in the two groups, following a sexual stimulus and following a nonsexual stimulus. Substantially more NADPH diaphorase‐stained cells were observed in the testosterone‐treated animals. Citrulline immunoreactivity was greater in testosterone‐implanted animals than in blank‐implanted animals, but only following exposure to a sexual stimulus. This is the first demonstration that not only is NOS up‐regulated by testosterone, but NOS thus up‐regulated is activated during male‐typical copulatory behavior. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

19.
Copulatory behaviors in most rodents are highly sexually dimorphic, even when circulating hormones are equated between the sexes. Prairie voles (Microtus ochrogaster) are monomorphic in their display of some social behaviors, including partner preferences and parenting, but differences between the sexes in their masculine and feminine copulatory behavior potentials have not been studied in detail. Furthermore, the role of neonatal aromatization of testosterone to estradiol on the development of prairie vole sexual behavior potentials or their brain is unknown. To address these issues, prairie vole pups were injected daily for the first week after birth with 0.5 mg of the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD) or oil. Masculine and feminine copulatory behaviors in response to testosterone or estradiol were later examined in both sexes. Males and females showed high mounting and thrusting in response to testosterone, but only males reliably showed ejaculatory behavior. Conversely, males never showed feminine copulatory behaviors in response to estradiol. Sex differences in these behaviors were not affected by neonatal ATD, but ATD-treated females received fewer mounts and thrusts than controls, possibly indicating reduced attractiveness to males. In other groups of subjects, neonatal ATD demasculinized males' tyrosine hydroxylase expression in the anteroventral periventricular preoptic area, and estrogen receptor alpha expression in the medial preoptic area. Thus, although sexual behavior in both sexes of prairie voles is highly masculinized, aromatase during neonatal life is necessary only for females' femininity. Furthermore, copulatory behavior potentials and at least some aspects of brain development in male prairie voles are dissociable by their requirement for neonatal aromatase.  相似文献   

20.
Intracranial implantation of minute pellets of gonadal steroids was combined with aromatase inhibitor treatment to determine if aromatization within the preoptic area (POA) is necessary for androgens to activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, implantation of pellets of testosterone propionate (TP) or estradiol benzoate (EB) in the POA of castrated males restores male-typical copulatory behavior. In Experiment 1, adult male castrated quail were implanted intracranially with 200-micrograms pellets of equimolar mixtures of crystalline TP + cholesterol (CHOL), TP + 1,4,6-androstatriene-3,17-dione (ATD, an aromatase inhibitor), EB + ATD, or CHOL and behavior-tested with intact males and females. Copulation was stimulated by POA implants containing TP or EB (three of six CHOL + TP males and two of seven ATD + EB males copulated vs zero of four CHOL males), but copulation was not inhibited by combining ATD with TP (three of four ATD + TP males copulated). In Experiment 2, adult male castrated quail were injected systemically with ATD or oil for 6 days prior to and 14 days after intracranial implantation of 200-micrograms pellets containing the same amounts of TP or EB as in Experiment 1. The ATD injections completely blocked copulatory behavior in males with TP implants in the POA such that ATD/TP and Oil/TP mount frequencies differed significantly, but failed to block copulation in males with EB implants in the POA (proportions of males copulating were ATD/EB, 6/8; ATD/TP, 0/6; Oil/TP, 4/7). The cloacal foam gland, an androgen-sensitive secondary sex character, was unaffected by the dose of ATD used. We conclude that activation of copulatory behavior by TP implants in the POA is not due to nonspecific effects of high local testosterone concentrations but rather to aromatization. These results support the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to activation of male-typical copulatory behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号