首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll – protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4‐1, a stay‐green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4‐1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation‐related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity‐dependent manner. Surprisingly, the Fv/Fm value remained high in nyc4‐1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4‐1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild‐type and other non‐functional stay‐green mutants, including sgr‐2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll – protein complexes during leaf senescence is discussed.  相似文献   

4.
Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.  相似文献   

5.
During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel's green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC.  相似文献   

6.
7.
During leaf senescence, Rubisco is gradually degraded and its components are recycled within the plant. Although Rubisco can be mobilized to the vacuole by autophagy via specific autophagic bodies, the importance of this process in Rubisco degradation has not been shown directly. Here, we monitored Rubisco autophagy during leaf senescence by fusing synthetic green fluorescent protein (sGFP) or monomeric red fluorescent protein (mRFP) with Rubisco in Arabidopsis (Arabidopsis thaliana). When attached leaves were individually exposed to darkness to promote their senescence, the fluorescence of Rubisco‐sGFP was observed in the vacuolar lumen as well as chloroplasts. In addition, release of free‐sGFP due to the processing of Rubisco‐sGFP was observed in the vacuole of individually darkened leaves. This vacuolar transfer and processing of Rubisco‐sGFP was not observed in autophagy‐deficient atg5 mutants. Unlike sGFP, mRFP was resistant to proteolysis in the leaf vacuole of light‐grown plants. The vacuolar transfer and processing of Rubisco‐mRFP was observed at an early stage of natural leaf senescence and was also obvious in leaves naturally covered by other leaves. These results indicate that autophagy contributes substantially to Rubisco degradation during natural leaf senescence as well as dark‐promoted senescence.  相似文献   

8.
9.
Three kinds of discs were taken from tobacco leaves whose lowerepidermis had been peeled off, half-peeled or unpeeled. Therole of the epidermis and its relation to the kinetin effecton chlorophyll degradation during senescence were studied. Ourresults follow.
  1. Chlorophyll degradation due to kinetin was retarded only whenthe lower epidermis was present.
  2. The decrease in chlorophyllcontent in leaf discs on water duringsenescence was nearlyproportional to the size of the lowerepidermis attached tothe discs; i.e., unpeeled discs>half-peeleddiscs>peeleddiscs.
  3. Cellular fractions possessing activity which induceschlorophylldegradation were extracted from the isolated lowerepidermis(i, ii) and its acetone powder (iii): (i) L-2 fraction(1.14d1.16)was separated by stepwise sucrose density-gradientcentrifugationfrom the 10,000?g pellet of the cell homogenate.(ii) The A-fraction(M.W.5,000) was precipitated with 0–80%saturation ofammonium sulfate from 105,000 ? g supernatantof cell homogenateand eluted in the void volume by SephadexG-25 column chromatography.(iii) The fraction precipitatedwith 0–30% saturationof ammonium sulfate from the 105,000?gsupernatant, containeda large amount of DNA and its activityremained even if DNAwas removed.
  4. Activity was not retainedwhen the fractions were obtained fromisolated lower epidermispretreated with 2?10–5 M kinetinfor 2 hr in darknessat 25?C.
(Received June 3, 1976; )  相似文献   

10.
During natural or dark-induced senescence, chlorophyll degradation causes leaf yellowing. Recent evidence indicates that chlorophyll catabolic enzymes (CCEs) interact with the photosynthetic apparatus; for example, five CCEs (NYC1, NOL, PPH, PAO and RCCR) interact with LHCII. STAY-GREEN (SGR) and CCEs interact with one another in senescing chloroplasts; this interaction may allow metabolic channeling of potentially phototoxic chlorophyll breakdown intermediates. 7-Hydroxymethyl chlorophyll a reductase (HCAR) also acts as a CCE, but HCAR functions during leaf senescence remain unclear. Here we show that in Arabidopsis, HCAR-overexpressing plants exhibited accelerated leaf yellowing and, conversely, hcar mutants stayed green during dark-induced senescence. Moreover, HCAR interacted with LHCII in in vivo pull-down assays, and with SGR, NYC1, NOL and RCCR in yeast two-hybrid assays, indicating that HCAR is a component of the proposed SGR-CCE-LHCII complex, which acts in chlorophyll breakdown. Notably, HCAR and NOL are expressed throughout leaf development and are drastically down-regulated during dark-induced senescence, in contrast with SGR, NYC1, PPH and PAO, which are up-regulated during dark-induced senescence. Moreover, HCAR and NOL are highly up-regulated during greening of etiolated seedlings, strongly suggesting a major role for NOL and HCAR in the chlorophyll cycle during vegetative stages, possibly in chlorophyll turnover.  相似文献   

11.
12.
13.
Salicylic acid has a role in regulating gene expression during leaf senescence   总被引:19,自引:0,他引:19  
Leaf senescence is a complex process that is controlled by multiple developmental and environmental signals and is manifested by induced expression of a large number of different genes. In this paper we describe experiments that show, for the first time, that the salicylic acid (SA)-signalling pathway has a role in the control of gene expression during developmental senescence. Arabidopsis plants defective in the SA-signalling pathway (npr1 and pad4 mutants and NahG transgenic plants) were used to investigate senescence-enhanced gene expression, and a number of genes showed altered expression patterns. Senescence-induced expression of the cysteine protease gene SAG12, for example, was conditional on the presence of SA, together with another unidentified senescence-specific factor. Changes in gene expression patterns were accompanied by a delayed yellowing and reduced necrosis in the mutant plants defective in SA-signalling, suggesting a role for SA in the cell death that occurs at the final stage of senescence. We propose the presence of a minimum of three senescence-enhanced signalling factors in senescing leaves, one of which is SA. We also suggest that a combination of signalling factors is required for the optimum expression of many genes during senescence.  相似文献   

14.
It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.  相似文献   

15.
Four mutants that show the delayed leaf senescence phenotype were isolated from Arabidopsis thaliana . Genetic analyses revealed that they are all monogenic recessive mutations and fall into three complementation groups, identifying three genetic loci controlling leaf senescence in Arabidopsis . Mutations in these loci cause delay in all senescence parameters examined, including chlorophyll content, photochemical efficiency of photosystem II, relative amount of the large subunit of Rubisco, and RNase and peroxidase activity. Delay of the senescence symptoms was observed during both age-dependent in planta senescence and dark-induced artificial senescence in all of the mutant plants. The results indicate that the three genes defined by the mutations are key genetic elements controlling functional leaf senescence and provide decisive genetic evidence that leaf senescence is a genetically programmed phenomenon controlled by several monogenic loci in Arabidopsis . The results further suggest that the three genes function at a common step of age-dependent and dark-induced senescence processes. It is further shown that one of the mutations is allelic to ein2-1 , an ethylene-insensitive mutation, confirming the role of ethylene signal transduction pathway in leaf senescence of Arabidopsis .  相似文献   

16.
Transcriptome of Arabidopsis leaf senescence   总被引:21,自引:0,他引:21  
  相似文献   

17.
Protein degradation and nitrogen remobilization during leaf senescence   总被引:1,自引:0,他引:1  
Leaf senescence, a type of programmed cell death, is a complex and highly regulated process that involves the degradation of macromolecules, including proteins, nucleic acids, and lipids. Nutrients, especially nitrogen, are re-mobilized from senescing leaves to newly developing tissues or reserve organs. Our review focuses on three pathways for protein breakdown and the resorption of N during this process: the ubiquitin/proteosome system, the chloroplast degradation pathway, and the vacuolar and autophagic pathway. We propose that two relative biochemical cycles exist for amino acid recycling and N-export — the GS/GOGAT cycle and the PPDK-GS/GOGAT cycle.  相似文献   

18.
The activities of chlorophyllase, contents of pigments including chlorophyll a and b, chlorophyllide a and b, and phaeophorbide a during leaf senescence under low oxygen (0.5% O2) and control (air) were investigated in a non-yellowing mutant and wild-type leaves of snap beans (Phaseolus vulgaris L.). Chlorophyllase from leaf tissues had maximum activity when incubated at 40C in a mixture containing 50% acetone. In both mutant and wild type, chlorophyllase activity was the highest in freshly harvested non-senescent leaves and decreased sharply in the course of senescence, indicating that the loss of chlorophylls in senescing leaves is not directly related to the activity of chlorophyllase and that chlorophyllase activity is not altered in the mutant. The wild type had higher ratios of chlorophyll a to chlorophyll b than the mutant and chlorophyll a : b ratios increased during senescence in both types. In the senescent mutant leaves, accumulations of chlorophyllide a and chlorophyllide b were detected, but no phaeophorbide a was found. Chlorophyllide b had a greater accumulation than chlorophyllide a in the early stage of senescence. Low oxygen treatment not only delayed chlorophyll degradation but also enhanced the accumulations of chlorophyllide a and b and lowered the ratios of chlorophyll a to chlorophyll b.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号