首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunoaffinity purification of human placenta DNA primase devoid of DNA polymerase alpha activity is described. Primase consists of 52 and 59 kDa polypeptides. They form a single protein of 330 kDa under native conditions. The polypeptide structure of primase is believed to be (52 + 59)3. Primase synthesizes the oligoribonucleotides 2-9 monomers long and multimeric oligoribonucleotides of a modal length of about 10 monomers. The following model of RNA primer synthesis is proposed: 1) primase, being in free state or in complex with Pol alpha, forms a protein trimer or another structure that includes several primases; 2) primase synthesizes de novo only the oligonucleotides 2-10 monomers in length; 3) the newly synthesized oligonucleotides dissociate in solution or translocate to either Pol alpha or a neighbouring primase unit to be further elongated with the next 7-10 mononucleotides.  相似文献   

2.
The DNA replicase activity of the complex between bovine thymus DNA polymerase alpha and RNA primase was markedly decreased after the purification by ssDNA-cellulose column chromatography. In an attempt to restore the activity by supplementing some fractions eliminated from the purified enzyme, we found that a fraction eluted from the column by increasing salt concentration and 30% ammonium sulfate precipitates of the phosphocellulose-step enzyme possessed a high ability to restore the replicase activity. Thus, the factors were purified to near homogeneity from the two sources and the properties were examined. Both factors were heat-labile and trypsin-sensitive, possessed a native molecular mass of approximately 150-200 kDa as judged by Sephacryl S-200 column chromatography, and were composed of two polypeptides of 146 kDa and 47 kDa on SDS/polyacrylamide gel electrophoresis, indicating that they were an identical protein. The factor, which did not show any DNA polymerase or primase activities by itself, stimulated approximately 20-fold the replicase activity of purified DNA-polymerase-alpha-primase at a very low concentration (10 ng/50 microliter). The factor did not affect the deoxyribonucleotide polymerizing activity of the enzyme complex at all, but specifically stimulated the primase activity only. Thus, we designated the factor as primase-stimulating factor. Although varying the template concentration did not significantly affect the mode of stimulation, increasing the concentration of substrate for primer synthesis (ATP) markedly decreased the extent of stimulation. Thus, the stimulating factor seems to decrease the substrate concentration required for the primase reaction as well as increasing threefold the maximum activity attained by varying the substrate concentration. So far, no ATPase activity has been detected in the factor.  相似文献   

3.
The molecular masses of two of the four DNA polymerase alpha-primase complex subunit peptides from various mammalian cells have been compared through the use of specific monoclonal antibodies. One monoclonal antibody (E4) binds to 77-kDa peptide from HeLa cells and cognate peptides from other mammalian cells (monkey, mouse, bovine, Indian muntjac, and hamster). Another monoclonal antibody (A5) binds the 180-kDa type peptide and its degradation product (160-kDa peptide) of the mammalian DNA polymerase alpha-primase complexes. Neither of these antibodies reacts with DNA polymerase alpha-primase complex from chicken cells. Comparative immunoblot analysis indicates that the molecular masses of the two main peptides of DNA polymerase alpha-primase complex isolated from the various mammalian sources are in excellent agreement with each other, except for the 77-kDa type peptide from bovine and Indian muntjac cells which was found to be significantly smaller (68 kDa) in these cases. The small molecular mass of bovine 77-kDa type peptide is not attributable to the action of a protease which may be present in the extract of bovine cells.  相似文献   

4.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The immunoaffinity-purified subunits of the yeast DNA primase-DNA polymerase protein complex and subunit-specific monoclonal antibodies were used to explore the structural relationships of the subunits in the complex. The reconstituted four-subunit complex (180-, 86-, 58-, and 49-kDa polypeptides) behaved as a single species, exhibiting a Stokes radius of 80 A and a sedimentation coefficient of 8.9 S. The calculated molecular weight of the reconstituted complex is 312,000. We infer that the stoichiometry of the complex is one of each subunit per complex. The complex has a prolate ellipsoid shape with an axial ratio of approximately 16. When the 180-kDa and DNA primase subunits were recombined in the absence of the 86-kDa subunit, a physical complex formed, as judged by immunoprecipitation of DNA primase activity and polypeptides with an anti-180-kDa monoclonal antibody. While the 86-kDa subunit readily forms a physical complex with the 180-kDa DNA polymerase catalytic subunit, we have not detected a complex containing 86-kDa and the DNA primase subcomplex (49- and 58-kDa subunits). The 86-kDa subunit was not required for DNA primase-DNA polymerase complex formation; the 180-kDa subunit and DNA primase heterodimer directly interact. However, the presence of the 86-kDa subunit increased the rate at which the DNA primase and 180-kDa polypeptides formed a complex and increased the total fraction of DNA primase activity that was associated with DNA polymerase activity. The observations demonstrate that the DNA primase p49.p58 heterodimer and the DNA polymerase p86.p180 heterodimer interact via the 180-kDa subunit. The four-subunit reconstituted complex was sufficient to catalyze the DNA chain extension coupled to RNA primer synthesis on a single-stranded DNA template, as previously observed in the conventionally purified complex isolated from wild type cells.  相似文献   

6.
Five major polypeptides are found in immunoaffinity-purified calf thymus DNA polymerase-DNA primase complex: 185, 160, 68, 55, and 48 kDa. Individual polypeptides purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to produce antibodies in rabbits to aid in identifying the relationships between these polypeptides by immunoblotting and enzyme neutralization procedures. Immunoblot analyses showed that the 160-kDa peptide is derived from the 185-kDa peptide and the 48-kDa peptide is derived from the 68-kDa peptide while antibodies to the 55-kDa peptide do not cross-react with other peptides found in the complex. Direct enzyme neutralization studies demonstrated that antibodies to 185- and 160-kDa peptides inhibit DNA polymerase activity in the complex, confirming earlier suggestions that these peptides are the catalytic peptides for DNA polymerase. DNA primase activity in the complex is inhibited by antibodies to 68-, 55-, and 48-kDa peptides and to a lesser extent by antibodies to the 160-kDa peptide. Free DNA primase isolated from the complex was estimated to have a native molecular weight of about 110,000. The 55- and 48-kDa peptides are found to be associated with the free primase activity. Rabbit antibodies to both 55- and 48-kDa peptides are inhibitory to this primase activity. From these results we suggest that the native calf thymus DNA polymerase-DNA primase complex contains only three unique peptides with the 185-kDa peptide as the catalytic peptide of DNA polymerase and the 55- and 68-kDa peptides constituting the primase peptides. A model illustrating the roles of these peptides in initiation and replication of DNA is presented.  相似文献   

7.
Highly purified DNA polymerase alpha-DNA primase from normal human tissue (human placenta) has been prepared by immunoaffinity purification on immobilized anti-human DNA polymerase alpha monoclonal antibody SJK 287-38. According to data from SDS electrophoresis this preparation consists of subunits of 180, 160, 145, 140 kDa (a cluster of DNA-polymerizing subunits), 73 kDa (function unknown) and 59, 52 kDa (corresponding to primase). Three active enzyme forms of 270, 460 and 575 kDa have been revealed using native electrophoresis followed by detection of DNA polymerase activity.  相似文献   

8.
Calf thymus DNA polymerase alpha-primase, human placenta DNA polymerase alpha-primase and human placenta DNA primase synthesized oligoriboadenylates of a preferred length of 2-10 nucleotides and multimeric oligoribonucleotides of a modal length of about 10 monomers on a poly(dT) template. The dimer and trimer were the prevalent products of the polymerization reaction. However, only the oligonucleotides from heptamers to decamers were elongated efficiently by DNA polymerase alpha.  相似文献   

9.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

10.
11.
We have utilized immunoaffinity chromatography as a means of efficiently isolating a stable yeast DNA primase from the DNA primase-DNA polymerase complex, allowing identification of the polypeptides associated with this DNA primase activity and comparison of its enzymatic properties with those of the larger protein complex. A mouse monoclonal antibody specifically recognizing the DNA polymerase subunit was used to purify the complex. Stable DNA primase was subsequently separated from the complex in high yield. The highly purified protein fraction which bound to the DNA polymerase antibody column consisted of polypeptides with apparent molecular masses of 180, 86, 70, 58, 49, and 47 kDa. DNA primase activity eluted with a fraction containing only the 58-, 49-, and 47-kDa polypeptides. Partial chemical cleavage analysis of these three proteins demonstrated that the 49- and 47-kDa polypeptides are structurally related while the 58-kDa protein is unrelated to the other two. A DNA primase inhibitory monoclonal antibody was able to inhibit the activity of the purified DNA primase as well as the activity of the enzyme in the larger complex. In immunoprecipitation experiments, all three polypeptides were found in the immune complex. Thus, these three polypeptides are sufficient for DNA primase activity. In reactions using ribonucleotide substrates and natural as well as synthetic DNA templates, the purified DNA primase exhibited the same precise synthesis of unit length oligomers as did the larger protein complex and was able to extend these RNA oligomers by one additional unit length. An examination of the effects of deoxynucleotides on these DNA primase-catalyzed reactions revealed that the yeast DNA primase is an RNA-polymerizing enzyme and lacks significant DNA-polymerizing activity under the conditions tested.  相似文献   

12.
Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.  相似文献   

13.
A protein that stimulates DNA polymerase alpha/primase many-fold on unprimed poly(dT) was purified to homogeneity from extracts of cultured mouse cells. The protein contains polypeptides of approximately 132 and 44 kDa, and the total molecular mass of 150 kDa calculated from Stokes radius (54 A) and sedimentation coefficient (6.7 S) indicates that it contains one each of the two subunits. The purified "alpha accessory factor" (AAF) also stimulates DNA polymerase alpha/primase in the self-primed reaction with unprimed single-stranded DNA. In addition to these effects on the coordinate activities of DNA polymerase alpha and DNA primase, stimulatory effects were also demonstrated separately on both the polymerase and primase activities of the enzyme complex. However, there was no stimulation with DNase-treated ("activated") DNA under normal conditions for assay of DNA polymerase alpha. The stimulatory activity of mouse AAF is highly specific for DNA polymerase alpha/primase; no effect was observed with mouse DNA polymerases beta, gamma, or delta, nor with retroviral, bacteriophage, or bacterial DNA polymerases. Mouse AAF stimulated human DNA polymerase alpha/primase with several different templates, similar to results with the mouse enzyme. However, it had very little effect on the DNA polymerase/primase from either Drosophila embryo or from yeast.  相似文献   

14.
We have purified from Xenopus laevis ovaries a major DNA polymerase alpha species that lacked DNA primase activity. This primase-devoid DNA polymerase alpha species exhibited the same sensitivity as the DNA polymerase DNA primase alpha to BuAdATP and BuPdGTP, nucleotide analogs capable of distinguishing between DNA polymerase delta and DNA polymerase DNA primase alpha. The primase-devoid DNA polymerase alpha species also lacked significant nuclease activity indicative of the alpha-like (rather than delta-like) nature of the DNA polymerase. Using a poly(dT) template, the primase-devoid DNA polymerase alpha species elongated an oligo(rA10) primer up to 51-fold more effectively than an oligo(dA10) primer. In direct contrast, the DNA polymerase DNA primase alpha complex showed only a 4.6-fold preference for oligoribonucleotide primers at the same template/primer ratio. The catalytic differences between the two DNA polymerase alpha species were most dramatic at a template/primer ratio of 300. The primase-devoid DNA polymerase alpha species was found at high levels throughout oocyte and embryonic development. This suggests that the primase-devoid DNA polymerase alpha species could play a physiological role during DNA chain elongation in vivo, even if it is chemically related to DNA polymerase DNA primase alpha.  相似文献   

15.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

16.
In the ciliate Euplotes crassus, millions of new telomeres are synthesized by telomerase and polymerase alpha-primase during macronuclear development in mated cells. Concomitant with de novo telomere formation, telomerase assembles into higher-order complexes of 550 kDa, 1,600 kDa, and 5 MDa. We show here that telomerase is physically associated with the lagging-strand replication machinery in these complexes. Antibodies against DNA primase precipitated telomerase activity from all three complexes from mated cells but not the 280-kDa telomerase complex from vegetatively growing cells. Moreover, when telomerase was affinity purified, primase copurified with enzyme from mated cells but not with the 280-kDa vegetative complex. Thus, the association of telomerase and primase is developmentally regulated. Intriguingly, PCNA (proliferating cell nuclear antigen) was also found in the 5-MDa complex from mated cells. We therefore speculate that this complex is a complete telomere synthesis machine, while the smaller complexes are assembly intermediates. The physical association of telomerase and primase explains the coordinate regulation of telomeric G- and C-strand synthesis and the efficiency of telomere addition in E. crassus.  相似文献   

17.
DNA polymerase and DNA primase activities in the maize α-type DNA polymerase 2 were dissociated and DNA polymerase-free DNA primase was studied. DNA primase synthesized primers that were 8–34 nucleotides long, with more intense bands at 15–17 nucleotides in length. DNA polymerase 1 (a putative δ-type enzyme) or DNA polymerase 2 were assayed after template-priming with purified DNA primase and showed a differential use of templates: whereas DNA polymerase 2 used a polydT template more efficiently than a natural template, DNA polymerase 1 used both of them poorly. The molecular size of DNA primase was estimated to be 68 kDa by gel filtration, western blotting and by a DNA primase 'trapping' assay.  相似文献   

18.
Isolation of the DNA polymerase alpha core enzyme from mouse cells   总被引:2,自引:0,他引:2  
DNA polymerase alpha has been purified from mouse hybridoma cells approximately 30,000-fold using a combination of conventional and high performance liquid chromatography. In contrast to previous characterizations of mammalian DNA polymerase alpha, this enzyme has a single high molecular mass polypeptide (185 kDa) in tight association with a 68-kDa polypeptide and this structure appears to be the core DNA polymerase of the mouse cells. The biochemically purified enzyme, with a specific activity of approximately 200,000 units/mg protein, has an estimated molecular mass by gel filtration chromatography of 240 kDa and sedimentation value of 9 S, consistent with the enzyme being a heterodimer of 185 and 68 kDa. The enzyme is sensitive to both N-ethylmaleimide and aphidicolin and insensitive to ddTTP. Using an activated DNA template, the apparent Km values for the deoxynucleotide triphosphates are approximately 0.5-1 microM. The purified DNA polymerase has neither exonuclease nor primase activities and is the predominant DNA polymerase alpha activity in the mouse cells.  相似文献   

19.
Sophisticated measurements were made on the nanosecond time-resolved absorbance change of the purple membrane of Halobacterium halobium under cw background light irradiation (440-800 nm, 11-441 mW/cm2). A red-shifted transient species R660 (KN, Q) was found in alkaline conditions (pH > 9.3). Background light intensity effect shows that (i) R660 is photochemically formed from N560 intermediate which is accumulated under background light irradiation because of the elongated lifetime in alkaline suspension, and that (ii) the slow decaying M412 is not photochemically formed from N560 but from bR568.  相似文献   

20.
An aphidicolin-sensitive DNA polymerase was purified from extracts of Halobacterium halobium. The analysis of this alpha-like DNA polymerase on polyacrylamide gels under denaturing conditions revealed two peptides with molecular masses of 70 kDa and 60 kDa in equal amounts. Like the DNA polymerase alpha isolated from eukaryotes, the alpha-like DNA polymerase possesses primase activity using UTP and polydeoxyadenylate as template. The primase activity was sensitive to aphidicolin and inhibited by an antiserum against the alpha-like DNA polymerase of H. halobium. The primase activity was dependent on the presence of high salt concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号