首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical reef fishes are exposed to high levels of damaging ultraviolet radiation. Here we report the widespread distribution of both UVA- and UVB-absorbing compounds in the epithelial mucus of these fishes. Mucus from 137 reef fish species was examined by spectrophotometry and 90% were found to have strong absorbance peaks between 290 and 400nm. Most fish species (78%) had more than one peak, that suggests a broad-band ultraviolet screening function for their mucus. Thalassoma duperrey, a tropical wrasse, was able to alter the absorbance of its epithelial mucus in response to both naturally and experimentally manipulated UV regimes. Visual modeling suggests that a fish with UV vision, such as Dascyllus albisella, could detect the changes in mucus spectra of T. duperrey that occurred in these experiments.  相似文献   

2.
The diets of the most conspicuous reef‐fish species from northern Patagonia, the carnivorous species Pseudopercis semifasciata, Acanthistius patachonicus, Pinguipes brasilianus and Sebastes oculatus were studied. Pinguipes brasilianus had the narrowest diet and most specialized feeding strategy, preying mostly on reef‐dwelling organisms such as sea urchins, limpets, bivalves, crabs and polychaetes. The diet of A. patachonicus was characterized by the presence of reef and soft‐bottom benthic organisms, mainly polychaetes, crabs and fishes. Pseudopercis semifasciata showed the broadest spectrum of prey items, preying upon reef, soft‐bottom and transient organism (mainly fishes, cephalopods and crabs). All S. oculatus guts were empty, but stable‐isotope analyses suggested that this species consumed small fishes and crabs. In general, P. brasilianus depended on local prey populations and ate different reef‐dwelling prey than the other species. Pseudopercis semifasciata, A. patachonicus and probably S. oculatus, however, had overlapping trophic niches and consumed resources from adjacent environments. The latter probably reduces the importance of food as a limiting resource for these reef‐fish populations, facilitating their coexistence in spite of their high trophic overlap.  相似文献   

3.
Black seabream, Acanthopagrus schlegeli, and Japanese seaperch, Lateolabrax japonicus, are important commercial species in the coastal waters of western Pacific Ocean, including Japan, Korea and China. In Hong Kong, larvae and juveniles of these two species occur in bays and estuaries during late winter and spring. This study reports on the ontogenetic changes in food habits in larvae and juveniles of these species in an artificial rocky shore area. Copepods and cladocerans were the most numerous food items for black seabream. There was a shift to larger and benthic prey as the fishes grew. Japanese seaperch <2.1cm fed predominantly on copepods and cladocerans, while larger prey were added as fish size increased. Japanese seaperch >6.0cm were piscivorous. Maximum prey width increased with fish standard length and mouth gape width in both species. Overall, black seabream showed greater diet breadth than did Japanese seaperch. In black seabream, diet breadth increased with fish size. In Japanese seaperch, diet breadth increased with size for fishes <4.0cm, then decreased as the fishes became piscivorous. Prey selectivity in black seabream was determined using information on prey availability in plankton samples. In general, preference was stronger for cypris larvae, Penilia avirostris and decapod larvae than for copepods and podonids. In recent years, overfishing and environmental degradation have led to the decline of fish populations in Tolo Harbour. Absence of fishes with empty gut indicates that inner Tolo Harbour is still an important nursery area for these two commercial species.  相似文献   

4.
Suitability of small (< 1km2) marine reserves for protecting a commercially important endemic Hawaiian goatfish, Parupeneus porphyreus, was examined by quantifying goatfish habitat use, home range size and site fidelity in an existing marine reserve (Coconut Island in Kaneohe Bay, Hawaii). Five goatfish equipped with acoustic transmitters were tracked for up to 93h each over 3–14 days. Daytime habitat use patterns of two of these fish were continuously monitored for one month using a fixed hydrophone hardwired to an onshore computer. Acoustically tagged fish showed consistent diel patterns of behavior, refuging in holes in the reef by day and moving over extensive areas of sand and coral rubble habitat at night. Remote monitoring of daytime habitat use by two goatfish revealed that the same daytime refuge was used by both fish for at least one month (the battery life of the transmitters). Home ranges of all fish were within the boundaries of the Coconut Island reserve suggesting that even small areas containing suitable habitat can make effective reserves for this species. A relatively low abundance of reproductive size P. porphyreus at Coconut Island in comparison with deeper areas may indicate an ontogenetic shift to deeper habitat in this species.  相似文献   

5.
Reserves are being used increasingly to conserve fish communities and populations under threat from overfishing, but little consideration has been given to how fish behavior might affect reserve function. This review examines the implications of how fish use space, in particular the occurrence and size of home ranges and the frequency and direction of home range relocations. Examples are drawn primarily from the literature on coral reef fishes, but the principles apply to other habitats. Reserves can protect fish species only if individuals restrict their movements to a localized home range during at least part of the life cycle. Home range sizes increase with body size. In small reserves, a significant proportion of fish whose home ranges are centered within the reserve can be exposed to fishing mortality because their home ranges include non-reserve areas. Relocation of home ranges following initial settlement increases exposure to the fishery, especially if habitat selection is frequency-dependent. Distance, barriers, and costs of movement counter such redistribution. These considerations lead to predictions that population density and mean fish size (1) will form gradients across reserve boundaries with maxima in the center of the reserve and minima outside the reserve away from the boundary; (2) will increase rapidly in newly established reserves, only later providing spillover to adjacent fisheries as density-dependent emigration begins to take effect; and (3) will be higher in reserves that are larger and have higher area:edge ratios, more habitat types, natural barriers between reserve and non-reserve areas, and higher habitat quality inside than outside the reserve. (4) Species with low mobility and weak density-dependence of space use will show the greatest increase in reserves and the strongest benefit for population reproductive capacity, but those with intermediate levels of these traits will provide the greatest spillover benefit to nearby fisheries.  相似文献   

6.
To clarify differences in community structures and habitat utilization patterns of fishes in Enhalus acoroides- and Thalassia hemprichii-dominated seagrass beds on fringing coral reefs, visual censuses were conducted at Iriomote and Ishigaki islands, southern Japan. The numbers of fish species and individuals were significantly higher in the E. acoroides bed than in the T. hemprichii bed, although the 15 most dominant fishes in each seagrass bed were similar. Cluster and ordination analyses based on the number of individuals of each fish species also demonstrated that fish community structures were similar in the two seagrass beds. Species and individual numbers of coral reef fishes which utilized the seagrass beds numbered less than about 15% of whole coral reef fish numbers, although they comprised about half of the seagrass bed fishes. Of the 15 most dominant species, 5 occurred only in the two seagrass beds, including seagrass feeders. Ten other species were reef species, their habitat utilization patterns not differing greatly between the two seagrass beds. Some reef species, such as Lethrinus atkinsoni and L. obsoletus, showed ontogenetic habitat shifts with growth, from the seagrass beds to the coral areas. These results indicate that community structures and habitat utilization patterns of fishes were similar between E. acoroides- and T. hemprichii-dominated seagrass beds, whereas many coral reef fishes hardly utilized the seagrass beds.  相似文献   

7.
Understanding the dynamics of open marine populations is inherently complex, and this complexity has led to decades of debate regarding the relative importance of pre- versus post-settlement processes in structuring these populations. Movement between patches may be an important modifier of patterns established at settlement, yet local immigration and emigration have received less attention than other demographic rates. I examined loss rates from tagged populations of juvenile wrasses (yellowhead wrasse Halichoeres garnoti and bluehead wrasse Thalassoma bifasciatum) at two sites in the Bahamas. Assuming that all losses were due solely to mortality would have significantly underestimated survivorship of yellowhead wrasse by 29% and bluehead wrasse by 14%. On average, per capita mortality and emigration rates were higher for yellowhead than bluehead wrasse, but neither demographic rate differed between sites for either species. With respect to within-species density, bluehead wrasse mortality was density-dependent at the patch reef site, but mortality rates of yellowhead wrasse were consistently density-independent. Evaluating the effects of between-species density, yellowhead wrasse mortality increased with a decrease in bluehead wrasse density, but this effect was limited to the patch reef site. Emigration rates were not a function of either within-species or between-species density, but instead varied inversely with isolation distance. Numerous previous studies of coral-reef fish, conducted on patch reefs separated by only a few meters of sand and often using untagged fish, may have confounded losses due to emigration with those due to mortality. A better understanding of the factors affecting emigration in marine fishes is important to their effective management using spatial tools such as marine protected areas.  相似文献   

8.
Direct evaluation of macroalgal removal by herbivorous coral reef fishes   总被引:5,自引:5,他引:0  
Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.  相似文献   

9.

Background

In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea.

Results

Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes’ life history in the coral reef habitats.

Conclusions

Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.  相似文献   

10.
We counted nocturnal fishes both day and night, and monitored the position of tagged individuals on temperate reefs in New South Wales, Australia. Pempheris affinis and P. multiradiata were the most abundant nocturnal planktivores on Sydneys rocky reefs and showed great differences in diel migration behaviour. Both species were observed in deep shelter sites during the day (5–10m), and most emerged into the water column at night. P. multiradiata was found to undergo extensive vertical and horizontal migrations. In contrast, P. affinis remained within daytime depth strata, with tagged individuals often moving less than 20m at night. Tagged adult P. affinis returned to tagging sites for up to 7weeks, indicating high site fidelity. Dietary analysis demonstrated that small and large pempherids differed in diet and the timing of foraging, suggesting a size-based transition from diurnal to nocturnal foraging. Stratified sampling of planktonic assemblages at different depths during the day and night showed spatial variation in the availability of prey items at different times of the day. Amphipods, the main prey of large fish, were only available during the night, and concentrated in shallow water, whereas decapod larvae, consumed mainly by small fish, were abundant day and night. Large P. affinis also fed on polychaetes, which were never found in the stomachs of P. multiradiata, suggesting that these species may have different prey requirements, or that these polychaetes are only found in deep water where foraging P. affinis were abundant. We found no general model for the Pempheridae. The movements and behaviour of nocturnal fishes varied greatly by species, and this may be due to differences in body size, and/or physiological (e.g. visual ability) and ecological constraints.  相似文献   

11.
We characterized demersal fish and decapod crustacean habitats in 14 shallow (< 12m) areas in Penobscot Bay, Maine, by mapping the distribution of subtidal substrata with an acoustic sea bottom profiler. We identified the aquatic vegetation and the fishes and decapods associated with these habitats. Samples of fishes and decapods in each habitat were collected with a small beam trawl. The seabed at most of the stations sampled was composed of a mosaic of substrata. More species of fishes tow-1 and higher abundances of fishes and decapods were found in stations with vegetation present, particularly eelgrass, Zostera marina. Decapod species richness tow-1 was similar between vegetated and unvegetated habitats. Shallow habitats in Penobscot Bay were dominated by juvenile fishes and function as nursery areas. The greater species diversity and higher abundances of epibenthic fishes and decapod crustaceans observed in vegetated habitats, particularly beds of Zostera marina, compared with unvegetated areas in Penobscot Bay conform to the hypothesis that increased habitat complexity results in increased species richness and abundance.The first author is also senior author  相似文献   

12.
Video cameras recorded the diurnal visitation rates of transient (large home range) piscivorous fishes to coral patch reefs in The Bahamas and identified 11 species. Visits by bar jack Caranx ruber, mutton snapper Lutjanus analis, yellowtail snapper Ocyurus chrysurus, barracuda Sphyraena barracuda and cero Scomberomorus regalis were sufficiently frequent to correlate with a range of biophysical factors. Patch‐reef visitation rates and fish abundances varied with distance from shore and all species except S. regalis were seen more frequently inshore. This pattern is likely to be caused by factors including close proximity to additional foraging areas in mangroves and on fore‐reefs and higher abundances close to inshore nursery habitats. Visitation rates and abundances of C. ruber, L. analis, O. chrysurus and S. regalis also varied seasonally (spring v. winter), possibly as fishes responded to temperature changes or undertook spawning migrations. The abundance of each transient predator species on the patch reefs generally exhibited limited diurnal variability, but L. analis was seen more frequently towards dusk. This study demonstrates that the distribution of transient predators is correlated spatially and temporally with a range of factors, even within a single lagoon, and these drivers are species specific. Transient predators are considered an important source of mortality shaping reef‐fish assemblages and their abundance, in combination with the biomass of resident predators, was negatively correlated with the density of prey fishes. Furthermore, transient predators are often targeted by fishers and understanding how they utilize seascapes is critical for protecting them within reserves.  相似文献   

13.
A massive Porites microatoll generally has three types of microhabitat at the top, side, and base of the microatoll. The purpose of the present study was to analyze microhabitat associations of reef fish on microatolls to determine whether habitat characteristics play an important role in the structuring of reef fish assemblages in a patchy habitat. We also investigated temporal stability of reef fish assemblage structures over a period of 17 months to determine whether fish assemblage structures vary in a random manner. The results of correspondence analysis indicated species-specific habitat associations for pomacentrids (five species) and labrids (seven species). The degree of temporal stability of fish assemblage structures, calculated by Piankas index, was relatively high in a large-sized microatoll (0.503–0.831: 3.6m in diameter), in which microhabitat associations of fishes were clearly observed. The present study suggests that a microhabitat association is one of the important factors responsible for organization of reef fish assemblages in a microatoll.  相似文献   

14.
Synopsis Data are summarised from studies of two reef fish communities — pomacentrids territorial on rubble patches, and fishes resident in small isolated colonies of coral. In each case there is evidence that availability of living sites limits numbers of fishes, and that similar species of fish use the same kinds of spaces. Priority of arrival as recruits, rather than subtle differences in requirements or competitive abilities of adults, appears to determine which species holds each site. Faced with a limited and patchy supply of living space, most reef fishes are sedentary as adults, and produce frequent clutches of pelagic larvae over extended breeding seasons In this way they maximise their chances of getting offspring into suitable living sites as such sites appear. It is argued that by adopting this strategy, reef fishes are preadapted for forming inter-specific lotteries for living space if several species with similar requirements occur together. Such lotteries among similar species may be a feature common to many reef fish communities, and may explain the typically high within-site diversity found in them.This paper forms part of the proceedings of a mini-symposium convened at Cornell University, Ithaca, N.Y., 18–19 May 1976, entitled Patterns of Community Structure in Fishes (G. S. Helfman, ed.).  相似文献   

15.
The presence of bluestreak cleaner wrasse, Labroides dimidiatus, on coral reefs increases total abundance and biodiversity of reef fishes. The mechanism(s) that cause such shifts in population structure are unclear, but it is possible that young fish preferentially settle into microhabitats where cleaner wrasse are present. As a first step to investigate this possibility, we conducted aquarium experiments to examine whether settlement-stage and young juveniles of ambon damselfish, Pomacentrus amboinensis, selected a microhabitat near a cleaner wrasse (adult or juvenile). Both settlement-stage (0 d post-settlement) and juvenile (~5 weeks post-settlement) fish spent a greater proportion of time in a microhabitat adjacent to L. dimidiatus than in one next to a control fish (a non-cleaner wrasse, Halichoeres melanurus) or one where no fish was present. This suggests that cleaner wrasse may serve as a positive cue during microhabitat selection. We also conducted focal observations of cleaner wrasse and counts of nearby damselfishes (1 m radius) to examine whether newly settled fish obtained direct benefits, in the form of cleaning services, from being near a cleaner wrasse. Although abundant, newly settled recruits (<20 mm total length) were rarely (2 %) observed being cleaned in 20 min observations compared with larger damselfishes (58 %). Individual damselfish that were cleaned were significantly larger than the median size of the surrounding nearby non-cleaned conspecifics; this was consistent across four species. The selection by settlement-stage fish of a microhabitat adjacent to cleaner wrasse in the laboratory, despite only being rarely cleaned in the natural environment, suggests that even rare cleaning events and/or indirect benefits may drive their settlement choices. This behaviour may also explain the decreased abundance of young fishes on reefs from which cleaner wrasse had been experimentally removed. This study reinforces the potentially important role of mutualism during the processes of settlement and recruitment of young reef fishes.  相似文献   

16.
The use of artificial reefs in enhancing fish communities in Singapore   总被引:1,自引:0,他引:1  
Intense development of the coastal zone in Singapore has resulted in the degradation of much of the marine ecosystem. In order to restore and enhance fish communities of denuded areas, an artificial reef consisting of a tyre reef and a concrete reef, was established in the vicinity of the southern islands of Singapore. Results from fish visual censuses after the establishment of the artificial reef indicated an increase in numbers of juveniles and adults. A total of 37 and 32 fish species were recorded over a period of 1/2 years at the concrete and tyre reefs respectively. The dominant fish families were Pomacentridae, Labridae, Chaetodontidae, Apogonidae, Gobiidae and Nemipteridae. The artificial reefs also serve as a nursery ground for some species (e.g. Neopomacentrus sp.) which are important primary consumers of algae on natural reefs. Greater numbers of target (food-important) fishes were observed at the concrete reef while the tyre reef harboured more juveniles and smallersized adults. The results indicate that the concrete modules were more effective than the tyre reef in terms of fish abundance per unit volume. Such structures can enhance the biological resources of relatively unproductive areas.  相似文献   

17.
We examined the benthic fishes and artisanal fishery in the intertidal flats of Inhaca Island, Mozambique. Results of a questionnaire indicated that catches had decreased, and that piscivorous fish have disappeared. Results of a catch sampling study indicated that current catch rates are low, < 2 kg person–1 fishing trip–1. Use of fishing gear was significantly related to season, diel and lunar tidal phase, and habitat. Forty-eight fish species were observed in the catches with eight species comprising 80% of the catch of 1814 specimens. The annual catch was estimated at 26.2t for the whole bay. Highest fishing pressure was observed in the central section of the bay. A demersal fish survey was carried out with a 2-m beam trawl to sample the fish community. Two different areas were sampled, one area with a low, and one with a high fishing pressure. A total of 19889 fishes were caught comprising 93 species. Gobies dominated the catches and accounted for 56% of all specimens. Fishes were small with a mean standard length of 29mm. The Saco area exhibited the highest catch rates and biomass (maximum of 1040 fish 1000 m–2 and 1490g 1000 m–2), and the highest species richness and evenness values. Catch composition was different between the two sampling areas, and was strongly affected by season, but less by habitat. Total fish biomass was estimated at 5.6t for the whole area. Stomach content varied with habitat, and season, and was dominated by benthic invertebrates. The largest estimates of consumption were obtained in the tidal channel and the Zostera beds. Mean consumption of benthic organisms was 1.3g AFDW m–2 yr–1. The area seemed to be overfished. The heavily fished areas exhibited lower catch rates, lower proportion of piscivorous fish, increased proportion of small fish, and a decrease in species diversity.  相似文献   

18.
Quantitative surveys of sessile benthos and fish populations associated with reef habitats across a 15–50 m depth gradient were performed by direct diver observations using rebreathers at Isla Desecheo, Puerto Rico. Statistically significant differences between depths were found for total live coral, total coral species, total benthic algae, total sponges and abiotic cover. Live coral cover was higher at the mid-shelf (20 m) and shelf-edge (25 m) stations, whereas benthic algae and sponges were the dominant sessile-benthic assemblage at mesophotic stations below 25 m. Marked shifts in the community structure of corals and benthic algae were observed across the depth gradient. A total of 119 diurnal, non-cryptic fish species were observed across the depth gradient, including 80 species distributed among 7,841 individuals counted within belt-transects. Fish species richness was positively correlated with live coral cover. However, the relationship between total fish abundance and live coral was weak. Abundance of several numerically dominant fish species varied independently from live coral cover and appeared to be more influenced by depth and/or habitat type. Statistically significant differences in the rank order of abundance of fish species at euphotic vs mesophotic stations were detected. A small assemblage of reef fishes that included the cherubfish, Centropyge argi, sunshine chromis, Chromis insolata, greenblotch parrotfish, Sparisoma atomarium, yellowcheek wrasse, Halichoeres cyanocephalus, sargassum triggerfish, Xanthichthys ringens, and the longsnout butterflyfish, Chaetodon aculeatus was most abundant or only present from stations deeper than 30 m, and thus appear to be indicator species of mesophotic habitats.  相似文献   

19.
Coral-dwelling fishes from the genus Gobiodon are some of the most habitat specialised fishes on coral reefs. Consequently, we might expect that their population dynamics will be closely associated with the abundance of host corals. I used a combination of log-linear modelling and resource selection ratios to examine patterns of habitat use among eight species of Gobiodon in Kimbe Bay, Papua New Guinea. I then used multiple regression analysis to investigate relationships between the abundance of each species of Gobiodon and the abundance of the corals they inhabited. Each species of Gobiodon used one or more species of coral more frequently than expected by chance. The pattern of habitat use exhibited by each species of Gobiodon did not vary among reef zones or among reefs with different exposures to prevailing winds, despite changes in the relative abundances of corals among reef zones. This consistency in habitat use might be expected if the coral species inhabited confer considerable fitness advantages and, therefore, are strongly preferred. For most species of Gobiodon, abundances among reef zones and exposure regimes were correlated with the abundance of the coral species usually inhabited. Therefore, it appears that habitat availability helps determine abundances of most species of Gobiodon in Kimbe Bay. In addition to correlations with habitat availability, the abundances of G. histrio, G. quinquestrigatus, G. rivulatus (dark form) and the group others were also associated with particular reef zones and exposure regimes. Therefore, in these species, reef type appears to influence patterns of abundance independently of coral availability. In contrast to other species of Gobiodon, the abundance of the most specialised species, Gobiodon sp.A, was not closely associated with the abundance of the only coral species it inhabited. This study demonstrates that even for habitat specialised species, the relationship between habitat availability and abundance varies widely and is multiscale.  相似文献   

20.
Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40–64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号