首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When human diploid fibroblasts IMR-90 are cultured in routinely used medium (Eagle's basal medium supplemented with 10% fetal calf serum), sulfhydryl compounds appear in the medium. The major component of these sulfhydryl compounds is cysteine, and it is shown that a part of medium cystine is converted into cysteine by the cells. It is also shown that the sulfhydryl groups of serum albumin, which are masked and barely detectable before the culture, are restored. Probably cysteine formed by the cells reacts with serum albumin to give rise to the protein sulfhydryl groups via sulfhydryl–disulfide exchange reactions. Total sulfhydryl concentrations in the medium are maintained in a considerable level throughout the culture, and a possible physiological function of these sulfhydryl groups is discussed.  相似文献   

2.
We have studied the intrinsic modifications on myocardial automatism, conduction, and refractoriness produced by chronic exercise. Experiments were performed on isolated rabbit hearts. Trained animals were submitted to exercise on a treadmill. The parameters investigated were 1) R-R interval, noncorrected and corrected sinus node recovery time (SNRT) as automatism index; 2) sinoatrial conduction time; 3) Wenckebach cycle length (WCL) and retrograde WCL, as atrioventricular (A-V) and ventriculoatrial conduction index; and 4) effective and functional refractory periods of left ventricle, A-V node, and ventriculoatrial retrograde conduction system. Measurements were also performed on coronary flow, weight of the hearts, and thiobarbituric acid reagent substances and glutathione in myocardium, quadriceps femoris muscle, liver, and kidney, to analyze whether these substances related to oxidative stress were modified by training. The following parameters were larger (P < 0.05) in trained vs. untrained animals: R-R interval (365 +/- 49 vs. 286 +/- 60 ms), WCL (177 +/- 20 vs. 146 +/- 32 ms), and functional refractory period of the left ventricle (172 +/- 27 vs. 141 +/- 5 ms). Corrected SNRT was not different between groups despite the larger noncorrected SNRT obtained in trained animals. Thus training depresses sinus chronotropism, A-V nodal conduction, and increases ventricular refractoriness by intrinsic mechanisms, which do not involve changes in myocardial mass and/or coronary flow.  相似文献   

3.
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.  相似文献   

4.
This study was undertaken to examine the effects of oxygen free radicals on mitochondrial creatine kinase activity in rat heart. Xanthine plus xanthine oxidase (superoxide anion radical generating system) reduced mitochondrial creatine kinase activity both in a dose- and a time-dependent manner. Superoxide dismutase showed a protective effect on depression in creatine kinase activity due to xanthine plus xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a dose-dependent manner, this inhibition was protected by the addition of catalase. In order to understand the detailed mechanisms by which oxygen free radicals inhibit mitochondrial creatine kinase activity, the effects of oxygen free radicals on mitochondrial sulfhydryl groups were examined. Mitochondrial sulfhydryl groups contents were decreased by xanthine plus xanthine oxidase or hydrogen peroxide; this depression in sulfhydryl groups contents was prevented by the addition of superoxide dismutase or catalase. N-Ethylmaleimide (sulfhydryl group reagent) expressed inhibitory effects on the creatine kinase activity both in a dose- and a time-dependent manner; dithiothreitol or cysteine (sulfhydryl group reductant) showed protective effects on the creatine kinase activity depression induced by N-ethylmaleimide. Dithiothreitol or cysteine also blocked the depression of mitochondrial creatine kinase activity caused by xanthine plus xanthine oxidase or hydrogen peroxide. These results lead us to conclude that oxygen free radicals may inhibit mitochondrial creatine kinase activity by modifying sulfhydryl groups in the enzyme protein.  相似文献   

5.
The inhibition by some thiol reagents of partly purified mitochondrial monoamine oxidase (MAO) (EC 1.4.3.4) from rat liver was studied, and the molar content of sulfhydryl groups in the enzyme determined. Sodium nitroprusside and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) inhibited the enzyme, apparently reversibly, while sodium arsenite was not inhibitory. Concentrations of the respective inhibitors causing 50% inhibition after 15 min of preincubation with the enzyme at pH 7.0 and 37 degrees C are 5.80 times 10(-4) M and 4.35 times 10(-5) M. The thiol compounds cysteine, dithiothreitol, and 2-mercaptoethanol did not inhibit MAO. The average number of sulfhydryl groups per mole of enzyme, determined by reaction with DTNB, increased from 3.6 +/- 0.2 freely reacting sulfhydryl groups (n = 4) to 18.4 to total sulfhydryl groups (n = 2) on denaturation with 8 M urea.  相似文献   

6.
Selenium deficiency causes a fall in rat cardiac glutathione peroxidase activity. As a consequence, isolated perfused selenium-deficient heart does not release increased amounts of GSSG when hydroperoxide is infused. However, the total amount of glutathione measured as intracellular GSH, intracellular GSSG and GSSG released from the heart when hydroperoxide is infused does not equal the total glutathione measured in these pools in untreated hearts (Xia, Y., Hill, K.E. and Burk, R.F. (1985) J. Nutr. 115, 733-742). GSSG can react with protein sulfhydryl groups to form glutathione-protein mixed disulfides (PrS-SG). PrS-SG were measured in perfused selenium-deficient and control hearts infused with t-butylhydroperoxide and were found to account for the previously unmeasured glutathione. The ability of the selenium-deficient heart to transport GSSG was also examined. GSSG was produced non-enzymatically by infusing diamide. The diamide-treated selenium-deficient heart formed GSSG and released it at the same rate as similarly-treated control heart. Thus although selenium deficiency decreases GSSG formation by glutathione peroxidase, it does not affect cardiac GSSG transport.  相似文献   

7.
A reagent has been sought for the selective derivatization of protein sulfhydryl groups that will allow the spectrophotometric determination of the cysteine and cystine content of intact proteins. 2-Vinylquinoline appears to be that reagent. Protein sulfhydryl groups were reacted with 2-vinylquinoline to yield the protein-linked S-2-(2-quinolylethyl)-l-cysteine (Qe-cysteine). After urea and other excess reagents were removed, the modified proteins were examined spectrophotometrically. The extinction coefficient (10,000) and absorption maximum (318 mμ) of the protein-linked vinylquinoline derivatives were identical to those of the model Qe-cysteine. Optimum conditions for the reaction require an equimolar concentration of 2-vinylquinoline to all sulfhydryls and a 4 hr reaction period. The total cysteine and cysteine contents of the proteins, when determined under these conditions, were in excellent agreement with standard literature values.  相似文献   

8.
The effects of cysteine and reduced glutathione (GSH) on the genotoxicity of o-phenylphenol (OPP) and its metabolites, phenylhydroquinone (PHQ) and phenylbenzoquinone (PBQ), were examined using the frequency of sister-chromatid exchanges (SCEs) and chromosome aberrations in CHO-K1 cells as parameters. Cytotoxic (cell-progression delay) and cytogenetic effects induced by a 3-h treatment with OPP, PHQ (100 micrograms/ml) or PBQ (50 micrograms/ml) with S9 mix after a 27-h expression time were inhibited by cysteine or GSH (3-10 mM). Materials corresponding to the cysteine or GSH adducts were found by HPLC in each incubation mixture. In the culture without S9 mix, PHQ and PBQ showed severe cytotoxicity since no metaphases could be obtained at doses over 25 and 5 micrograms/ml, respectively, and the sulfhydryl compounds inhibited the toxicity by the formation of adducts with PBQ and by inhibiting the formation of PBQ in the case of PHQ. With PHQ, the sulfhydryl compounds appeared to inhibit autooxidation. However, the sulfhydryl compounds did not inhibit the cytotoxic and cytogenetic effects caused by OPP in the cell mixture without S9 mix, but on the contrary intensified them. No adduct formation was detected in the incubation solution. On the basis of these results, it is considered that electrophilic quinone (PBQ) and/or semiquinone (phenylsemiquinone, PSQ) radicals, capable of binding to nucleophilic small molecules (such as cysteine and GSH) or (biological) macromolecules, are produced from metabolite PHQ in metabolic oxidation of OPP, and induce cyto- and geno-toxic effects in the cells. The cyto- and geno-toxic effects of OPP itself to the cells are clearly independent of any electrophilic radical reaction.  相似文献   

9.
The effects of calmodulin antagonists trifluoperazine (TFP) and calmidazolium (CMZ) and of ethmozine (a phenothiazine without anticalmodulin activity) on the postischemic recovery in the perfused working rat hearts were studied. In the hearts subjected to 25 min zero-flow ischemia coronary flow, cardiac output, MVO2 and external work recovered to about 50% of the preischemic values during 40 min of reperfusion. TFP (5 x 10(-7) M and 10(-6) M) or CMZ (10(-7) M) improved the functional recovery to 75-94% whereas 5 x 10(-7) M ethmozine was not effective. In all experimental groups a prolongation of the ischemic period caused a progressive deterioration of the functional recovery while the total postischemic LDH release showed an initial gradual rise followed by a later decay. TFP and CMZ prolonged the time-to-half decay of the hemodynamic functions (tHF50) by 4-7 min and the time-to-peak of total LDH release (tLDHmax) by 5-10 min. In the hearts subjected to 0.2 ml/min low-flow ischemia tHF50 and tLDHmax were increased to 40 min, CMZ prolonged these times by further 5-10 min. Thus, TFP and CMZ delayed the development of the myocardial ischemic injury. Although other interpretations are possible, our data are consistent with the hypothesis that calmodulin-sensitive process is involved in the ischemic damage of the myocardium.  相似文献   

10.
Beta-adrenoceptor blocking agents may have, in addition to their primary action, also ancillary effects on the cell membrane. In the present paper the non-specific interaction of exaprolol with the ATPase systems in isolated rat heart sarcolemmal membranes was investigated. When preincubated with sarcolemmal membranes in vitro, exaprolol in concentrations below 10(-4) mol.l-1 had no significant effect on sarcolemmal Mg2+-, Ca2+- and (Na+ + K+)-ATPase activities. At exaprolol concentration of 10(-4) mol.l-1 the Mg2+- and Ca2+-ATPase activities became inhibited whereas the (Na+ + K+)-ATPase activity was markedly stimulated. A kinetic analysis of these interactions revealed a non-competitive inhibition of Mg2+- and Ca2+-ATPase. In the case of (Na+ + K+)-ATPase a synergistic type of stimulation characterized by an exaprolol-induced conversion of an essential sulfhydryl group in the active site of the enzyme to the more reactive [S-] form has been observed thus increasing the affinity of the enzyme to ATP. Exaprolol concentrations exceeding 5 X 10(-4) mol.l-1 induced an overall depression of the investigated enzyme activities.  相似文献   

11.
Rat brain hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) contains 21 cysteine residues. On the basis of the amino acid sequence of the enzyme, these are predicted to be distributed among 14 peptides produced by tryptic digestion. Ten of these peptides, containing cysteine residues derivatized by reaction with the specific sulfhydryl reagent 2-bromoacetamido-4-nitrophenol have been identified in HPLC peptide maps; the four missing peptides are predicted to be relatively large and hydrophobic in character, properties that may have prevented their detection under the present conditions. The sequences encompassed by the 10 identified peptides include 12 of the 21 cysteine residues in the enzyme. The relative reactivity of these sulfhydryl groups with 2-bromoacetamido-4-nitrophenol has been assessed, and is in general accord with what might be predicted on the basis of their accessibility in the previously proposed structure for this enzyme. The effect of various ligands on reactivity of identified sulfhydryl groups has been determined; unique patterns of altered reactivity, resulting from ligand-induced conformational changes, have been observed. Biphasic effects were observed with increasing concentrations of either glucose 6-phosphate (Glc-6-P) or Pi. In both cases, decreased reactivity of sulfhydryls in the N-terminal half of the molecule was observed at low concentrations of the ligand, while further increase in ligand concentration resulted in decreased reactivity of sulfhydryl groups in the C-terminal half. In contrast, sulfhydryls in both N- and C-terminal halves were protected concomitantly by increasing concentrations of Glc. These results are consistent with previous studies that indicated (a) the existence of two sites for binding of Glc-6-P or Pi, a high affinity site in the N-terminal half and a site with lower affinity in the C-terminal half of the brain hexokinase molecule, and (b) binding of Glc to a single site located in the C-terminal half but evoking conformational effects throughout the molecule; the glucose analog, N-acetylglucosamine, previously shown to have more limited effects on conformation, affected reactivity of sulfhydryl groups only in the C-terminal half of the molecule. As reflected by effects on reactivity of sulfhydryl groups, conformational changes induced by binding of nucleotides depends markedly on the specific nature of the purine or pyrimidine base as well as the length and chelation status of the polyphosphate side chain. These results focus attention on specific regions of the molecule (the immediate environment of the sulfhydryl groups) that are affected by the binding of these ligands.  相似文献   

12.
Certain aspects of the acetylcholine hypothesis of cardiac automaticity have been tested in vitro with spontaneously beating cardiac tissue from rabbits, rats, dams, and hagfish. The beat of atria from rabbits and rats may be depressed or excited by acetylcholine, depending upon the state of the tissue. Proguanil and cocaine inhibition of the beat in the rat may be antagonized by acetylcholine so that reversal of the depression occurs. The action of acetylcholine on the hearts of clams was found to be strictly inhibitory. Proguanil and cocaine, in contrast to their action on mammalian atria, exert a stimulatory effect on the heart of the molluscs studied. In fact, cocaine stimulated these hearts when they were inhibited by acetylcholine. Studies on the non-innervated hagfish heart revealed that this tissue is completely insensitive to the action of acetylcholine. Extracts prepared from beating hearts of this species will accelerate hypodynamic hearts of the hagfish as well as of the mussel. An extract of the neurogenic lobster heart was without effect on the hagfish heart. Proguanil was likewise ineffective in concentrations which produced inhibition and excitation in rat and clam hearts respectively. It was concluded that acetylcholine does not play a role in the myogenic automatism of all species, and that another mechanism is responsible is suggested on the basis of results obtained in the hagfish hearts.  相似文献   

13.
In the interface of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM), one cysteine of each monomer forms part of the intersubunit contacts. The relatively slow derivatization of these cysteines by sulfhydryl reagents induces progressive structural alterations and abolition of catalysis [Garza-Ramos et al. (1998) Eur. J. Biochem. 253, 684-691]. Derivatization of the interface cysteine by 5, 5-dithiobis(2-nitrobenzoate) (DTNB) and methylmethane thiosulfonate (MMTS) was used to probe if events at the catalytic site are transmitted to the dimer interface. It was found that enzymes in the active catalytic state are significantly less sensitive to the thiol reagents than in the resting state. Maximal protection against derivatization of the interface cysteine by thiol reagents was obtained at near-saturating substrate concentrations. Continuous recording of derivatization by DTNB showed that catalysis hinders the reaction of sulfhydryl reagents with the interface cysteine. Therefore, in addition to intrinsic structural barriers, catalysis imposes additional impediments to the action of thiol reagents on the interface cysteine. In TcTIM, the substrate analogue phosphoglycolate protected strongly against DTNB action, and to a lesser extent against MMTS action; in TbTIM, phosphoglycolate protected against the effect of DTNB, but not against the action of MMTS. This indicates that barriers of different magnitude to the reaction of thiol reagents with the interface cysteine are induced by the events at the catalytic site. Studies with a Cys14Ser mutant of TbTIM confirmed that all the described effects of sulfhydryl reagents on the trypanosomal enzymes are a consequence of derivatization of the interface cysteine.  相似文献   

14.
The relationship between the reactivation and reconstitution of the hexameric form of glutamate decarboxylase during the interaction of inactive apoenzyme dimers with pyridoxal phosphate (PLP) has been studied. It was shown that the restoration of enzymatic activity, appearance of spectral maximum at 340 nm, and reconstitution of the hexamer depend on the amount of PLP added; this reaction is completed when the PLP concentration reaches that of the initial enzyme. This native hexamer of the holo- and apoenzyme does not practically contain exposed sulfhydryl groups. Ten cysteine residues become available after DS-Na denaturation. The dimer of the apoenzyme contains 8 exposed and 2 buried cysteine residues. The hexamer formation from the dimers is accompanied by the burying of the cysteine residues. When half of the required PLP was added, 7 cysteine residues became buried in experiments with DTNB and six in experiments with 4.4'-DTDP. Further addition of PLP led to the disappearance of the exposed sulfhydryl groups.  相似文献   

15.
In perfused male rat hearts concentrations of prostaglandins (PGs) E2 and F2alpha in the range 1 pg/ml to 10 ng/ml (2.8 X 10(-12) to 2.8 X 10(-8)M) consistently caused rhythm irregularities. Higher concentrations had no effect themselves and stabilized rhythm in hearts made unstable by lower concentrations. Copper ions (as the sulphate) at 2 X 10(-6)M stabilized hearts made unstable by PGs and when present prior to the PGs prevented PG induced disturbances. Chloroquine also reversed PG-induced rhythm changes.  相似文献   

16.
17.
Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10-30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5'-[gamma-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.  相似文献   

18.
Prostacyclin when added to medium perfusing rat and rabbit hearts caused an increase in perfusion pressure at concentrations from 1 pg/ml ? 1 ng/ml (2.8 × 10?12 ? 2.8 × 10?9M) and a decrease at higher concentrations. Rhythm disturbances were observed with low prostacyclin concentrations in 6 of 10 rat hearts and 2 of 5 rabbit hearts studied. Increased heart rates were seen in the isolated rat hearts but not in the rabbit hearts. Force of contraction of isolated rat hearts was increased with increasing prostacyclin concentrations up to 100 pg/ml. Higher concentrations decreased contractile force. No inotropic effects were seen with rabbit hearts.  相似文献   

19.
Phospholamban, a 52-residue membrane protein, associates to form a pentameric complex of five long α-helices traversing the sarcoplasmic reticulum membrane of cardiac muscle cells. The transmembrane domain of the protein is largely hydrophobic, with only three cysteine residues having polar side chains, yet it functions as a Ca2+-selective ion channel. In this report, infrared spectroscopy is used to probe the conformation of the three cysteine side chains and to establish whether the free S-H groups form intrahelical hydrogen bonds in the pentameric complex. Vibrational spectra of a transmembrane peptide were obtained which corresponded to the transmembrane domain of wild-type phospholamban and three peptides each containing a cysteine ⇒ alanine substitution. The observed S-H frequencies argue that each of the sulfhydryl groups is hydrogen-bonded to an i-4 backbone carbonyl oxygen. Electrostatic calculations on a model of phospholamban based on molecular dynamics and mutagenesis studies, show that the sulfhydryl groups may significantly contribute to the electrostatic potential field of the protein. Received: 22 July 1996/Revised: 10 October 1996  相似文献   

20.
A new method for quantitation of sulfhydryl groups of low and high molecular weight compounds is proposed. The method is based on the use of a biradical spin label carrying a disulfide bond, RS-SR, where R is the imidazoline radical. It was found that this biradical is involved in the reaction of thiol-disulfide exchange with thiols; the EPR spectra of the original biradical and monoradical products differ essentially. This circumstance made it possible to determine the bimolecular rate constant for the biradical interaction with cysteamine, cysteine, glutathione and human serum albumin. The method was used for measuring glutathione and cysteine levels in murine and rat blood and for assaying the insect acetylcholine esterase activity and reversible inhibition of NADPH-cytochrome P-450 reductase. The method is marked for a high sensitivity (10(-6)-10(-7) M) towards sulfhydryl groups and allows the determination of thiol groups in coloured and nontransparent solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号