首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Global climate change is affecting and will continue to affect ecosystems worldwide. Specifically, temperature and precipitation are both expected to shift globally, and their separate and interactive effects will likely affect ecosystems differentially depending on current temperature, precipitation regimes, and other biotic and environmental factors. It is not currently understood how the effects of increasing temperature on plant communities may depend on either precipitation or where communities lie on soil moisture gradients. Such knowledge would play a crucial role in increasing our predictive ability for future effects of climate change in different systems. To this end, we conducted a multi‐factor global change experiment at two locations, differing in temperature, moisture, aspect, and plant community composition, on the same slope in the northern Mongolian steppe. The natural differences in temperature and moisture between locations served as a point of comparison for the experimental manipulations of temperature and precipitation. We conducted two separate experiments, one examining the effect of climate manipulation via open‐top chambers (OTCs) across the two different slope locations, the other a factorial OTC by watering experiment at one of the two locations. By combining these experiments, we were able to assess how OTCs impact plant productivity and diversity across a natural and manipulated range of soil moisture. We found that warming effects were context dependent, with the greatest negative impacts of warming on diversity in the warmer, drier upper slope location and in the unwatered plots. Our study is an important step in understanding how global change will affect ecosystems across multiple scales and locations.  相似文献   

2.
Biotic validation of small open-top chambers in a tundra ecosystem   总被引:3,自引:0,他引:3  
Small open‐top chambers (OTC) are used widely in ecosystem warming experiments. The efficacy of the open‐top chamber as an analogue of climatic warming is examined. Twenty‐four small OTCs were used to passively warm canopy temperatures in wet meadow tundra at Barrow, Alaska, during two consecutive summers with contrasting surface air‐temperatures. Fortuitously, the seasonal average temperature regime within chambers in the colder year (1995) was similar to the controls of the warmer year (1996); this allowed a comparison of natural vs. chamber warming. All measured plant responses behaved similarly to both year and treatment 68% of the time. A comparison of the populations of the warmer summer's control with the cooler summer's OTC found no statistical difference in 80% of the response variables measured. A meta‐analysis also found no significant difference between the responses of the two populations. These results give empirical biotic validation for the use of the OTC as an analogue of regional climate warming.  相似文献   

3.
How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large‐scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two‐year whole‐stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community‐level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm‐adapted species (i.e., snails and predatory dipterans) relative to small‐bodied, cold‐adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community‐level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities.  相似文献   

4.
Kudo G  Suzuki S 《Oecologia》2003,135(2):280-287
Warming effects on shoot growth, production, reproductive activity, and vegetation structure of alpine shrubs were measured over 5 years in a mid-latitude alpine fellfield in northern Japan. Open-top chambers (OTC) increased the daily mean air-temperature by 1.5-2.3 degrees C throughout the growing season but the effect on soil temperature was small. Two evergreen species, Ledum palustre and Empetrum nigrum, tended to increase their annual shoot production and aboveground-mass accumulation in the OTCs, whereas flower production did not differ. Two deciduous species, Vaccinium uliginosum and Arctous alpinus, increased their flower production in the OTCs, whereas the vegetative growth and mass accumulation did not change. No significant differences in vegetative and flower production were detected in Vaccinium vitis-idaea between the OTCs and control plots. The shoot survival and growth in terms of height of most species increased in the OTCs relative to the control treatment, and the growth rate was significantly different among species. As a result, interspecific competition seemed to be accelerated in the OTCs, and the less competitive V. vitis-idaea was suppressed by other plant species. The response to the warming observed in this study was rather different from that seen in arctic and subarctic plants even within the same species, indicating that the warming effect may cause different responses between arctic and mid-latitude alpine ecosystems. We concluded that the artificial warming over 5 years accelerated the growth of a few restricted species and lead to the change in vegetation structure in the mid-latitude alpine ecosystem.  相似文献   

5.
From 2001 to 2004 we experimentally warmed 40 large, naturally established, white spruce [Picea glauca (Moench) Voss] seedlings at alpine treeline in southwest Yukon, Canada, using passive open‐top chambers (OTCs) distributed equally between opposing north and south‐facing slopes. Our goal was to test the hypothesis that an increase in temperature consistent with global climate warming would elicit a positive growth response. OTCs increased growing season air temperatures by 1.8°C and annual growing degree‐days by one‐third. In response, warmed seedlings grew significantly taller and had higher photosynthetic rates compared with control seedlings. On the south aspect, soil temperatures averaged 1.0°C warmer and the snow‐free period was nearly 1 month longer. These seedlings grew longer branches and wider annual rings than seedlings on the north aspect, but had reduced Photosystem‐II efficiency and experienced higher winter needle mortality. The presence of OTCs tended to reduce winter dieback over the course of the experiment. These results indicate that climate warming will enhance vertical growth rates of young conifers, with implications for future changes to the structure and elevation of treeline contingent upon exposure‐related differences. Our results suggest that the growth of seedlings on north‐facing slopes is limited by low soil temperature in the presence of permafrost, while growth on south‐facing slopes appears limited by winter desiccation and cold‐induced photoinhibition.  相似文献   

6.
Protists make up an important component of aquatic ecosystems, playing crucial roles in biogeochemical processes on local and global scales. To reveal the changes of diversity and community structure of protists along the salinity gradients, community compositions of active protistan assemblages were characterized along a transect from the lower Pearl River estuary to the open waters of the South China Sea (SCS), using high-throughput sequencing of the hyper-variable V9 regions of 18S rRNA. This study showed that the alpha diversity of protists, both in the freshwater and in the coastal SCS stations was higher than that in the estuary. The protist community structure also changed along the salinity gradient. The relative sequence abundance of Stramenopiles was highest at stations with lower salinity and decreased with the increasing of salinity. By contrast, the contributions of Alveolata, Hacrobia and Rhizaria to the protistan communities generally increased with the increasing of salinity. The composition of the active protistan community was strongly correlated with salinity, indicating that salinity was the dominant factor among measured environmental parameters affecting protistan community composition and structure.  相似文献   

7.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

8.
Rapid warming in northern ecosystems is simultaneously influencing plants, herbivores and the interactions among them. Recent studies suggest that herbivory could buffer plant responses to environmental change, but this has only been shown for vertebrate herbivores so far. The role of invertebrate herbivory in tundra ecosystems is often overlooked, but can be relevant in determining the structure and dynamics of tundra plant communities and may also affect how plants respond to warming. Invertebrate herbivores are also likely to respond more rapidly to warming than vertebrates because their behaviour and life cycles strongly depend on temperature. We investigated the effects of current season warming on Arctic moth caterpillars, their herbivory rates, and the subsequent responses of two common tundra plants, Salix arctica and Dryas octopetala. We manipulated both herbivore presence and temperature in a full‐factorial field experiment at two elevations, using enclosures and passive warming chambers. Changes in temperature achieved through elevation and/or experimental warming directly affected caterpillars, herbivory and the responses of plants. Caterpillars performed worse (higher respiration rates and lower growth rates) in warmer, lower elevation plots and shifted their diets towards more nutritious foods, such that the relative intensity of herbivory changed for the two studied plants. Within‐season responses of both forage plant species were weak, but invertebrate herbivores affected the responses of plants to elevation or experimental warming. Our results suggest that increased temperatures can reduce the performance of cold‐adapted invertebrate herbivores, with potential consequences to the longer term responses of tundra plants to warming due to changes in herbivory rates and selective foraging.  相似文献   

9.
Synthesis efforts that identify patterns of ecosystem response to a suite of warming manipulations can make important contributions to climate change science. However, cross‐study comparisons are impeded by the paucity of detailed analyses of how passive warming and other manipulations affect microclimate. Here we document the independent and combined effects of a common passive warming manipulation, open‐top chambers (OTCs), and a simulated widespread land use, clipping, on microclimate on the Tibetan Plateau. OTCs consistently elevated growing season averaged mean daily air temperature by 1.0–2.0°C, maximum daily air temperature by 2.1–7.3°C and the diurnal air temperature range by 1.9–6.5°C, with mixed effects on minimum daily air temperature, and mean daily soil temperature and moisture. These OTC effects on microclimate differ from reported effects of a common active warming method, infrared heating, which has more consistent effects on soil than on air temperature. There were significant interannual and intragrowing season differences in OTC effects on microclimate. For example, while OTCs had mixed effects on growing season averaged soil temperatures, OTCs consistently elevated soil temperature by approximately 1.0°C early in the growing season. Nonadditive interactions between OTCs and clipping were also present: OTCs in clipped plots generally elevated air and soil temperatures more than OTCs in nonclipped plots. Moreover, site factors dynamically interacted with microclimate and with the efficacy of the OTC manipulations. These findings highlight the need to understand differential microclimate effects between warming methods, within warming method across ecosystem sites, within warming method crossed with other treatments, and within sites over various timescales. Methods, sites and scales are potential explanatory variables and covariables in climate warming experiments. Consideration of this variability among and between experimental warming studies will lead to greater understanding and better prediction of ecosystem response to anthropogenic climate warming.  相似文献   

10.
 采用开顶式生长室(Open-top chamber, OTC)模拟增温对植被影响的研究方法, 研究了川西亚高山林线交错带糙皮桦(Betula utilis) 和岷江冷杉(Abies faxoniana)幼苗物候及生长特性对模拟增温的响应。结果表明, 温度升高使岷江冷杉幼苗芽开放时间显著提前(15.2 d); 糙 皮桦春季芽物候期变化不显著, 而落叶时间明显推迟(19.7 d), 叶寿命延长(22.8 d)。与对照(CK)相比, OTC内糙皮桦叶面积和岷江冷杉叶片长度及两者侧枝生长速率都显著加快。模拟增温对两物种基径相对生长速率都表现为正效应, 增温对两物种枝叶特性及分布格局表现为不同程度 的正效应、负效应或无影响。不同功能型两物种对模拟增温响应方式存在一定程度差异。  相似文献   

11.
 川西亚高山针叶林是青藏高原东部高寒林区的重要组成部分, 也是研究全球变化对森林生态系统影响的重要森林类型。开展亚高山针叶林不同树种对气候变暖响应差异的研究, 可为预测未来气候变暖背景下亚高山针叶林植被组成和森林动态提供科学依据。我们以川西亚高山针叶林两种主要树种——红桦(Betula albo-sinensis)和岷江冷杉(Abies faxoniana)为研究材料, 采用开顶式增温法(Open-top chamber, OTC)模拟气候变暖, 研究了增温对全光条件和林下低光环境中(约为全光的10%)生长的红桦和岷江冷杉幼苗生长和生理的影响。在人工林环境下, OTC使增温框内平均气温和地表温度分别升高了0.51和0.33 ℃; 而在林外空地处, OTC使二者分别升高了0.69和0.41 ℃。研究结果显示, 增温总体上促进了两种幼苗的生长和生理过程, 并促使幼苗将更多的生物量投入到其同化部位——叶, 使幼苗的根冠比(R/S)显著降低。增温通过增加叶片的光合色素含量和表观量子效率等光合参数, 促进了幼苗的光合过程和生长。然而, 增温对两种幼苗生长和生理的影响效果与植物种类及其所处的光环境有关。增温仅在林外全光条件下显著影响红桦幼苗的生长和生理过程。岷江冷杉幼苗对增温的响应与红桦相反, 即增温仅在林下低光环境下对岷江冷杉幼苗的生长和生理过程有明显促进作用。这种响应差异可能赋予这两种植物在未来气候变暖背景下面对外界环境变化时具有不同的适应能力和竞争优势, 从而对亚高山针叶林生态系统物种组成和森林动态产生潜在影响。  相似文献   

12.
Recently, there have been several studies using open top chambers (OTCs) or cloches to examine the response of Arctic plant communities to artificially elevated temperatures. Few, however, have investigated multitrophic systems, or the effects of both temperature and vertebrate grazing treatments on invertebrates. This study investigated trophic interactions between an herbivorous insect (Sitobion calvulum, Aphididae), a woody perennial host plant (Salix polaris) and a selective vertebrate grazer (barnacle geese, Branta leucopsis). In a factorial experiment, the responses of the insect and its host to elevated temperatures using open top chambers (OTCs) and to three levels of goose grazing pressure were assessed over two summer growing seasons (2004 and 2005). OTCs significantly enhanced the leaf phenology of Salix in both years and there was a significant OTC by goose presence interaction in 2004. Salix leaf number was unaffected by treatments in both years, but OTCs increased leaf size and mass in 2005. Salix reproduction and the phenology of flowers were unaffected by both treatments. Aphid densities were increased by OTCs but unaffected by goose presence in both years. While goose presence had little effect on aphid density or host plant phenology in this system, the OTC effects provide interesting insights into the possibility of phenological synchrony disruption. The advanced phenology of Salix effectively lengthens the growing season for the plant, but despite a close association with leaf maturity, the population dynamics of the aphid appeared to lack a similar phenological response, except for the increased population observed.  相似文献   

13.
Open-top chambers (OTCs) are widely used experimental warming devices in open-field ecosystems such as tundra and alpine heath. However, knowledge of their performance in temperate deciduous forest ecosystems is largely lacking. The application of OTCs in forests might become important in the future since the effects of climate warming on growth, reproduction, and future distribution of understorey forest herbs have rarely been investigated. Therefore, polycarbonate OTCs covered with (OTCs+GF) and without permeable polypropylene GardenFleece (OTCs−GF) were installed in a temperate deciduous forest to create an experimental warming gradient. Short-term responses in phenology, growth, and reproduction of a model understorey forest herb (Anemone nemorosa L.) to OTC installation were determined. In a second growing season, an in-depth study of multiple abiotic conditions inside OTCs−GF was performed. Both OTCs+GF and OTCs−GF raised air and soil temperature in a realistic manner (ca. +0.4°C to +1.15°C), but OTCs−GF only in the leafless period (up to +1.5°C monthly average soil temperature). The early flowering forest herb A. nemorosa also showed a clear phenotypic response to OTC installation. Based on these facts and the large ecological drawbacks associated with OTCs+GF (mostly in connection with a higher relative air humidity and a lower light quantity) and very modest abiotic changes in OTCs−GF, we encourage the use of OTCs−GF in deciduous forest ecosystems for evaluating climate-warming effects on early flowering understorey forest herbs. There is also a potential to use this warming method on later flowering species, but this needs further research.  相似文献   

14.
张相锋  彭阿辉  宋凤仙  陈冬勤 《广西植物》2018,38(12):1675-1684
开顶式生长室(OTCs)增温实验是研究全球气候变化与陆地生态系统关系的主要方法之一,已广泛应用于青藏高原地区。该文通过对近些年国内外研究文献的回顾,分别从植物物候、群落结构、生物量和土壤方面综合分析青藏高原草地生态系统对OTCs模拟增温实验的响应。研究发现:增温使群落返青期提前、枯黄期延迟,生长季延长;有利于禾本科植物的生长;高寒草甸地下生物量分配格局向深层转移;高寒草地生态系统对模拟增温的响应存在不确定性,受到地域、群落类型和实验时间的影响;在增温条件下,降雨和冻土融化引起的土壤水分变化通过调控生态系统的物候、生产力、土壤等途径控制着生态系统对气候变暖的响应。并在此基础上,提出了将来应着重研究的几个方面。  相似文献   

15.
以腾格里沙漠东南缘固沙植被区和相邻天然植被区发育的藻类和藓类结皮为研究对象,采用不同规格的OTCs研究了冬季低温及短期模拟升温对其固氮活性的影响。结果表明:不同规格的OTCs装置冬季全天气温升温幅度在1℃左右,不同深度土层升温幅度更加明显,约为3.2℃;冬季试验期,湿润条件下藻类和藓类结皮均具有固氮活性,平均固氮活性分别为1.2×104和0.4×104nmolC2H4·m-2·h-1,藻类结皮的固氮活性显著高于藓类结皮(P<0.01);试验期藻类和藓类结皮的固氮活性均与培养期气温显著正相关(P<0.001),与试验前3d降水量也呈显著正相关(P<0.001)。低温湿润冷冻环境下,结皮生物体胞内冰晶形成而导致的固氮酶体系受损可能是造成冬季结皮固氮活性降低的主要原因,冬季升温能促进结皮固氮活性的提高。本研究表明,在未来全球变暖和降水格局变化背景下,冬季升温能促进生物土壤结皮对区域生态系统的氮贡献。  相似文献   

16.
Glacier forelands are excellent sites in which to study microbial succession because conditions change rapidly in the emerging soil. Development of the bacterial community was studied along two transects on lateral moraines of Ecology Glacier, King George Island, by culture-dependent and culture-independent approaches (denaturating gradient gel electrophoresis). Environmental conditions such as cryoturbation and soil composition affected both abundance and phylogenetic diversity of bacterial communities. Microbiocenosis structure along transect 1 (severe cryoturbation) differed markedly from that along transect 2 (minor cryoturbation). Soil physical and chemical factors changed along the chronosequence (time since exposure) and influenced the taxonomic diversity of cultivated bacteria, particularly along transect 2. Arthrobacter spp. played a pioneer role and were present in all soil samples, but were most abundant along transect 1. Cultivated bacteria isolated from transect 2 were taxonomically more diverse than those cultivated from transect 1; those from transect 1 tended to express a broader range of enzyme and assimilation activities. Our data suggest that cryoturbation is a major factor in controlling bacterial community development in postglacial soils, shed light on microbial succession in glacier forelands, and add a new parameter to models that describe succession phenomena.  相似文献   

17.
Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year‐round. In addition, their effects on temperature extremes and freeze‐thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (?0.9 to 2.1 °C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R2 = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC‐induced changes in the frequency of freeze‐thaw events included an increase in autumn and decreases in spring and summer. Frequency of high‐temperature events in OTCs increased in spring, summer and autumn compared with non‐manipulated control plots. Frequency of low‐temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress) in combination with microclimate measurements at organism level.  相似文献   

18.
Human‐induced warming may increase the risk of local extinction for plant species with low tolerance of elevated temperatures. The Chihuahuan desert harbors the highest diversity of globose cacti in the world and most of them are at risk of extinction. Predictive models of climate change indicate an increase in summer temperature of 1–2°C by 2030 for this desert. Nevertheless, studies on the vulnerability of cacti species in early development phases to future climate change are scarce. We assessed the survival of three threatened cacti species from the Chihuahuan desert under induced warming. Open‐top chambers (OTCs) were used to simulate the effect of global warming on 2‐year seedlings of Echinocactus platyacanthus f. visnaga, Ferocactus histrix and Stenocactus coptonogonus. OTCs had higher temperature and lower humidity than control plots, and these elevated temperatures reduced seedling survival. Within the OTCs, no living individuals of any species were found after 105 days. Conversely, in the control plots, the three cacti species showed variable numbers of survivors after this period. Therefore the predicted global warming scenarios will greatly limit plant recruitment and the long‐term persistence of natural populations of Mexican endemic cacti species.  相似文献   

19.
Tundra vegetation is responding rapidly to on-going climate warming. The changes in plant abundance and chemistry might have cascading effects on tundra food webs, but an integrated understanding of how the responses vary between habitats and across environmental gradients is lacking. We assessed responses in plant abundance and plant chemistry to warmer climate, both at species and community levels, in two different habitats. We used a long-term and multisite warming (OTC) experiment in the Scandinavian forest?Ctundra ecotone to investigate (i) changes in plant community composition and (ii) responses in foliar nitrogen, phosphorus, and carbon-based secondary compound concentrations in two dominant evergreen dwarf-shrubs (Empetrum hermaphroditum and Vaccinium vitis-idaea) and two deciduous shrubs (Vaccinium myrtillus and Betula nana). We found that initial plant community composition, and the functional traits of these plants, will determine the responsiveness of the community composition, and thus community traits, to experimental warming. Although changes in plant chemistry within species were minor, alterations in plant community composition drive changes in community-level nutrient concentrations. In view of projected climate change, our results suggest that plant abundance will increase in the future, but nutrient concentrations in the tundra field layer vegetation will decrease. These effects are large enough to have knock-on consequences for major ecosystem processes like herbivory and nutrient cycling. The reduced food quality could lead to weaker trophic cascades and weaker top down control of plant community biomass and composition in the future. However, the opposite effects in forest indicate that these changes might be obscured by advancing treeline forests.  相似文献   

20.
Kari Klanderud  Ørjan Totland 《Oikos》2007,116(8):1279-1288
Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs).
Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala . These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号