首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate how excess excitation energy is dissipated in a ribulose-1,5-bisphospate carboxylase/oxygenase activase antisense transgenic rice with net photosynthetic rate (P N) half of that of wild type parent, we measured the response curve of P N to intercellular CO2 concentration (C i), electron transport rate (ETR), quantum yield of open photosystem 2 (PS2) reaction centres under irradiation (Fv′/Fm′), efficiency of total PS2 centres (ΦPS2), photochemical (qP) and non-photochemical quenching (NPQ), post-irradiation transient increase in chlorophyll (Chl) fluorescence (PITICF), and P700+ re-reduction. Carboxylation efficiency dependence on C i, ETR at saturation irradiance, and Fv′/Fm′, ΦPS2, and qP under the irradiation were significantly lower in the mutant. However, NPQ, energy-dependent quenching (qE), PITICF, and P700+ re-reduction were significantly higher in the mutant. Hence the mutant down-regulates linear ETR and stimulates cyclic electron flow around PS1, which may generate the ΔpH to support NPQ and qE for dissipation of excess excitation energy.  相似文献   

2.
Response of net photosynthetic rate (P N), stomatal conductance (g s), intercellular CO2 concentration (c i), and photosynthetic efficiency (Fv/Fm) of photosystem 2 (PS2) was assessed in Eucalyptus cladocalyx grown for long duration at 800 (C800) or 380 (C380) μmol mol-1 CO2 concentration under sufficient water supply or under water stress. The well-watered plants at C800 showed a 2.2 fold enhancement of P N without any change in g s. Under both C800 and C380, water stress decreased P N and g s significantly without any substantial reduction of c i, suggesting that both stomatal and non-stomatal factors regulated P N. However, the photosynthetic efficiency of PS2 was not altered. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The effect of high irradiance (HI, photosynthetically active photon flux density of 1 300 μmol m−2 s−1) on net photosynthetic rate (P N), chlorophyll fluorescence parameters, and xanthophyll cycle components were studied in fruit tree bayberry leaves. HI induced the photoinhibition and inactivation of photosystem 2 (PS2) reaction centres (RCs), which was characterized by decreased P N, maximum yield of fluorescence after dark adaptation (Fm), photochemical efficiency of PS2 (Fv/Fm) and quantum yield of PS2 (ΦPS2), and increased reduction state of QA (1-qP) and non-photochemical quenching (NPQ). Initial fluorescence (F0) showed a decrease after the first 2 h, and subsequently increased from the third hour exposure to HI. Furthermore, a greater increase in the ratio (Fi-F0)/(Fp-F0) which is an expression of the proportion of the QB non-reducing PS2 centres, whereas a remarked decrease in the slope of Fi to Fp which represents the rate of QA reduction was observed in leaves after HI exposure. Additionally, HI caused an increase in the pool size of the xanthophyll cycle pigments and sustained elevated contents of zeaxanthin (Z), antheraxanthin (A), and de-epoxidation state (DES) at the end of the irradiation period. During HI, decreased Fm, Fv/Fm, ΦPS2, NPQ, slope of Fi to Fp, V+A+Z, and DES, and increased F0, 1-qP, ratio (Fi-F0)/(Fp-F0), and V were observed in dithiothreitol (DTT)-fed leaves compared to control ones under the same conditions. Hence photoinhibition caused by HI in bayberry was probably attributed to inactivation of PS2 RCs, and photoprotection from photodamage were mainly related to the xanthophyll cycle-dependent heat dissipation in excess photons.  相似文献   

4.
Plant growth, chlorophyll (Chl) content, photosynthetic gas exchange, ribulose-1,5-bisphosphate carboxylase (RuBPCO) enzyme activity, and Chl fluorescence in radish (Raphanus sativus var. longipinnatus) plants were examined after turnip mosaic virus (TuMV) infection. Plant fresh mass, dry mass, Chl content, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and RuBPCO activity were significantly lower in infected plants after 5 weeks of virus infection as compared to healthy plants. The 5-week virus infection did not induce significant differences in intercellular CO2 concentration (C i, photochemical efficiency of photosystem 2, PS2 (Fv/Fm), excitation capture efficiency of open PS2 reaction centres (Fv'/Fm'), effective quantum efficiency of photosystem 2 (ΔF/Fm'), and photochemical quenching (qP), but non-photochemical quenching (qN) and alternative electron sink (AES) were significantly enhanced. Thus the decreased plant biomass of TuMV-infected plants might be associated with the decreased photosynthetic activity mainly due to reduced RuBPCO activity.  相似文献   

5.
X. Guan  S. Gu 《Photosynthetica》2009,47(3):437-444
In order to investigate the photoprotective function of photorespiration in grapevine under water stress, potted grapevines (Vitis vinifera L. cv. Cabernet Sauvignon) were randomly divided into three uniform groups for well-watered [watered every morning to keep the relative water content (RWC) of soil over 70 %], water-stress adapted (drought-adapted at 30 % relative soil water content for 30 days), and water stress without adaptation treatment (water-stressed to 30 % relative soil water content for 3 days). Net assimilation rate (A N), stomatal conductance (g s), substomatal CO2 concentration (C i), transpiration rate (E), actual photochemical efficiency of PSII (ΦPSII), and maximum photochemical efficiency of PSII (Fv/Fm) were recorded by combining measurements of gas exchange and chlorophyll fluorescence. Gross photorespiration (Pr), photosynthetic electron partitioning (JC/JT), photochemical quenching coefficient (qP), and non-photochemical quenching (NPQ) were also calculated. The ratio of net assimilation rate to transpiration rate (A N/E) was used as an indicator of water use efficiency (WUE). A N, apparent Pr, ΦPSII, Fv/Fm, qp, and g s decreased, NPQ increased, and gross Pr sustained at a high level under water stress. This suggests that both photorespiration and energy dissipation play important roles in protecting photosynthetic apparatus against photoinhibition. C i in water-stressed plants without adaptation treatment increased, which indicates the leaves suffered a non-stomatal limitation, while the water-stress adaped plants only suffered a stomatal limitation indicated by low C i.  相似文献   

6.
Zhang  Shouren  Gao  Rongfu 《Photosynthetica》2000,37(4):559-571
Diurnal changes in net photosynthetic rate (P N), chlorophyll (Chl) fluorescence, and stomatal aperture of several hybrid poplar clones subjected to midday light stress were measured in July and August of 1996. Midday depression of P N, photosystem 2 (PS2) efficiency, stomatal conductance (g s), and stomatal aperture was observed in all clones, though at differing rates among them. Non-uniform stomatal closure occurred at noon and at other times, requiring a modification of intercellular CO2 concentration (C 1). A linear relationship was found between g s and stomatal aperture. More than half of the photons absorbed by PS2 centre dissipated thermally when subjected to light stress at noon. There was a linear relationship between the rate of PS2 photochemical electron transport (PxPFD) and P N. There was a consensus for two fluorescence indicators (1 – qP/qN and (Fm' – F)/Fm') in assessment of susceptibility of photoinhibition in the clones. According to P N, Chl fluorescence, and stomatal aperture, we conclude that midday depression of photosynthesis can be attributed to both stomatal and non-stomatal limitations.  相似文献   

7.
We studied changes in the chlorophyll (Chl) fluorescence components in chilling-stressed sweet potato (Ipomoea batatas L. Lam) cv. Tainung 57 (TN57, chilling-tolerant) and cv. Tainung 66 (TN66, chilling-susceptible). Plants under 12-h photoperiod and 400 μmol m−2 s−1 irradiance at 24/20 °C (day/night) were treated by a 5-d chilling period at 7/7 °C. Compared to TN66, TN57 exhibited a significantly greater basic Chl fluorescence (F0), maximum fluorescence (Fm), maximum fluorescence yield during actinic irradiation (Fm′ ), and the quantum efficiency of electron transport through photosystem 2, PS2 (ΦPS2). Chilling stress resulted in decrease in the potential efficiency of PS2 (Fv/Fm), ΦPS2, non-photochemical fluorescence quenching (NPQ), non-photochemical quenching (qN), and the occurrence of chilling injury in TN66. Chilling increased the likelihood of photoinhibition, characterized by a decline in the Chl fluorescence of both cultivars, and photoinhibition during low temperature stress generally occurred more rapidly in TN66.  相似文献   

8.
Leaf scald, caused by Monographella albescens, is one of the major diseases in rice worldwide. This study investigated the effect of silicon (Si) on the photosynthetic gas exchange parameters [net CO2 assimilation rate (A), stomatal conductance to water vapour (gs), transpiration rate (E)] and internal CO2 concentration (Ci), chlorophyll (Chl) fluorescence a parameters [minimal fluorescence (F0), maximum fluorescence (Fm), maximum quantum yield of photosystem II (Fv/Fm)], photochemical quenching coefficient (qp), effective quantum yield of PSII [Y(II)], quantum yield of regulated energy dissipation [Y(NPQ)] and quantum yield dissipation non‐regulated [Y(NO)] and the concentrations of pigments in rice plants grown in nutrient solutions containing either 0 (?Si) or 2 mM Si (+Si) and non‐inoculated or inoculated with M. albescens. Leaf scald severity decreased with higher foliar Si concentration. For the inoculated +Si plants, A, gs and E were significantly higher in comparison with the inoculated ?Si plants, in which Ci was significantly increased. Similarly, the concentrations of Chla, Chlb, total Chla+b and carotenoids were higher for the +Si plants in comparison with the ?Si plants. Changes in the images of Chl a fluorescence were first observed precisely on the ?Si plants leaves in comparison with the +Si plants. A decrease of qP and Y(II) in inoculated ?Si plants, in comparison with the inoculated +Si plants, was accompanied by an increase in Y(NPQ) and Y(NO). Notably, the extent of the leaf areas was much more evident for Y(II) and qP in comparison with F0, Fm and Fv/Fm, suggesting that Y(II) and qP were good predictors in detecting the early effects of leaf scald on the leaf photosynthesis. For the +Si non‐inoculated plants, changes in Y(II) were associated with alterations in both Y(NPQ) and Y(NO) compared with non‐inoculated ?Si plants. In conclusion, the photosynthetic performance (as demonstrated by the gas exchange and Chl a fluorescence parameters) and the pigment pools of rice plants infected with M. albescens were preserved by Si supply and, therefore, provided an increase in rice resistance against leaf scald.  相似文献   

9.
X. K. Yuan 《Photosynthetica》2016,54(3):475-477
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (?PSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ?PSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend.  相似文献   

10.
This contribution is a practical guide to the measurement of the different chlorophyll (Chl) fluorescence parameters and gives examples of their development under high-irradiance stress. From the Chl fluorescence induction kinetics upon irradiation of dark-adapted leaves, measured with the PAM fluorometer, various Chl fluorescence parameters, ratios, and quenching coefficients can be determined, which provide information on the functionality of the photosystem 2 (PS2) and the photosynthetic apparatus. These are the parameters Fv, Fm, F0, Fm′, Fv′, NF, and ΔF, the Chl fluorescence ratios Fv/Fm, Fv/F0, ΔF/Fm′, as well as the photochemical (qP) and non-photochemical quenching coefficients (qN, qCN, and NPQ). qN consists of three components (qN = qE + qT + qI), the contribution of which can be determined via Chl fluorescence relaxation kinetics measured in the dark period after the induction kinetics. The above Chl fluorescence parameters and ratios, many of which are measured in the dark-adapted state of leaves, primarily provide information on the functionality of PS2. In fully developed green and dark-green leaves these Chl fluorescence parameters, measured at the upper adaxial leaf side, only reflect the Chl fluorescence of a small portion of the leaf chloroplasts of the green palisade parenchyma cells at the upper outer leaf half. Thus, PAM fluorometer measurements have to be performed at both leaf sides to obtain information on all chloroplasts of the whole leaf. Combined high irradiance (HI) and heat stress, applied at the upper leaf side, strongly reduced the quantum yield of the photochemical energy conversion at the upper leaf half to nearly zero, whereas the Chl fluorescence signals measured at the lower leaf side were not or only little affected. During this HL-stress treatment, qN, qCN, and NPQ increased in both leaf sides, but to a much higher extent at the lower compared to the upper leaf side. qN was the best indicator for non-photochemical quenching even during a stronger HL-stress, whereas qCN and NPQ decreased with progressive stress even though non-photochemical quenching still continued. It is strongly recommended to determine, in addition to the classical fluorescence parameters, via the PAM fluorometer also the Chl fluorescence decrease ratio RFd (Fd/Fs), which, when measured at saturation irradiance is directly correlated to the net CO2 assimilation rate (P N) of leaves. This RFd-ratio can be determined from the Chl fluorescence induction kinetics measured with the PAM fluorometer using continuous saturating light (cSL) during 4–5 min. As the RFd-values are fast measurable indicators correlating with the photosynthetic activity of whole leaves, they should always be determined via the PAM fluorometer parallel to the other Chl fluorescence coefficients and ratios.  相似文献   

11.
The current concentrations of O3 have been shown to cause significant negative effects on crop yield. The present levels of ozone may not induce visible symptoms in most of plants, but can result in substantial losses in reproductive output. This paper considers the impact of ambient O3 on gas exchange, photosynthetic pigments, chlorophyll (Chl) fluorescence and carbohydrate levels in the flag leaf of wheat plants during various stages of reproductive development using open-top chambers. Mean O3 concentration was 45.7 ppb during wheat growth and 50.2 ppb after flag leaf development. Reproductive stage showed higher exceedence of O3 above 40 ppb compared to the vegetative stage. Diurnal variations in net photosynthetic rate (P N) and stomatal conductance (g s), intercellular CO2 concentration (C i), Fv/Fm ratio, photosynthetic pigments, soluble sugars, and starch were measured at 10, 30, and 50 days after flag leaf expansion (DAFE). The results showed reductions in P N, g s, Fv/Fm ratio, photosynthetic pigments and starch, and increases in C i, F0, and soluble sugars in nonfiltered chambers (NFCs) compared to filtered chambers (FCs). Maximum changes in measured parameters were observed at 50 DAFE (i.e. grain filling and setting phase). Diurnal variation in P N showed double peaked curve in both FCs and NFCs, but delayed peak and early depression in NFCs. Stomatal conductance was significantly lower in NFCs. The study suggests that higher prevalence of ambient O3 during reproductive development led to significant alteration in physiological vitality of wheat having potential negative influence on yield.  相似文献   

12.
The possibility to improve the recovery of sugar beet plants after water stress by application of synthetic cytokinins N6-benzyladenine (BA) or N6-(m-hydroxybenzyl)adenosine (HBA) was tested. Relative water content (RWC), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), chlorophyll (Chl) a and Chl b contents, and photosystem 2 efficiency characterized by variable to maximal fluorescence ratio (Fv/Fm) were measured in control plants, in water-stressed plants, and after rehydration (4, 8, 24, and 48 h). Water stress markedly decreased parameters of gas exchange, but they started to recover soon after irrigation. Application of BA or HBA to the substrate or sprayed on leaves only slightly stimulated recovery of PN, E, and gs in rehydrated plants, especially during the first phases of recovery. Chl contents decreased only under severe water stress and Fv/Fm ratio was not significantly affected by water stress applied. Positive effects of BA or HBA application on Chl content and Fv/Fm ratio were mostly not observed.  相似文献   

13.
The interactive effects of light intensity and controlled-release nitrogen fertilizer (CRNF) supply on growth, gas exchange, and chlorophyll (Chl) fluorescence parameters of two species of potted Hosta seedlings, original species of the genus Hosta in China, were studied. N4 (4 g of CRNF per pot), N8 (8 g of CRNF per pot), and sometimes N12 (12 g of CRNF per pot), significantly increased total dry weights, net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), the maximum quantum yield of PSII photochemistry (F v/F m), the maximum ratio of quantum yields of photochemical and concurrent nonphotochemical processes in PSII (F v/F 0), actual efficiency of photochemical energy conversion in PSII under light (ΦPSII), and photochemical quenching coefficient (qP), but significantly decreased internal CO2 concentration (C i) and nonphotochemical Chl fluorescence quenching (NPQ) compared to control plants at different growth stages of the two Hosta species in two levels of light intensities (50% of natural light (L50) and 70% of natural light (L70)). Based on the available data, we concluded that the increments in total dry weights of Hosta clausa var. ensata and Hosta ventricosa by appropriate amount of CRNF supply treatments under L50 and/or L70 light conditions are directly related to the increments in the P N, which may be due to both stomatal and nonstomatal improvements for a longer growing time. Furthermore, there was an interaction between light intensity and CRNF supply treatments on growth and photosynthetic characteristics of the two Hosta species. The adaptability of Hosta plants with obvious stoloniferous rootstock to stronger light was higher than that of Hosta plants without obvious stoloniferous rootstock.  相似文献   

14.
Plant growth, contents of photosynthetic pigments, photosynthetic gas exchange, and chlorophyll (Chl) fluorescence in soybean [Glycine max (L.) Merr. cv. Heinong37] were investigated after it was inoculated with Sinorhizobium fredii USDA191 or treated with 5 mM (NH4)2SO4 (N5) and 30 mM (NH4)2SO4 (N30), respectively. In the plants following N5 fertilization, not only plant biomass, leaf area, and Chl content, but also net photosynthetic rate (P N), stomatal conductance (g s), carboxylation efficiency (CE), maximum photochemical efficiency (Fv/Fm) of photosystem 2 (PS2), and quantum yield of PS2 (ΦPS2) were markedly improved as compared with the control plants. There were also positive effects on plant growth and plant photosynthesis after rhizobia inoculation, but the effects were much less than those of N5 fertilization. For N30 plants there were no significant positive effects on plant growth and photosynthetic capacity. Plant biomass, P N, and g s were similar to those of N-limited (control) plants. ΦPS2 and photochemical quenching (qP) were obviously declined while content of carotenoids and non-photochemical quenching (qN) were significantly enhanced in N30 treated plants. This indicated that excess N supply may cause some negative effects on soybean plants.  相似文献   

15.
At the grain-filling stage, net photosynthetic rate (P N), stomatal conductance (g s), and ribulose-1,5-bisphosphate carboxylation efficiency (CE) were correlated in order to find the determinant of photosynthetic capacity in rice leaves. For a flag leaf, P N in leaf middle region was higher than in its upper region, and leaf basal region had the lowest P N value. The differences in g s and CE were similar. P N, g s, and CE gradually declined from upper to basal leaves, showing a leaf position gradient. The correlation coefficient between P N and CE was much higher than that between P N and g s in both cases, and P N was negatively correlated with intercellular CO2 concentration (C i). Hence the carboxylation activity or activated amount of ribulose-1,5-bisphosphate carboxylase/oxygenase rather than gs was the determinant of the photosynthetic capacity in rice leaves. In addition, in flag leaves of different tillers P N was positively correlated with g s, but negatively correlated with C i. Thus g s is not the determinant of the photosynthetic capacity in rice leaves.The study was supported by the State Key Basic Research and Development Plan (No.G1998010100).  相似文献   

16.
Niu  S.L.  Jiang  G.M.  Li  Y.G.  Gao  L.M.  Liu  M.Z.  Peng  Y.  Ding  L. 《Photosynthetica》2003,41(1):111-116
In Huanshandak Sandland, China, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), intercellular CO2 concentration (C i), water use efficiency (WUE), photochemical efficiency of photosystem 2 (Fv/Fm), and leaf nitrogen content were compared for Hedysarum fruticosum var. mongolicum (H.f.m.), a nitrogen fixing shrub, and Salix gordejevii (S.g.), a nitrogen non-fixing shrub. P N, E, and g s of the two shrubs were similar in trends, i.e. two peaks were observed in diurnal courses. However, except C i, other parameters of H.f.m. were higher during the measured days than those of S.g. The midday depression of P N was mainly due to decrease in stomata conductance and to reduction of Fv/Fm at midday. The higher P N of H.f.m. was consistent with the higher leaf N content and there was a positive relation between them. In addition, several C4 traits were found in H.f.m., i.e. high saturation irradiance and WUE, low dark respiration rate, and C i, which partly resulted in higher P N. This seems to indicate that the C3 plant H.f.m. may have C4 photosynthesis pathway or C4 enzymes.  相似文献   

17.
Diurnal variation of gas exchange, chlorophyll (Chl) fluorescence, and xanthophyll cycle components of three maize (Zea mays L.) hybrids released in different years, i.e. Baimaya (1950s), Zhongdan2 (1970s), and Nongda108 (1990s), were compared. On cloudless days, the newer hybrids always had higher net photosynthetic rate (P N), especially at noon, than the older ones. At noon, all the hybrids decreased their maximal yield of photosystem 2 (PS2) photochemistry (Fv/Fm) and actual quantum yield of PS2 (ΦPS2), the newer ones always showing higher values. Generally, the newer hybrids displayed higher photochemical quenching of Chl (qP) and lower non-photochemical quenching (NPQ). The interhybrid differences in P N may be owing to their differential photochemical efficiency. A midday depression in P N occurred in all hybrids, which might be caused by serious photoinhibition or by decreased stomatal conductance. However, midday depression in P N was more obvious in the older hybrids, especially when leaves were senescent. The higher de-epoxidation state of the xanthophylls was noted in older hybrids, which was confirmed by their larger NPQ. The newer maize hybrids did not need a strong de-epoxidation state since they had a better photosynthetic quantum conversion rate and a lower NPQ.  相似文献   

18.
Independent short-term effects of photosynthetic photon flux density (PPFD) of 50–400 μmol m−2 s−1, external CO2 concentration (C a) of 85–850 cm3 m−3, and vapor pressure deficit (VPD) of 0.9–2.2 kPa on net photosynthetic rate (P N), stomatal conductance (g s), leaf internal CO2 concentration (C i), and transpiration rates (E) were investigated in three cacao genotypes. In all these genotypes, increasing PPFD from 50 to 400 μmol m−2 s−1 increased P N by about 50 %, but further increases in PPFD up to 1 500 μmol m−2 s−1 had no effect on P N. Increasing C a significantly increased P N and C i while g s and E decreased more strongly than in most trees that have been studied. In all genotypes, increasing VPD reduced P N, but the slight decrease in g s and the slight increase in C i with increasing VPD were non-significant. Increasing VPD significantly increased E and this may have caused the reduction in P N. The unusually small response of g s to VPD could limit the ability of cacao to grow where VPD is high. There were no significant differences in gas exchange characteristics (g s, C i, E) among the three cacao genotypes under any measurement conditions.  相似文献   

19.
Photosynthetic rate (PN) and chlorophyll (Chl) fluorescence induction of source leaves in response to a low sink demand created by girdling the branch (GB) between the root-tuber-system and the leaves were studied in Dahlia pinnata L. cv. Rigolet during the stage of rapid tuber growth in the greenhouse. GB resulted in significantly lower values of PN, stomatal conductance (gs), and transpiration rate (E), but in higher leaf temperature (Tl) compared with those of controls. With exception of maximum quantum yield of photosystem 2 (PS 2) photochemistry (Fv/Fm) and maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS 2 (Fv/F0), no significant differences were observed in Chl fluorescence parameters between girdled and control leaves on days 1 and 2 after GB, indicating no apparent damage in the photosynthetic apparatus. However, longer girdling duration resulted in higher non-photochemical Chl fluorescence quenching (NPQ), but lower Fv/F0, actual efficiency of energy conversion in PS 2 under steady-state conditions (ΦPS2), and photochemical quenching coefficient (qP) in comparison with controls from 10:00 to 16:00 or 15:00 on days 4 and 5, respectively, indicating reversible injury in the photosynthetic apparatus.  相似文献   

20.
The effect of sodium chloride and triadimefon (TDM) on the chlorophyll (Chl) content, net photosynthetic rates (PN), rate of transpiration (E), and intercellular CO2 concentration (Ci) in Raphanus sativus was studied. The effect of NaCl salinity was partially ameliorated by TDM which caused increase in Chl content, PN, and Ci. TDM also increased root dry matter production, decreased E, and increased the water use efficiency. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号