首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Parakeets were tested for the ability to detect sinusoidal amplitude modulation of broad band noise. Instrumental avoidance conditioning and a psychophysical modified method of limits procedure were used to measure the threshold for detecting amplitude modulation at 10 modulation frequencies between 2 and 2,048 Hz. Below about 40 Hz, modulation threshold is independent of modulation rate and noise level. Above 40 Hz, modulation threshold decreases with modulation frequency at the rate of 3 dB/ octave. These results are somewhat different from amplitude modulation functions in humans suggesting different degrees of temporal resolving power in birds and humans. Thresholds for changes in modulation rate are 1–2 orders of magnitude higher than pure tone frequency difference limens.We thank Frank Cusimano, Ann Huessener, Susan Peters, Roberta Pickert, Bill Searcy, Ken Yasukawa and Tim DeVoogd for participating as subjects, and Dick Fay for providing critical comments. This research was supported by grant No. PHS MH31165 from the National Institute of Mental Health to the first author.  相似文献   

2.
The ligand-gated ion channel superfamily plays a critical role in neuronal excitability. The functions of glycine receptor (GlyR) and nicotinic acetylcholine receptor are modulated by G protein betagamma subunits. The molecular determinants for this functional modulation, however, are still unknown. Studying mutant receptors, we identified two basic amino acid motifs within the large intracellular loop of the GlyR alpha(1) subunit that are critical for binding and functional modulation by Gbetagamma. Mutations within these sequences demonstrated that all of the residues detected are important for Gbetagamma modulation, although both motifs are necessary for full binding. Molecular modeling predicts that these sites are alpha-helixes near transmembrane domains 3 and 4, near to the lipid bilayer and highly electropositive. Our results demonstrate for the first time the sites for G protein betagamma subunit modulation on GlyRs and provide a new framework regarding the ligand-gated ion channel superfamily regulation by intracellular signaling.  相似文献   

3.
With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation of the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirms that both amplitude and frequency of the myogenic oscillation are modulated by TGF. We developed a double-wavelet transform technique to estimate modulation frequency. Median value of the ratio of modulation frequency to TGF frequency in measurements from 10 rats was 0.95 for amplitude modulation and 0.97 for frequency modulation, a result consistent with TGF as the modulating signal. The simulation predicted that the modulation was regular, while the experimental data showed much greater variability from one TGF cycle to the next. We used a blood pressure signal recorded by telemetry from a conscious rat as the input to the model. Blood pressure fluctuations induced variability in the modulation records similar to those found in the nephron blood flow results. Frequency and amplitude modulation can provide robust communication between TGF and the myogenic mechanism.  相似文献   

4.
A relationship was established between the amplitude modulation and the structure of call spectrum in animals by the example of alarm call in three marmots (Marmota sibirica, M. menzbieri, and M. caudata). In the case of amplitude modulation, side frequencies are produced higher and lower than the carrier frequencies. In the absence of amplitude modulation, no side frequencies are produced.  相似文献   

5.
This review attempts to move beyond the traditional borders of antiangiogenesis and toward the dynamic, evolving strategies of vascular modulation. This repositioning entails a two-fold paradigm shift: conceptually, to a view of antiangiogenesis as only one part of a larger story, and therapeutically, to approaches which attempt to modulate tumor blood flow instead of simply inhibiting it. Three vascular modulation strategies-provascular, antivascular, and redistributive-are presented with representative compounds. These vascular modulation strategies are described in specific measurable characteristics (blood vessel maturity and type, effect on blood flow, microenvironmental target, molecular target, angiogenic biomarker, and imaging biomarkers) that will help define the tumor types that are more susceptible to a particular vascular modulation strategy thereby guiding therapeutic agent selection and enabling a personalized medicine approach.  相似文献   

6.
Electron spin echo envelope modulation studies are performed on human hemoglobin cyanide, hemoglobin nitroxide and hemoglobin nitroxide + inositol hexaphosphate at neutral pH. The modulation data are Fourier transformed and are analyzed in the frequency domain. The frequency components observed from hemoglobin cyanide indicate modulation from the coordinated nitrogen N-1 of the proximal imidazole (His-F8). In the case of hemoglobin nitroxide, the binding of inositol hexaphosphate causes the nitrogen N-3 of the proximal imidazole to be protonated in some of the subunits. From a comparison with other studies on these derivatives of hemoglobin, these subunits are identified as the alpha-subunits.  相似文献   

7.
This paper concerns the processing of the outputs of the two opponent-color mechanisms in the human visual system. We present experimental evidence that opponent-color signals interact after joint modulation even though they are essentially independent under neutral steady adaptation and after exclusive modulation of each mechanism. In addition, prolonged modulation linearizes the response function of each mechanism. The changes in interaction serve to orthogonalize opponent signals with respect to the adapting modulation, and the changes in response functions serve to equalize the relative frequencies of different levels of response to the adapting modulation. Adaptive orthogonalization reduces sensitivity to the adapting color direction, improves sensitivity to the orthogonal direction, and predicts shifts in color appearance. Response equalization enhances effective contrast and explains the difference between the effects of adaptation to uniform versus temporally or spatially modulated stimuli.  相似文献   

8.
The dynamic properties of Renshaw cells located in the lumbar spinal cord of intercollicular decerebrate cats were measured. The responses of these interneurones were recorded extracellularly, while the ventral root was stimulated with sinusoidally frequency-modulated trains of electrical pulses. The frequency of the Renshaw cell discharges resulting from such stimulation varied sinusoidally. The amplitude of modulation about the average (or carrier) rate of discharge exhibited a linear dependence on the modulation amplitude of the stimulus pulse train. Renshaw cells were able to follow modulated stimulus trains in the entire range of modulation frequencies (0.2 to 80 Hz) encompassed by the present study. Above modulation frequencies between 20 and 50 Hz, the amplitude of modulation of the responses declined. Frequency responses measured at low average frequencies of the stimulus pulse train (centre frequencies 30 and 40 Hz) showed comparatively little dependence on modulation frequency. The higher the centre frequency, however, the greater was the enhancement of the modulation amplitudes at high modulation frequencies compared with those observed at low modulation frequencies. Some aspects of the functional implications of these results are considered and an approximate formula for the transfer function of Renshaw cells is presented.  相似文献   

9.
Using modulation transfer functions (MTF), we investigated how sound patterns are processed within the auditory pathway of grasshoppers. Spike rates of auditory receptors and primary-like local neurons did not depend on modulation frequencies while other local and ascending neurons had lowpass, bandpass or bandstop properties. Local neurons exhibited broader dynamic ranges of their rate MTF that extended to higher modulation frequencies than those of most ascending neurons. We found no indication that a filter bank for modulation frequencies may exist in grasshoppers as has been proposed for the auditory system of mammals. The filter properties of half of the neurons changed to an allpass type with a 50% reduction of modulation depths. Contrasting to reports for mammals, the sensitivity to small modulation depths was not enhanced at higher processing stages. In ascending neurons, a focus on the range of low modulation frequencies was visible in the temporal MTFs, which describe the temporal locking of spikes to the signal envelope. To investigate the influence of stimulus rise time, we used rectangularly modulated stimuli instead of sinusoidally modulated ones. Unexpectedly, steep stimulus onsets had only small influence on the shape of MTF curves of 70% of neurons in our sample.  相似文献   

10.
In the lesser spear-nosed bat, Phyllostomus discolor, maternal directive calls are characterized by an individual type of sinusoidal frequency modulation (= SFM) pattern. Beside modulation frequency, modulation depth, carrier frequency, and number of modulation cycles per call contribute to the mother's vocal signature. Since juvenile P. discolor learn to adapt their isolation calls to the corresponding call characteristics of the own mother or even to playback of a computer-stored directive call, if hand-reared in the absence of conspecifics, the bats' auditory system ought to be able to resolve interindividual differences in communication call structure. However, quantitative psychoacoustic data on the discrimination of SFM signals in this species are not available. Thus, in the present study, lesser spear-nosed bats were trained in a two-alternative forced-choice procedure to discriminate between two alternatingly presented SFM sound signals differing in modulation frequency. Other characteristics of acoustic stimuli were identical and designed to mimick the fundamental of species-specific calls. By gradually reducing the difference in modulation frequency between both stimuli within the behavioural relevant range until the animals' performance dropped below the 75%-correct level, a considerable auditory spectro-temporal resolution has been revealed. Particularly in comparison to the overall interindividual variation of this call parameter (minimal modulation frequency = 49 Hz, maximum = 100 Hz), the determined average difference limen for modulation frequency of 2.42 ± 0.29 Hz seems substantial and sufficient for labelling individuals. Accepted: 30 November 1996  相似文献   

11.
In a mathematical model of the cellular antitumor immune response, we studied the possible role of antigenic modulation as a tumor escape mechanism. Modulated tumor cells arise from normal (fully antigenic) tumor cells when the latter interact with antibodies. Modulated tumor cells demodulate when antibody concentrations are sufficiently low. Through modulation, tumor cells become less sensitive to cytotoxic macrophages (cell lysis) and contribute less to the stimulation of the immune system. These experimental data are incorporated in a model which we have analyzed previously. The model incorporates interactions between macrophages and T lymphocytes, which lead to cellular antitumor immune reactions (i.e., to cytotoxic macrophages). Parameters were derived from the immune resistance of DBA/2 mice to the SL2 tumor. Although all parameters were chosen deliberately to favor the modulation process (i.e., modulation proceeds fast, demodulation slowly, and the killing rate is reduced 50-fold), modulation is found to be a poor tumor escape mechanism. Heterogeneous populations of modulated and normal tumor cells are easily rejected. Homogeneous populations of modulated cells do escape, however. We conclude that the impact of modulation as an escape mechanism remains small because modulated tumor cells do not appear until the immune system has been stimulated (immunized) by the fully antigenic tumor cells. Thus, the elimination of modulated tumor cells generally occurs merely as a side effect of the immune response which is directed primarily against the fully antigenic tumor cells. Parameter sensitivity analysis shows that this conclusion holds true only for cellular immunity. Conversely, the parameter analysis suggests that antigenic modulation plays a deleterious role in cytotoxic antibody responses (e.g., monoclonal antibody therapy).  相似文献   

12.
The characteristic deuterium modulation pattern was observed in the electron spin-echo envelopes for laccase, decupro laccase (from which Type 2 copper had been removed), stellacyanin, and azurin that had been exchanged against D2O. From the decay rate of the modulation pattern and from a quantitative analysis of the modulation depth, we conclude that the Cu(II) sites in these proteins are directly accessible to solvent. Similar results were obtained for laccase and decupro laccase.  相似文献   

13.
Recent studies employing speech stimuli to investigate ‘cocktail-party’ listening have focused on entrainment of cortical activity to modulations at syllabic (5 Hz) and phonemic (20 Hz) rates. The data suggest that cortical modulation filters (CMFs) are dependent on the sound-frequency channel in which modulations are conveyed, potentially underpinning a strategy for separating speech from background noise. Here, we characterize modulation filters in human listeners using a novel behavioral method. Within an ‘inverted’ adaptive forced-choice increment detection task, listening level was varied whilst contrast was held constant for ramped increments with effective modulation rates between 0.5 and 33 Hz. Our data suggest that modulation filters are tonotopically organized (i.e., vary along the primary, frequency-organized, dimension). This suggests that the human auditory system is optimized to track rapid (phonemic) modulations at high sound-frequencies and slow (prosodic/syllabic) modulations at low frequencies.  相似文献   

14.
The detection of a change in the modulation pattern of a (target) carrier frequency, fc (for example a change in the depth of amplitude or frequency modulation, AM or FM) can be adversely affected by the presence of other modulated sounds (maskers) at frequencies remote from fc, an effect called modulation discrimination interference (MDI). MDI cannot be explained in terms of interaction of the sounds in the peripheral auditory system. It may result partly from a tendency for sounds which are modulated in a similar way to be perceptually 'grouped', i.e. heard as a single sound. To test this idea, MDI for the detection of a change in AM depth was measured as a function of stimulus variables known to affect perceptual grouping, namely overall duration and onset and offset asynchrony between the masking and target sounds. In parallel experiments, subjects were presented with a series of pairs of sounds, the target alone and the target with maskers, and were asked to rate how clearly the modulation of the target could be heard in the complex mixture. The results suggest that two factors contribute to MDI. One factor is difficulty in hearing a pitch corresponding to the target frequency. This factor appears to be strongly affected by perceptual grouping. Its effects can be reduced or abolished by asynchronous gating of the target and masker. The second factor is a specific difficulty in hearing the modulation of the target, or in distinguishing that modulation from the modulation of other sounds that are present. This factor has effects even under conditions promoting perceptual segregation of the target and masker.  相似文献   

15.
The apparent receptive field characteristics of sensory neurons depend on the statistics of the stimulus ensemble—a nonlinear phenomenon often called contextual modulation. Since visual cortical receptive fields determined from simple stimuli typically do not predict responses to complex stimuli, understanding contextual modulation is crucial to understanding responses to natural scenes. To analyze contextual modulation, we examined how apparent receptive fields differ for two stimulus ensembles that are matched in first- and second-order statistics, but differ in their feature content: one ensemble is enriched in elongated contours. To identify systematic trends across the neural population, we used a multidimensional scaling method, the Procrustes transformation. We found that contextual modulation of receptive field components increases with their spatial extent. More surprisingly, we also found that odd-symmetric components change systematically, but even-symmetric components do not. This symmetry dependence suggests that contextual modulation is driven by oriented On/Off dyads, i.e., modulation of the strength of intracortically-generated signals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
高侃  慕春龙  朱伟云 《微生物学报》2019,59(9):1737-1746
肠道微生物群能够调节宿主肠道稳态,同时参与调节宿主神经系统功能和行为。肠道菌群失调可能导致宿主神经系统功能障碍,从而引发神经退行性疾病。因此,研究微生物在肠?脑轴中发挥的作用及其机制,靶向调控肠道微生物菌群结构和功能,将为神经系统疾病的诊断与治疗提供新的手段。近年来,有关肠道微生物与机体神经系统间的互作研究受到了广泛关注,然而其具体的调控机制还未明晰。因此,本文综述了肠道微生物对宿主神经健康的调节作用,以及肠道微生物与宿主间的互作在调节神经功能、行为的潜力等研究进展,为更好地了解肠道微生物在调控宿主神经系统功能和行为的作用机制提供参考。  相似文献   

17.
18.
Huang X  Albright TD  Stoner GR 《Neuron》2007,53(5):761-770
Visual motion perception relies on two opposing operations: integration and segmentation. Integration overcomes motion ambiguity in the visual image by spatial pooling of motion signals, whereas segmentation identifies differences between adjacent moving objects. For visual motion area MT, previous investigations have reported that stimuli in the receptive field surround, which do not elicit a response when presented alone, can nevertheless modulate responses to stimuli in the receptive field center. The directional tuning of this "surround modulation" has been found to be mainly antagonistic and hence consistent with segmentation. Here, we report that surround modulation in area MT can be either antagonistic or integrative depending upon the visual stimulus. Both types of modulation were delayed relative to response onset. Our results suggest that the dominance of antagonistic modulation in previous MT studies was due to stimulus choice and that segmentation and integration are achieved, in part, via adaptive surround modulation.  相似文献   

19.
Gain modulation, in which the sensitivity of a neural response to one input is modified by a second input, is studied at single-neuron and network levels. At the single neuron level, gain modulation can arise if the two inputs are subject to a direct multiplicative interaction. Alternatively, these inputs can be summed in a linear manner by the neuron and gain modulation can arise, instead, from a nonlinear input–output relationship. We derive a mathematical constraint that can distinguish these two mechanisms even though they can look very similar, provided sufficient data of the appropriate type are available. Previously, it has been shown in coordinate transformation studies that artificial neurons with sigmoid transfer functions can acquire a nonlinear additive form of gain modulation through learning-driven adjustment of synaptic weights. We use the constraint derived for single-neuron studies to compare responses in this network with those of another network model based on a biologically inspired transfer function that can support approximately multiplicative interactions.  相似文献   

20.
高云  洪炎国 《生命科学》2009,(4):531-535
神经肽Y(neuropeptide Y,NPY)是一种由36个氨基酸残基组成的肽类激素,属胰多肽家族,广泛分布于中枢及外周神经组织的神经元中。NPY主要参与摄食行为、心血管活动、垂体分泌等生理功能的调节。NPY还参与了痛觉调制。NPY受体有Y1、Y2、Y3、Y4、Y5和Y6六种亚型。目前对Y1受体和Y2受体的研究较多,显示Y1受体和Y2受体参与痛觉调制。但现在对NPY在痛觉中的具体作用机制还不清楚。该文对NPY及其Y1受体、Y2受体在痛觉调制中的作用作一概述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号