首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G A Hedge 《Prostaglandins》1976,11(2):293-301
Various prostaglandins (PGs) were tested for their effects on ACTH secretion upon injection into the anterior pituitary, basomedial hypothalamus, basolateral hypothalamus, or a tail vein in anesthetized female rats. In some experiments, the PGs were injected in combination with a CRF preparation. The greatest effect seen was the stimulation of ACTH (and presumably CRF) secretion exerted at the basomedial hypothalamus. At the anterior pituitary, the PGs alone were without effect, but they did decrease the magnitude of the response to subsequent CRF.  相似文献   

2.
G A Hedge 《Prostaglandins》1977,14(1):145-150
The prostaglandin (PG) synthesis inhibitor, indomethacin, has been found to enhance adrenocorticotropin (ACTH) secretion upon injection directly into the anterior pituitary at a dose that is ineffective intravenously. Such stimulation was observed in combination with, and in the absence of, stimulation by a corticotropin-releasing factor (CRF) preparation. It was reversed to varying degrees by replacing certain PGs exogenously. It suggested that endogenous PGs in the anterior pituitary participate in the modulation of the sensitivity of this gland to the hypothalamic neurohormone, CRF.  相似文献   

3.
The prostaglandin (PG) synthesis inhibitor, indomethacin, has been found to enhance adrenocorticotropin (ACTH) secretion upon injection directly into the anterior pituitary at a dose that is ineffective intravenously. Such stimulation was observed in combination with, and in the absence of, stimulation by a corticotropin-releasing factor (CRF) preparation. It was reversed to varying degrees by replacing certain PGs exogenously. It is suggested that endogenous PGs in the anterior pituitary participate in the modulation of the sensitivity of this gland to the hypothalamic neurohormone, CRF.  相似文献   

4.
The hypothalamic regulation of ACTH secretion has been reviewed. Recent biochemical investigations on corticotropin-releasing factor (CRF) suggest that CRF is present in the hypothalamus under two or more different molecular weight forms, their structure being not elucidated yet. Vasopressin has a CRF-like activity. However, contradictory results have been reported on the role of AVP as a physiological CRF. The synthesis of CRF appears to occur in a large hypothalamic area outside the median eminence. CRF-carrying fibers are thought to pass through the lateral retrochiasmatic area and project on the hypophysial portal vessels at the junction between the pituitary stalk and the median eminence. Conflicting data have been published on the influence of monoamines on ACTH secretion. In the dog, ACTH release is inhibited by the alpha-adrenergic receptors, this effect being not as clearly demonstrated in other species. The stimulation of nicotinic and muscarinic receptors followed by increased ACTH secretion. Glucocorticoids appear to lower ACTH secretion through an action at both the hypothalamic and pituitary levels.  相似文献   

5.
The role of protein kinase C (PKC) in the multihormonally regulated ACTH secretory responses of rat anterior pituitary cells was examined in control cells or after pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC. Using affinity-purified polyclonal antiserum raised against purified rat brain PKC, immunoprecipitable PKC was demonstrated in [35S]methionine-labeled cells appearing as a doublet of 78/80 kilodaltons. Long-term treatment (24 h) of cells with 0.6 microM TPA caused the specific loss of immunologically reactive PKC. Consistently, TPA pretreatment decreased the amount of phosphatidylserine-dependent protein kinase activity measured in vitro by 90%. In control cells, vasopressin (AVP) stimulated ACTH secretion and potentiated ACTH secretion stimulated by CRF. After a 24-h treatment with 0.6 microM TPA, secretory responses to AVP and the potentiating effect of AVP on CRF action were completely abolished. In contrast, CRF action on ACTH secretion, thought to be mediated by cAMP, was unaffected. Similarly, forskolin- and 8 bromo-cAMP-induced ACTH secretion remained unchanged after TPA pretreatment. These results indicate a crucial role for PKC in mediating the effects of AVP on ACTH secretion and on the potentiating action of AVP on CRF-induced secretion from corticotropic cells of the anterior pituitary.  相似文献   

6.
Effects of lithium on the hypothalamo-pituitary-adrenal axis   总被引:1,自引:0,他引:1  
The effect of lithium on the hypothalamo-pituitary-adrenal axis was studied in vivo and in vitro. The levels of plasma vasopressin, ACTH and corticosterone increased after the administration of lithium (LiCl 4 mmol/kg BW, 11 days) in rats, while the tissue vasopressin concentration in the median eminence, the rest of the hypothalamus and the posterior pituitary was decreased. The CRF concentration in the posterior pituitary increased markedly, but it did not change significantly in the median eminence or the rest of the hypothalamus. The elevated plasma ACTH level might be at least partly due to the increased vasopression secretion. Lithium stimulated ACTH secretion per se and also enhanced vasopressin-induced ACTH secretion in cultured pituitary cells and in half pituitary incubations, while it did not affect CRF-induced ACTH secretion. Lithium inhibited CRF-induced cAMP accumulation in half pituitary incubations, while lithium and vasopressin did not affect cAMP accumulation per se or even when administered together. The results suggest that lithium-induced ACTH release is via a cAMP-independent mechanism. Thus, it is possible that lithium stimulates ACTH release by acting directly on the corticotroph, stimulating vasopressin release and potentiating vasopressin-induced ACTH release.  相似文献   

7.
The aim of this review was to summarize the present state of knowledge concerning the mode of action of vasopressin (VP) and the putative corticotropin releasing factor (CRF) on ACTH secretion from the anterior and intermediate lobes of the pituitary gland. In vitro data show that although both CRF and VP enhanced release of anterior pituitary ACTH, the pattern of hormonal release, based on kinetical and dose-dependent studies, appeared to be different. Also, the effect of VP most probably was mediated by specific putative receptor sites. In contrast, VP was found not to alter ACTH secretion from the intermediate lobe; that secretion seems to be regulated by CRF-like material and neurotransmitters. The importance of VP as a corticotropin agent is discussed.  相似文献   

8.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

9.
The corticotropin-releasing factor (CRF) analog CRF 9-41 inhibits CRF, but not forskolin or dibutyryl cyclic AMP, stimulated release of ACTH from isolated pituitary cells. CRF 9-41 also blocks CRF-stimulated accumulation of cyclic AMP in a parallel dose dependent fashion. CRF 9-41 has no effect on basal ACTH release or cAMP levels. This substantiates that the analog acts as a direct CRF antagonist and that the site of this inhibition is most likely at the level of binding of CRF to its receptor on the corticotrope. Various substances, including most prominently glucocorticoids, inhibit release of ACTH from the pituitary. In an effort to develop another class of inhibitors, Rivier et al recently synthesized analogs of corticotropin releasing factor (CRF). One among these, alpha-helical ovine CRF 9-41 blunts adrenalectomy and stress induced ACTH release in non-anesthetized rats. At micromolar concentrations, CRF 9-41, shifts rightward the dose response of isolated pituitary cells to ovine CRF. Thus, the authors suggested that CRF 9-41 acts as a competitive antagonist to CRF-induced ACTH secretion. CRF appears to act through stimulation of adenylate cyclase. To determine the potential site of action of CRF 9-41 in the activation sequence for adenylate cyclase, we studied its effects on pituitary cyclic AMP formation and ACTH secretion from dispersed anterior pituitary cells derived from normal adult rats, as well as, its interaction with cyclic nucleotide agonists.  相似文献   

10.
This study was undertaken to define the roles of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in the regulation of adrenocorticotropin (ACTH) release and biosynthesis in cultured ovine anterior pituitary cells and to define the intracellular mechanisms responsible for their action. At 4 h, CRF and AVP increased both ACTH release and total ACTH content, with AVP clearly the more potent agonist (maximal ACTH release: AVP, 22.8-fold; CRF, 7.6-fold; maximal increment in total ACTH content: AVP, 1.9-fold; CRF, 1.1-fold; EC50 for ACTH release: AVP, 2.3 +/- 0.5 nM; CRF, 9.2 +/- 5.0 nM). The increase in total ACTH content was interpreted to reflect an augmentation of ACTH biosynthesis since it was abolished by 10 microM cycloheximide. Exposure of the anterior pituitary cells to increasing concentrations of forskolin or 8-bromo-cAMP elicited increases in ACTH release and total ACTH content that were similar to those caused by CRF. A 30-min incubation with phorbol 12-myristate 13-acetate (PMA) caused a dose-related translocation of protein kinase C from the cytosol to the cell membrane; after 4 h, the increases in ACTH release and total ACTH content in response to increasing concentrations of PMA were similar to those caused by AVP. Chronic (24 h) exposure to 150 nM PMA caused an almost total depletion of both cytosolic and membrane-bound protein kinase C activities. When protein kinase C-depleted cells were subsequently exposed to AVP, the increases in ACTH release and total ACTH content were markedly attenuated, but the responses to CRF were preserved. Finally, the combination of CRF and AVP, CRF and PMA, or AVP and 8-bromo-cAMP increased ACTH release and total ACTH content in a synergistic manner. We conclude that: 1) in ovine anterior pituitary cells, AVP is the predominant regulator of ACTH secretion and biosynthesis; 2) the action of AVP is predominantly mediated by activation of protein kinase C, whereas the action of CRF is likely to be mediated by activation of the cAMP-dependent protein kinase (protein kinase A); and 3) the ability of CRF and AVP to increase total ACTH content and secretion in a synergistic manner provides a demonstration in normal pituitary cells that protein kinases C and A may interact in a unidirectional manner to regulate ACTH biosynthesis in addition to ACTH release. This interaction may take place within, or between, individual corticotropes.  相似文献   

11.
Desensitization of corticotropin-releasing factor receptors   总被引:4,自引:0,他引:4  
Pretreatment of rat anterior pituitary cells with corticotropin releasing factor (CRF) rapidly and markedly reduced the ability of CRF to restimulate cyclic AMP formation and adrenocorticotropic hormone (ACTH) release. The effect was dependent on the length of time of pretreatment as well as the concentration of CRF. Neither basal nor intracellular immunoreactive ACTH levels nor basal cyclic AMP content were affected. CRF's stimulatory action on cyclic AMP formation and ACTH release recovered within one hour following CRF pretreatment. Forskolin, a compound that directly activates adenylate cyclase also releases ACTH from these cells. Pretreatment with CRF did not alter forskolin-stimulated cyclic AMP accumulation or ACTH secretion. Furthermore, CRF pretreatment did not change epinephrine's ability to increase the release of ACTH. These results indicate that CRF can regulate the responsiveness of its own receptor.  相似文献   

12.
The cellular actions of vasopressin (AVP) in the anterior pituitary were investigated. HPLC analysis of [3H]inositol-labeled cells indicated that AVP stimulated a rapid increase in inositol-1,4,5 trisphosphate (IP3), inositol-1,4 bisphosphate, and inositol-4 monophosphate levels. While CRF had no effect on basal IP3 levels, it blocked their stimulation by AVP. CRF-stimulated ACTH secretion and cAMP accumulation were potentiated by AVP. AFter dexamethasone (DEX) treatment (20 nM, 18 h), CRF-dependent ACTH secretion and cAMP accumulation were attenuated but AVP was still able to potentiate both of these actions of CRF suggesting that cellular actions of AVP may be resistant to DEX effects. Therefore, [3H]AVP binding was determined in control and DEX-treated cells. Pretreatment with DEX had no effect on either AVP receptor affinity or on the number of available binding sites. Consistently, stimulation of IP3 production by AVP in DEX-treated cells was comparable to that of control cells. Protein kinase C activators such as 12-O-tetradecanoyl-phorbol-13-acetate and dioctanoylglycerol were either near additive with CRF or also potentiated the action of CRF on ACTH secretion, respectively, even after DEX pretreatment. These results indicate that, in the anterior pituitary, distinct intracellular signaling pathways mediate the actions of CRF and AVP; cAMP mediates CRF actions and IP3/protein kinase C mediate the effects of AVP. Neuromodulation of ACTH secretion by dual effector mechanisms which exhibit a complex mode of interaction and only one of which is negatively influenced by glucocorticoids, provides these cells a mechanisms by which appropriate responses can be elicited under various physiological states.  相似文献   

13.
In vivo administration of a partially purified thymic hormone-containing extract of the thymus gland, TF5, causes an increase in serum glucocorticoids. The lack of a direct effect of TF5 on adrenal corticosterone secretion suggests that it is mediated at the level of the pituitary. Cultured rat pituitary monolayers were used to determine if the effect is mediated by stimulation of ACTH secretion from the pituitary. Two lots of TF5, BPP100 and C114080-01, caused a dose dependent secretion of ACTH from cultured pituitary monolayers. There was a synergistic effect when the cells were treated with both TF5 and corticotropin-releasing factor (CRF). Immunoneutralization studies were done in which the cells were treated with TF5 or CRF and an antibody to CRF. The antibody completely blocked CRF induced ACTH release, but had no effect on TF5 stimulated ACTH release, suggesting that the activity is not due to a CRF-like peptide in TF5. A number of peptides isolated from TF5, and certain other peptides produced by the immune system were evaluated for their ability to stimulate ACTH secretion. These included thymosin (TSN) alpha 1, alpha 11, and beta 4, prothymosin alpha (PT alpha, thymopoeitin 5 (TP5), factuer thymique serique (FTS), interferon alpha (INF alpha), INF gamma, interleukin 1 (IL-1), and interleukin 2 (IL-2). None of these factors had any effect on pituitary ACTH secretion. These results demonstrate that some peptide component of TF5 causes an increase in serum corticosteroids by stimulating pituitary ACTH release.  相似文献   

14.
The present study tested the hypothesis that action of sex steroids on the hypothalamus-pituitary-adrenal (HPA) axis is measurable in the hypothalamus. Late-gestation fetal sheep were treated (5 mg/21 days) with either estradiol, androstenedione, or tamoxifen and compared to age-matched control fetuses. Tamoxifen significantly increased hypothalamic corticotropin releasing factor (CRF) and arginine vasopressin (AVP) concentrations, and androstenedione significantly decreased hypothalamic CRF concentration. Adult sheep were treated with estrone (10 mg/21 days), and responded with significant increases in hypothalamic AVP concentration, but not in immunoreactive ACTH concentration or processing within the pituitary. The results demonstrate that the effect of estrogen on the HPA axis is measurable in the hypothalamus, and is therefore not primarily at the anterior pituitary.  相似文献   

15.
Specific receptors for corticotropin-releasing factor (CRF) were identified in the rat anterior pituitary gland by binding studies with 125I-Tyr-CRF. Binding of the labeled CRF analog to pituitary particles was rapid and temperature-dependent, and reached steady state within 45 min at 22 degrees C. The CRF binding sites were saturable and of high affinity, with dissociation constant (Kd) of 0.76 X 10(-9) M. Pituitary binding of 125I-Tyr-CRF was inhibited by CRF, Tyr-CRF and the active 15-41 fragment of CRF, but not by the inactive 21-41 CRF fragment and unrelated peptides. The binding-inhibition potencies of the CRF peptides were similar to their activities as stimuli of adrenocorticotropic hormone (ACTH) release. The high-affinity CRF sites were markedly reduced in adrenalectomized rats, and this change was reversed by dexamethasone treatment. These data indicate that the high-affinity CRF sites demonstrated in the anterior pituitary are the functional receptors which mediate the stimulatory action of the peptide on ACTH release, and that CRF receptors are down-regulated during increased secretion of the hypothalamic hormone.  相似文献   

16.
The effects of chronic central administration of corticotropin-releasing factor (CRF) on food intake, body weight, and hypothalamic-pituitary-adrenocortical hormones were investigated in rats. The infusion of ovine CRF at doses of 0.3 and 1.0 microgram/h continuously induced decrease in food intake and a suppression of body-weight gain for 7 days. The inhibition of body weight gain induced by CRF could not be accounted for solely by a decreased food intake since the suppression of body-weight gain in CRF-infused rats was significantly greater than that observed in rats which received the same amount of food as the CRF-infused rats. The content of proopiomelanocortin (POMC) -derived peptides in the anterior lobe of the pituitary as well as the plasma levels of ACTH and corticosterone (B) were significantly elevated in CRF-treated rats, and the CRF content in the hypothalamus was significantly decreased. These results suggest that chronic intracerebroventricular (icv) administration of CRF stimulates the synthesis and secretion of POMC-related peptides in the pituitary and suppresses food intake accompanied by inhibition of body weight gain. The results are similar to clinical and laboratory findings observed in patients with stress-induced anorexia.  相似文献   

17.
There is increasing evidence that neuropeptide Y (NPY) affects the release of pituitary hormones, including adrenocorticotropic hormone (ACTH). The present study was designed to clarify the mechanism by which NPY activates the hypothalamic-pituitary-adrenal (HPA) axis in the dog. Mongrel dogs were equipped with a chronic cannula allowing intra-third (i.t.v.) or intra-lateral (i.l.v.) cerebroventricular administration. A 1.19 nmol, i.t.v. dose of NPY produced as great an ACTH and cortisol response as did equimolar ovine corticotropin releasing factor (CRF). This action of NPY was dose-dependent and shared by peptide YY (PYY) and pancreatic polypeptide (PP), other members of the PP family peptide. Intravenously (i.v.) administered NPY (1.19-11.9 nmol) was much less potent than i.v. CRF in stimulating ACTH and cortisol secretion. However, i.v. NPY significantly increased plasma ACTH and cortisol concentrations, raising the possibility that NPY may modulate the activity of corticotrophs. We have next investigated the possible relationship between NPY and CRF on the HPA axis. Pretreatment with a novel CRF antagonist, alpha-helical CRF9-41 (130.9 nmol i.t.v. or 261.8 nmol i.v.), partly but significantly attenuated the ACTH and cortisol responses to i.t.v. NPY (1.19 nmol). Furthermore, adding a subthreshold dose of i.t.v. NPY (0.119 nmol) to i.t.v. CRF (1.19 nmol) or i.v. NPY (2.38 nmol) to i.v. CRF (0.595 nmol) resulted in the potentiation of CRF-induced ACTH secretion. These results indicate that NPY may activate the HPA axis in concert with CRF probably at hypothalamic and/or pituitary levels. The present findings that NPY evokes ACTH secretion and potentiates the effectiveness of CRF as a secretagogue, together with high concentrations of NPY in the hypothalamus and pituitary portal blood, suggest that NPY is involved in the multihormonal control of ACTH release.  相似文献   

18.
The effects of intravenous or intraventricular injection of synthetic ovine corticotrophin-releasing factor (oCRF) on plasma levels of anterior pituitary hormones were studied in conscious, ovariectomized (OVX) female rats and compared with the actions of the peptide on dispersed anterior pituitary cells from OVX female rats incubated in the presence of CRF. Third ventricular injection of oCRF in freely moving rats caused a significant increase in plasma levels of ACTH in a dose-related manner with a minimal effective dose of less than 0.5 micrograms (0.1 nmol). The effect was observable at 5 min after injection and persisted for the 60 min duration of the experiment. In contrast, growth hormone levels were significantly depressed within 15 min with a minimal effective intraventricular dose of 0.5 micrograms. The suppression persisted for the duration of the experiment but there was no additional effect of the higher dose of 5 micrograms. Plasma LH levels were also lowered by the highest dose of 5 micrograms (1.0 nmol) of oCRF, with the first significant lowering at 30 min. Lower doses had no effect on plasma LH. Plasma TSH levels were not significantly altered. Control injections of the 0.9% NaCl diluent were without effect on the levels of any of the hormones. Intravenous injection of similar doses of oCRF had no effect on plasma levels of GH or LH. The ACTH-releasing action of the oCRF preparation was confirmed by in vitro incubation of the peptide with dispersed anterior pituitary cells for 2 h. A dose-related release of ACTH occurred in doses ranging from 0.1-10 nM, but there were no effects on the release of the other anterior pituitary hormones. The results suggest that oCRF may act within the hypothalamus to suppress the release of GH and to a lesser extent LH. The stimulation of ACTH release following intraventricular CRF is presumably related to its uptake by portal blood vessels with delivery to the pituitary and stimulation of the corticotrophs.  相似文献   

19.
Role of cyclic AMP in corticotropin releasing factor mediated ACTH release   总被引:1,自引:0,他引:1  
D O Sobel 《Peptides》1985,6(4):591-595
To elucidate the role of cAMP in the secretion of ACTH, the effect of (1) three phosphodiesterase inhibitors, (2) forskolin, and (3) 8Bromo-cAMP, on CRF mediated ACTH release was studied in rat pituitary cell culture. The action of glucocorticoids on CRF induced cAMP accumulation and ACTH release was investigated. Isobutyl-methylxanthine (IBMX), caffeine, and forskolin augmented the release of ACTH induced from CRF 1.0 nM by 17%, 39%, and 20%, respectively. Also IBMX and caffeine potentiated CRF 10 nM stimulated ACTH release by 32% and 20%. Doses of forskolin and 8Bromo-cAMP, which alone stimulate large amounts of ACTH release, did not increase the amount of ACTH released from CRF 100 nM stimulated cells. Cortisol (500 nM) and corticosterone (500 nM) inhibited CRF induced intracellular cAMP by 39% and 26% while inhibiting pituitary ACTH release by 40% and 52%. In conclusion, cAMP plays an important role in the mechanism of ACTH secretion and it appears the final intracellular mechanism of CRF stimulated ACTH is via cAMP. Also, glucocorticoids exert their inhibitory influence prior to cAMP generation.  相似文献   

20.
Corticotropin-releasing factor (CRF) and both human pancreatic growth hormone-releasing factor (hp-GRF) and rat hypothalamic GRF (rh-GRF) stimulated ACTH release from neoplastic AtT-20 mouse pituitary tumor cells in a dose-dependent fashion, with CRF inducing a 10-fold increase and GRF a maximal increment of approximately one-half that of CRF. Neither rh-GRF nor hp-GRF induced ACTH release in normal anterior pituitary cells. Pretreatment with either dexamethasone or somatostatin prior to the addition of rh-GRF inhibited the increase in ACTH release. Both ovine CRF and rh-GRF stimulated adenosine 3,5-monophosphate production in AtT-20 cells. The weak but clearly discernible effect of GRF on ACTH release from AtT-20 cells may be due to an abnormality in the AtT-20 cell receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号