首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of the mean orientational order parameter in the vicinity of the liquid crystal to gel phase transition is obtained from the first moment M1 of deuterium nuclear magnetic resonance spectra for bilayers of chain perdeuterated phosphatidylcholines with acyl chains of 12, 14, 16, and 18 carbons. The data clearly show an increasing temperature dependence of the orientational order parameter in the vicinity of the transition, with the effect becoming more pronounced with decreasing chain length. Assuming a linear relationship between the mean orientational order parameter and the extension of the acyl chain, estimates of the change in area of the membrane at the transition are shown to be consistent with those obtained from other measurements. It is shown that the transition may be modeled in terms of a Landau expansion of the free energy involving a small number of phenomenological parameters. From this it is shown that the behavior of these systems in the temperature range of interest is, in large part, controlled by the close proximity of a spinodal to the transition temperature.  相似文献   

2.
Isotope editing of amide infrared bands not only localises secondary structural elements within the protein but also yields conformational information that is not available from the linear dichroism of aligned samples without isotope editing. The additional information that can be derived on the orientational distribution of alpha-helices in membranes by the combined use of different amide bands and several positions of labelling is presented here. Also, the relationship between the azimuthal orientation of the transition moment and the protein structure is treated explicitly. A comprehensive analysis of the infrared dichroism for beta-sheets and beta-barrels is given here, for the first time. The orientation of the individual transition moments in a beta-sheet that is essential for this analysis is derived for the different amide bands.  相似文献   

3.
The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters ( and ) of the angular distribution of c relative to F, and and , the average second-rank order parameters of the angular distribution for wobble of the absorption and emission transition dipole moments relative to c. The method can also be applied to other cylindrically ordered systems such as oriented lipid bilayer membranes and to processes slower than fluorescence that may be observed using longer-lived optically excited states.  相似文献   

4.
It is demonstrated that angle resolved steady state fluorescence depolarization experiments on oriented lipid membrane systems can be an useful alternative to time-resolved fluorescence depolarization experiments on vesicles. It is shown that some basic assumptions underlying time-resolved experiments are not always valid. The usefulness of the measurement of an additional order parameter, less than P4 greater than is demonstrated.  相似文献   

5.
Electrical birefringence, electrical dichroism and polarisation of fluorescence in an electric field experiments have been performed at high fields on sonicated fragments of DNA labelled with Acridine Orange. The latter electrooptical effect gives access to the field dependence of the fourth moment of the orientation function while the two former give access to the field dependence of the second moment. The origin of the large departure from an E2 dependence at rather low degrees of orientation is extensively discussed. Following a suggestion of Shirai on the calculation of orientational averages for a saturated induced moment, we can show that this model rationalizes the existence of a linear E dependence of the orientation factor at intermediate fields and explains very well our experimental results. When applied to previous dichroic data at higher fields it shows that the low value of the dichroism at saturation introduced to fit with other models, in contradiction with the absence of base tilting in the B form of DNA, is not required for a quantitative fit with this new orientation mechanism. The transition from an E2 dependence at low fields to an E dependence at intermediate fields gives an estimate of the field required for the saturation of the ionic polarisation E approximately 6 kV/cm.  相似文献   

6.
7.
It is shown that fluorescence anisotropy from lipidlike probes in the hexagonal HII phase gives information of (a) orientational order parameters, (b) the wobbling diffusion constant, and (c) the hopping diffusion constant of the probe, DH, equals DL/R2, the lateral diffusion constant over the square of the radius of the hexagonal tubes. Here we consider only lipidlike probes having the absorption transition movement and/or the emission transition moment along the long axis of the molecule. Three models are introduced for analysis of time-resolved data: the "WOBHOP," the "reduced WOBHOP," and the "P2P4HOP" model. The fluorescence anisotropy in response to a very short excitation pulse in each of the three models is a constant plus a number of exponentials. The WOBHOP and reduced WOBHOP models have 3 and 2 exponentials, respectively, and both contain four fitting parameters: r0 (the fundamental anisotropy), (P2) (the second rank orientational order parameter), DW (the wobbling diffusion constant), and DH (the hopping diffusion constant). The P2P4HOP model has eight exponentials and five fitting parameters: the four parameters listed above and (P4) (the fourth rank orientational order parameter). Analysis of fluorescence anisotropy data in the hexagonal HII phase using one of these models allows for obtaining the hopping diffusion constant, and, if the lateral diffusion constant is known, the radius of the hexagonal tubes. Substitution of DH = 0 in each of the three models yields an expression for the fluorescence anisotropy that is used in the literature for lamellar (L alpha or L beta) phases. The fluorescence anisotropy in coexisting L alpha/HII phases is discussed.  相似文献   

8.
We discussed the time-dependence of fluorescent emission anisotropy of a cylindrical probe in membrane vesicles. We showed that, if the motion of the probe were described as diffusion in an anisotropic environment, it would be possible to determine not only the second-rank but also the fourth-rank orientational order parameter from the decay of the fluorescence anisotropy. The approximations involved were based on an interpolation of short-time and long-time behavior of the relevant correlation functions. A general expression was derived for the time dependence of the fluorescence anisotropy in closed form, which applies to any particular distribution model. It was shown to be in good agreement with previously reported results for the cone model and the Gaussian model. Finally, the applicability of the theory to time-resolved and differential phase fluorescence depolarization experiments was discussed.  相似文献   

9.
A fluorescence depolarization study of the orientational distribution of crossbridges in dye-labelled muscle fibres is presented. The characterization of this distribution is important since the rotation of crossbridges is a key element in the theory of muscle contraction. In this study we exploited the advantages of angle-resolved experiments to characterize the principal features of the orientational distribution of the crossbridges in the muscle fibre. The directions of the transition dipole moments in the frame of the dye and the orientation and motion of the dye relative to the crossbridge determined previously were explicitly incorporated into the analysis of the experimental data. This afforded the unequivocal determination of all the second and fourth rank order parameters. Moreover, this additional information provided discrimination between different models for the orientational behaviour of the crossbridges. Our results indicate that no change of orientation takes place upon a transition from rigor to relaxation. The experiments, however, do no rule out a conformational change of the myosin S 1 during the transition. Correspondence to: Y. K. Levine  相似文献   

10.
Dichroism of TMV in pulsed electric fields   总被引:2,自引:0,他引:2  
The linear dichroism induced in a solution of electrically anisotropic molecules by a pulsed electric field has been studied. Equations have been obtained which express the dichroism as a function of dipole moment, excess polarizability, field strength, and the angle α between the dipole moment and the transition moment for the absorption band. These expressions have been related to the experimentally observed difference signal in such a way that when the dichroism is measured as a function of field strength the permanent moment, excess polarizability and angle a can be determined. Experiments have been carried out on tobacco mosaic virus (TMV), which is similar in its properties to the theoretical model. The polarizability anisotropy and rotary diffusion constant for the monomer and dimer of TMV have been obtained from these experiments. In addition to the molecular parameters mentioned above, the saturated electric dichroism of the virus was measured as a function of wave length and the presence of an n–π* transition in the tryptophan spectrum was indicated. Further experiments measuring dichroism as a function of pH demonstrated the general denaturation of the virus at high pH (10–11) but also the existence of a stable fraction which is not fragmented even at the high pH involved.  相似文献   

11.
Fluorescence and phosphorescence depolarization techniques can provide information on orientational order and rotational motion of crossbridges in muscle fibres. However the depolarization experiment monitors the orientation and motion of the crossbridges indirectly. The changes in depolarization arise from a change in the orientation of the transition dipoles of the dye attached to the crossbridge. In order to extract the physiologically relevant orientations from the data it is therefore necessary to characterize the orientation of the dye molecule relative to the crossbridge and the orientation of the transition moments in the frame of the dyes. The dyes 1,5-1-AEDANS and eosin-5-maleimide are commonly used for labelling the crossbridge in muscle fibres. The orientations of the absorption and fluorescence emission dipoles of these two dyes in the molecular frame were determined. Angle resolved fluorescence depolarization experiments on the dyes, macroscopically aligned in a stretched polymer matrix of poly vinyl alcohol, were carried out. The data were analyzed in terms of an orientational distribution of the dye molecules in the film and the orientations of the absorption and emission dipoles in the frame of the dye molecule. Experimental data, obtained from a given sample at different excitation wavelengths, were analyzed simultaneously in a global target approach. This leads to a reduction in the number of independent parameters optimized by the non-linear least squares procedure.Abbreviations 1,5-I-AEDANS 5-iodoacetamido-ethyl-aminonaphthalene-a-sulfonic acid - IATR iodoacetamido-tetra-methylrhodamine - E5M Eosin-5-Maleimide - ATP adenosine tri phosphate - -ATP 1:N6-ethano-ATP - -2-aza-ATP 1:N6-etheno-2-aza-ATP - ant-ATP anthraniloyl-ATP  相似文献   

12.
13.
Electron spin resonance (ESR) experiments were carried out on 3-doxyl-5 alpha-cholestane spin-label (CSL) molecules embedded in macroscopically oriented multibilayers of dimyristoylphosphatidylcholine (DMPC), palmitoyloleoylphosphatidylcholine (POPC), dioleoylphosphatidylcholine (DOPC) and dilinoleoylphosphatidylcholine (DLPC). For these lipids we studied the effects of temperature, hydration and unsaturation on the orientational order parameters and rotational motions of the probe molecules in the liquid crystalline phase. The experimental ESR spectra were simulated by a numerical solution of the stochastic Liouville equation (SLE) for the density matrix of a spin-label molecule. This allows extraction of detailed information about both molecular order and rotational dynamics. The data show that, in our temperature range, the lipid systems are in the slow-motion regime, thereby precluding a motional narrowing interpretation. This is illustrated by a simple model calculation which shows that a fast-motion interpretation seriously overestimates the order parameters. We have compared our results with data obtained independently from angle-resolved fluorescence depolarization (AFD) experiments on oriented bilayers in which 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) molecules were used as fluorescent probes (Deinum et al., (1988) Biochemistry 27, 852-860). It is found that the orientational order and the rotational dynamics obtained with both techniques agree well. This shows that the probe molecules do not perturb the local bilayer structure to any large extent and that they indeed reflect the intrinsic behaviour of the lipid molecules. Upon increase in temperature or hydration, we observe faster reorientational motion and lower molecular ordering. In contrast, we do not find any systematic effect of unsaturation on molecular reorientational motion. Our results indicate that changes in membrane molecular order and reorientational dynamics have to be considered separately and are not necessarily correlated as implied by the common concept of membrane fluidity.  相似文献   

14.
Angle-resolved fluorescence depolarization experiments were carried out on 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylammonium)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) molecules embedded in multibilayers of dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) above their respective phase transitions. The finding that the order parameter 〈P2〉 of the absorption moment is significantly higher than that for the emission moment for each probe is shown to arise from a tilt of the emission moment relative to the molecular symmetry axis. It is further shown that while the order parameter 〈P2〉 is the same for both probes in DMPC bilayers, it is higher for TMA-DPH than for DPH molecules in POPC bilayers. Considerations of the order parameters 〈P4〉, however, show that this difference can be ascribed solely to the higher fraction of DPH molecules lying with their axes parallel to the bilayer surface. Furthermore it is found that TMA-DPH molecules undergo slower reorientational motions than DPH molecules in the same bilayer system. Nevertheless the motion of both probe molecules is faster in DMPC than in POPC bilayers. The results indicate that TMA-DPH is a more useful probe than DPH in the systems investigated.  相似文献   

15.
K H Cheng 《Biophysical journal》1989,55(6):1025-1031
The orientational order and rotational dynamics of 2-[3-(diphenyl-hexatrienyl) propanoyl]-3-palmitoyl-L-alpha- phosphatidylcholine (DPH-PC) embedded in dioleoylphosphatidyl-ethanolamine (DOPE) were studied by fluorescence depolarization technique. Upon increasing the temperature, the calculated wobbling diffusion constant D perpendicular of the fluorescent probe was found to decrease at the lamellar (L alpha) to inverted cylindrical (H II) phase transition (10 degrees C). This suggested that the increased gauche rotamers of the alkene chains in the HII phase imposes a constraint in the wobbling motion of the fluorophore. The calculated ratio of order parameter in the L alpha phase to that in the HII phase was 1.7 and different from the theoretical value of 2.0 as predicted from the change in packing symmetry. This result can be explained by a slightly higher local order parameter of the fluorophore or by the fast rotational diffusion motion of the fluorophore around the symmetry axis of the cylindrical tubes in the HII phase.  相似文献   

16.
Linear dichroism, the unequal absorption of parallel and perpendicular linear polarized light, is often used to determine the anisotropic ordering of rodlike polymers in a smectic phase, such as helices in a lipid bilayer. It is a measure of two properties of the sample: 1), orientation of the chromophore transition dipole moment (TDM) and 2), disorder. Since it is the orientation of the chromophore TDM that is needed for high resolution structural studies, it is imperative to either deconvolve sample disorder, or at a minimum, estimate its effect upon the calculated TDM orientation. Herein, a rigorous analysis of the effects of disorder is undertaken based on the recently developed Gaussian disorder model implemented in linear dichroism data. The calculation of both the rod tilt and rotational pitch angles as a function of the disorder and dichroism, yield the following conclusions: Disorders smaller than 5 degrees have a vanishingly small effect on the calculated polymer orientation, whereas values smaller than 10 degrees have a negligible effect on the calculated parameters. Disorders larger than 10 degrees have an appreciable effect on the calculated orientational parameters and as such must be estimated before any structural characterization. Finally the theory is tested on the HIV vpu transmembrane domain, employing experimental mosaicity measurements from x-ray reflectivity rocking scans and linear dichroism.  相似文献   

17.
Microsomal membranes from rat liver and from the fast-growing Morris hepatoma 3942A have been peroxidized to different extents and the order parameter of the membranes measured by fluorescence depolarization of the probe 1,6-diphenyl-1,3,5-hexatriene. The data have been analysed by applying a mathematical approach that takes into account simultaneously static and dynamic fluorescence parameters. It appears that tumour membranes are more ordered than the control and their order parameter does not increase with greater exposure to the action of O2 radicals in contrast to liver membranes. The fatty acid composition of the membrane lipids has been studied under different experimental conditions and correlated to the behaviour of the physical parameter.  相似文献   

18.
The orientation of the 568 nm transition dipole moment of the retinal chromophore of bacteriorhodopsin has been determined in purple membranes from Halobacterium halobium and in reconstituted vesicles. The angle between the 568 nm transition dipole moment and the normal to the plane of the membrane was measured in two different ways.In the first method the angle was obtained from transient dichroism measurements on bacteriorhodopsin incorporated into large phosphatidylcholine vesicles. Following flash excitation with linearly polarized light, the anisotropy of the 568 nm ground-state depletion signal first decays but then reaches a time-independent value. This result, obtained above the lipid phase transition, is interpreted as arising from rotational motion of bacteriorhodopsin which is confined to an axis normal to the plane of the membrane. It is shown that the relative amplitude of the time-independent component depends on the orientation of the 568 nm transition dipole moment. From the data an angle of 78 ° ± 3 ° is determined.In the second method the linear dichroism was measured as a function of the angle of tilt between the oriented purple membranes and the direction of the light beam. The results were corrected for the angular distribution of the membranes within the oriented samples, which was determined from the mosaic spread of the first-order lamellar neutron diffraction peak. In substantial agreement with the results of the transient dichroism method, linear dichroism measurements on oriented samples lead to an angle of 71 ° ± 4 °.No significant wavelength dependence of the dichroic ratio across the 568 nm band was observed, implying that the exciton splitting in this band must be substantially smaller than the recently suggested value of 20 nm (Ebrey et al., 1977).The orientation of the 568 nm transition dipole moment, which coincides with the direction of the all-trans polyene chain of retinal, is not only of interest in connection with models for the proton pump, but can also be used to calculate the inter-chromophore distances in the purple membrane.  相似文献   

19.
The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2(nd)- and 4(th)-rank order parameters, and , of the probe angular distribution (beta) relative to the fiber axis and , a coefficient describing the extent of rapid probe motions. We applied intense 12-micros polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale.  相似文献   

20.
Abstract

The gel to fluid phase transition or ordered to disordered phase transition observed in biological membranes are simulated by using constant energy Molecular Dynamics. The surface part of the membrane is modelled as a two-dimensional matrix formed by the head groups of the phospholipid molecules. Head molecules which are modelled as three spheres fused with three force centers, interact with each other via van der Waals and Coulomb type interactions. The -so called- impurity or foreign molecule embedded in the surface represents the protein type molecule which is present in biological membranes and control its activity. It is modelled as a pentagon having one force centers in each corner. It also interacts with the surface molecules again via van der Waals and Coulomb type interactions. The surface density is kept constant in the simulations of the systems with or without impurity. Structural and orientational changes due to impurity were observed and proved by monitoring two-dimensional order parameter. It has been shown that melting of the surface or breakage of the ordering of the surface molecules becomes easier and ordered to disordered phase transition temperature was lowered by 100 K if the impurity is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号